Randomized Algorithms

Randomized Rounding

o Brief Introduction to Linear Programming and Its Usage in
Combinatorial Optimization

Randomized Rounding for Cut Problems

Randomized Rounding for Satisfiability Problems

Randomized Rounding for Covering Problems

Randomized Rounding and Semi-definite Programming
Approximate Sampling and Counting
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Some Combinatorial Optimization Problems

MAXFLOW and MINCUT problems
MULTIWAY CUT problem

(]
[*]
@ MAX-2SAT, MAX-E3SAT, MAX-SAT problems
o

SET COVER, VERTEX COVER problems

They can all be formulated as (integer) linear programs
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Soviet Rail Network, 1955

Reference: O the hirtory of He bransportation and swavisum Fow problems,
Alexander Schrijver in Math Programming, 91: 3, 2002
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Maximum Flow and Minimum Cut Problems

@ Cornerstone problems in combinatorial optimization

e Many non-trivial applications/reductions: airline scheduling, data
mining, bipartite matching, image segmentation, network survivability,
many many many more ...

@ Simple Example: on the Internet with error-free transmission, what is
the maximum data rate that a router s can send to a router ¢
(assuming no network coding is allowed), given that each link has
limited capacity

@ More examples and applications to come
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Flow Networks

@ A flow network is a directed graph G = (V, E)) where each edge e has
a capacity c(e) >0

@ Also, there are two distinguished nodes: the source s and the sink ¢
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@ An s,t-cut is a partition (A, B) of V where s € A, t € B
o Let [A, B] = set of edges (u,v) withu € A,v € B
@ The capacity of the cut (4, B) is defined by

cap(4,B) = Z c(e)

e€[A,B]

Copacity =10 + b + 15
o4 a0 @ =130

CSE 694 — A Fun Course 7/32

©Hung Q. Ngo (SUNY at Buffalo)



@ An s,t-cut is a partition (A, B) of V where s € A, t € B
o Let [A, B] = set of edges (u,v) with u € A,v € B
@ The capacity of the cut (A, B) is defined by

cap(A,B) = > cle)

e€[A,B]

Capacity = 9+ 15+ 8 + 30

'® A
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Minimum Cut - Problem Definition

Given a flow network, find an s, t-cut with minimum capacity

At

<
N

Capacity = 10+ 8 +10
=28
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Flows

@ An s, t-flow is a function f : E — R satisfying
o Capacity constraint: 0 < f(e) <c(e), Ve € F
e Flow Conservation constraint: Z fle)= Z fle)

e=(u,v)EE e=(v,w)EE

o Thevalue of f: val(f) = Y f(e)

e=(s,v)€E

4 0 i
10 4 4 16 15 0 10
0 4 4

capacity — 18 10
flow — 0
Walue = 4

® 0 ®
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Flows

@ An s,t-flow is a function f : E — R satisfying
o Capacity constraint: 0 < f(e) < c(e), Ve € E

e Flow Conservation constraint: Z fle)= Z fle)

e=(u,v)EE e=(v,w)EE

o Thevalue of f: val(f) = Y f(e)

e=(s,v)€E

@ °* @ + @® o @

capacity — 18
flow — 11
Value = 24

® 0 ®
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Maximum Flow - Problem Definition

Given a flow network, find a flow f with maximum capacity

10 . 5
10 40 15 15 0 1
4 a Q
® ° ® 8 ® 10 ®
4 10
40 & 15 0
capacity — 18 10
flow — 14 14

Yalue = 2B
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First Linear Program for Maximum Flow

max Z fe

eckl
subject to fe < ¢, Ve€E,
(1)
quv_ vaw = O, VU#S,t
weE vweE
fo > 0, VYecE

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 13 / 32



Second Linear Program for Maximum Flow

@ Let P be the set of all s, t-paths.

@ fp denote the flow amount sent along P

max Z fp

Pep
subject to Z fp<ce, Ve€eE, (2)

P:ecP
fp>0, YPeP.
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What are Linear Programs?

Optimize linear objective subject to linear equalities/inequalities
Example 1:

min c1x1 + x4 -+ cpp
subject to anxr1 + appxry + ... + G, = b
asnry 4+ axprs + ... + awmxr, = by
am1T1 + am2T2 + ...+ amaTn = bnp

1‘i20,Vi=1,...,n,

Or simply: min{c’x | Ax = b,x > 0}
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What are Linear Programs?

Optimize linear objective subject to linear equalities/inequalities
Example 2:

max c1T1 + x4+ -+ - + Ty
subject to anx1 + apxry + ... + G, < b
asry 4+ axprs + ... + awmxr, < by
; ; <
am1T1 + amare + ... + amnTn < bm

1‘i20,Vi=1,...,n,

Or simply: max{c’x | Ax < b,x > 0}
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Standard and Canonical Forms

Certainly, constraints may be mixed: =, <, >, some variables may not
need to be non-negative, etc.
Example 3:

min /max aTx +bTy +cTz

subject to Aiix + Apy + Apzz = d
Agix + Ay + Agxz < e
Azix + Apy + Apz > f

x>0,y <0.

Note that A;; are matrices and a, b, c,d,e,f,x,y,z are vectors.

Fortunately, easy to “convert” any LP into any one of the following:
@ The min and the max versions of the standard form:

min{ch|Ax:b,x20}, and max{ch|Ax:b,x20}.
@ The min and the max versions of the canonical form:
min{ch|Ax2b,x20}, and max{ch|Ax§b,x20}.
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Solving Linear Programs

e Simplex Method (Dantzig, 1948): worst-case exponential time, but
runs very fast on most practical inputs

o Ellipsoid Method (Khachian, 1979): worst-case polynomial time, but
quite slow in practice. Can even solve some LP with an exponential
number of constraints if a separation oracle exists

@ Interior Point Method (Karmarkar, 1984): worst-case polynomial
time, quite fast in practice, not as popular as the simplex method
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Linear Programming Duality

To each LP (called the primal LP) there corresponds another LP called the
dual LP satisfying the following:

Dual
Feasible Infeasible
Optimal | Unbounded
Feasible Optimal X 0] 0
Primal Unbounded 0 0 X
Infeasible 0 X X

(X = Possible, O = Impossible)

If the primal is a min{. ..}, then the dual is a max{...} and vice versa

Theorem (Strong duality)

If both the primal and the dual LPs are feasible, then their optimal
objective values are the same.
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Rules for Writing Down the Dual LP

] Maximization problem \ Minimization problem ‘

Constraints Variables

ith constraint < ith variable > 0

ith constraint > 1th variable < 0

ith constraint = 1th variable unrestricted

Variables Constraints

jth variable > 0 jth constraint >

jth variable <0 jth constraint <
jth variable unrestricted jth constraint =

Table: Rules for converting between primals and duals.

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 21 /32



Primal /Dual Pair - Standard Form

In standard form, the primal and dual LPs are

min  ¢’x  (primal program)

subjectto Ax=Db
x>0

max b’y (dual program)
subject to ATy < c no non-negativity restriction!.
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Primal /Dual Pair - Canonical Form

In canonical form, the primal and dual LPs are

min ~ ¢’x  (primal program)

subjectto Ax>Db

x>0
max bTy (dual program)
subject to ATy <c
y > 0.
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Weak Duality and Strong Duality

Primal LP: min{c'x | Ax > b,x > 0}
Dual LP: max{b”y | ATy <c,y > 0}.

Theorem (Weak Duality)

Suppose x is primal feasible, and y is dual feasible, then c'x > b'y.
In particular, if x* is primal-optimal and y* is dual-optimal, then

cI'x* > bly*.

Theorem (Strong Duality)

If the primal LP has an optimal solution x*, then the dual LP has an
optimal solution y* such that

cI'x* =bly*.

.
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Complementary Slackness

Corollary (Complementary Slackness - canonical form)

Given the following programs

Primal LP:  min{c'x | Ax > b,x > 0},
Dual LP: max{bTy | ATy <c,y > 0}.

Let x* and y* be feasible for the primal and the dual programs,
respectively. Then, x* and y* are optimal for their respective LPs if and
only if

(c— ATy*) x* =0, and (b—Ax)Ty* =0. (3)
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First ILP for Mincut

Intuition: for a cut (A, B), set 2, =1 if v € A and z,, = 0 otherwise.

min

subject to

5 CeZe

ecF

Ze = Ty — Ty Ve=uv € F,
Ze 2 Xy — Ty Ve =uv € E,
Ty =1

.’L'tZO

Ze, Ty € {0,1}, YveV,e€e E
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Second ILP for Mincut

Let P be the collection of all s, ¢t-paths

min Z Cele
eclk
subject to Zye >1, VPeP, (4)
ecP
ye € {0,1}, Vec E.
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Multiway Cut

MULTIWAY CUT:
Given an edge weighted graph G = (V,E) (w: E — R") and k
terminals {t1,...,t}. Find a min-weight subset of edges whose
removal disconnects the terminals from one another.

Let P be the collection of all s;, s;-paths

min E WeLe

eeFE
subject to Zwe >1, VPeP, (5)

ecP
z. €{0,1}, Ve€E.
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WEIGHTED VERTEX COVER
Given a graph G = (V, E), |V| =n, |E| = m, a weight function
w:V — R. Find a vertex cover C C V' for which ), - w(i) is
minimized.

An equivalent integer linear program (ILP) is
min wix] + wexg + - - - + wpTy,

subject to x; +x; > 1, Vije€ L,
z; € {0,1}, VieV.
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WEIGHTED SET COVER

Given a collection S = {S1,...,S,} of subsets of
[m] ={1,...,m}, and a weight function w : S — R. Find a
cover C = {S; | j € J} with minimum total weight.

Use a Ol-variable x; to indicate the inclusion of S} in the cover. The
corresponding ILP is thus

min wixy + -+ wuTy
subject to Z xj >1, Vie[m],
j:S;3i

z; € {0,1}, Vj € [n].
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WEIGHTED MAX-SAT:
Given a CNF formula ¢ with m weighted clauses on n variables,
find a truth assignment maximizing the total weight of satisfied

clauses.

Say, clause C; has weight w; € R*. Here's an ILP

max Wizl + -+ W 2n
subject to Z yi + Z (1—wy) > z, Vj € [ml],
i:aCiECj i:a_?iGCj

vi,z; €{0,1}, Vi€ [n],j € [m]
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