Randomized Rounding

- Brief Introduction to Linear Programming and Its Usage in Combinatorial Optimization
- Randomized Rounding for Cut Problems
- Randomized Rounding for Satisfiability Problems
- Randomized Rounding for Covering Problems
- Randomized Rounding and Semi-definite Programming

Approximate Sampling and Counting

• ...

- MAXFLOW and MINCUT problems
- MULTIWAY CUT problem
- MAX-2SAT, MAX-E3SAT, MAX-SAT problems
- SET COVER, VERTEX COVER problems

They can all be formulated as (integer) linear programs

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

- Cornerstone problems in combinatorial optimization
- Many non-trivial applications/reductions: airline scheduling, data mining, bipartite matching, image segmentation, network survivability, many many more ...
- Simple Example: on the Internet with error-free transmission, what is the maximum data rate that a router s can send to a router t (assuming no network coding is allowed), given that each link has limited capacity
- More examples and applications to come

Flow Networks

- A flow network is a directed graph G = (V, E) where each edge e has a capacity c(e) > 0
- Also, there are two distinguished nodes: the source s and the sink t

Cuts

- An $s,t\text{-}\mathrm{cut}$ is a partition (A,B) of V where $s\in A,\,t\in B$
- Let [A,B] = set of edges (u,v) with $u \in A, v \in B$
- The capacity of the cut $\left(A,B\right)$ is defined by

$$\mathsf{cap}(A,B) = \sum_{e \in [A,B]} c(e)$$

Cuts

- An s,t-cut is a partition (A,B) of V where $s\in A,\,t\in B$
- Let [A,B]= set of edges (u,v) with $u\in A,v\in B$
- The capacity of the cut $\left(A,B\right)$ is defined by

$$\mathsf{cap}(A,B) = \sum_{e \in [A,B]} c(e)$$

Given a flow network, find an s, t-cut with minimum capacity

Flows

- An s, t-flow is a function $f: E \to \mathbb{R}$ satisfying
 - Capacity constraint: $0 \le f(e) \le c(e)$, $\forall e \in E$
 - Flow Conservation constraint: $\sum f(e) = \sum$
- The value of $f\colon \mathsf{val}(f) = \sum_{e=(s,v)\in E}^{e=(u,v)\in E} f(e)$

f(e)

Flows

- An s, t-flow is a function $f: E \to \mathbb{R}$ satisfying
 - Capacity constraint: $0 \le f(e) \le c(e)$, $\forall e \in E$
 - Flow Conservation constraint: $\sum f(e) = \sum$
- The value of f: val $(f) = \sum_{e=(s,v)\in E}^{e=(u,v)\in E} f(e)$

f(e)

Given a flow network, find a flow f with maximum capacity

$$\max \sum_{e \in E} f_e$$
subject to
$$\int_{uv \in E} f_{uv} - \sum_{vw \in E} f_{vw} = 0, \quad \forall e \in E,$$

$$f_e \geq 0, \quad \forall v \neq s, t$$

$$f_e \geq 0, \quad \forall e \in E$$
(1)

- Let \mathcal{P} be the set of all s, t-paths.
- f_P denote the flow amount sent along P

$$\max \sum_{\substack{P \in \mathcal{P} \\ \text{subject to}}} f_P \\ f_P \le c_e, \quad \forall e \in E, \\ f_P \ge 0, \quad \forall P \in \mathcal{P}. \end{cases}$$
(2)

Optimize linear objective subject to linear equalities/inequalities Example 1:

Or simply: $\min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}\}$

Optimize linear objective subject to linear equalities/inequalities Example 2:

Or simply: $\max\{\mathbf{c}^T\mathbf{x} \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$

Standard and Canonical Forms

Certainly, constraints may be mixed: $=, \leq, \geq$, some variables may not need to be non-negative, etc.

Example 3:

$$\begin{array}{lll} \min /\max & \mathbf{a^Tx} + \mathbf{b^Ty} + \mathbf{c^Tz} \\ \text{subject to} & \mathbf{A}_{11}\mathbf{x} & + & \mathbf{A}_{12}\mathbf{y} & + & \mathbf{A}_{13}\mathbf{z} & = & \mathbf{d} \\ & \mathbf{A}_{21}\mathbf{x} & + & \mathbf{A}_{22}\mathbf{y} & + & \mathbf{A}_{23}\mathbf{z} & \leq & \mathbf{e} \\ & \mathbf{A}_{31}\mathbf{x} & + & \mathbf{A}_{32}\mathbf{y} & + & \mathbf{A}_{33}\mathbf{z} & \geq & \mathbf{f} \\ & \mathbf{x} \geq \mathbf{0}, \mathbf{y} \leq \mathbf{0}. \end{array}$$

Note that A_{ij} are matrices and a, b, c, d, e, f, x, y, z are vectors.

Fortunately, easy to "convert" any LP into any one of the following:

• The min and the max versions of the standard form:

$$\min\left\{\mathbf{c}^T\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}\right\}, \ \text{ and } \ \max\left\{\mathbf{c}^T\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}\right\}.$$

• The min and the max versions of the canonical form:

$$\min\left\{\mathbf{c}^T\mathbf{x}~|~\mathbf{A}\mathbf{x} \geq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}, \ \, \text{and} \ \ \max\left\{\mathbf{c}^T\mathbf{x}~|~\mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}.$$

- Simplex Method (Dantzig, 1948): worst-case exponential time, but runs very fast on most practical inputs
- Ellipsoid Method (Khachian, 1979): worst-case polynomial time, but quite slow in practice. Can even solve some LP with an exponential number of constraints if a *separation oracle* exists
- Interior Point Method (Karmarkar, 1984): worst-case polynomial time, quite fast in practice, not as popular as the simplex method

Linear Programming Duality

To each LP (called the primal LP) there corresponds another LP called the dual LP satisfying the following:

				Dual	
			Feasible		Infeasible
			Optimal	Unbounded	
	Feasible	Optimal	Х	0	0
Primal		Unbounded	0	0	Х
	Infeasible		0	Х	Х

(X = Possible, O = Impossible)

If the primal is a $\min\{\dots\}$, then the dual is a $\max\{\dots\}$ and vice versa

Theorem (Strong duality)

If both the primal and the dual LPs are feasible, then their optimal objective values are the same.

©Hung Q. Ngo (SUNY at Buffalo)

Rules for Writing Down the Dual LP

Maximization problem	Minimization problem		
Constraints	Variables		
i th constraint \leq	i th variable ≥ 0		
i th constraint \geq	i th variable ≤ 0		
ith constraint =	ith variable unrestricted		
Variables	Constraints		
j th variable ≥ 0	j th constraint \geq		
j th variable ≤ 0	j th constraint \leq		
jth variable unrestricted	jth constraint =		

Table: Rules for converting between primals and duals.

In standard form, the primal and dual LPs are

$$\begin{array}{ll} \min & \mathbf{c}^T \mathbf{x} & (\mathsf{primal program}) \\ \mathsf{subject to} & \mathbf{A} \mathbf{x} = \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0} \end{array}$$

 $\begin{array}{ll} \max & \mathbf{b}^T \mathbf{y} & (\mathsf{dual program}) \\ \mathsf{subject to} & \mathbf{A}^T \mathbf{y} \leq \mathbf{c} & \mathsf{no non-negativity restriction!}. \end{array}$

In canonical form, the primal and dual LPs are

 $\begin{array}{ll} \min & \mathbf{c}^T \mathbf{x} & (\mathsf{primal program}) \\ \mathsf{subject to} & \mathbf{A} \mathbf{x} \geq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0} \end{array}$

$$\begin{array}{ll} \max \quad \mathbf{b}^T \mathbf{y} \quad (\mathsf{dual program}) \\ \mathsf{subject to} \quad \mathbf{A}^T \mathbf{y} \leq \mathbf{c} \\ \quad \mathbf{y} \geq \mathbf{0}. \end{array}$$

Weak Duality and Strong Duality

Primal LP:
$$\min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{A}\mathbf{x} \ge \mathbf{b}, \mathbf{x} \ge \mathbf{0}\}$$

Dual LP: $\max\{\mathbf{b}^T\mathbf{y} \mid \mathbf{A}^T\mathbf{y} \le \mathbf{c}, \mathbf{y} \ge \mathbf{0}\}.$

Theorem (Weak Duality)

Suppose \mathbf{x} is primal feasible, and \mathbf{y} is dual feasible, then $\mathbf{c}^T \mathbf{x} \ge \mathbf{b}^T \mathbf{y}$. In particular, if \mathbf{x}^* is primal-optimal and \mathbf{y}^* is dual-optimal, then

$$\mathbf{c}^T \mathbf{x}^* \ge \mathbf{b}^T \mathbf{y}^*.$$

Theorem (Strong Duality)

If the primal LP has an optimal solution \mathbf{x}^* , then the dual LP has an optimal solution \mathbf{y}^* such that

$$\mathbf{c}^T \mathbf{x}^* = \mathbf{b}^T \mathbf{y}^*.$$

Corollary (Complementary Slackness - canonical form) Given the following programs

$$\begin{array}{ll} \textit{Primal LP:} & \min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{A}\mathbf{x} \geq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\},\\ \textit{Dual LP:} & \max\{\mathbf{b}^T\mathbf{y} \mid \mathbf{A}^T\mathbf{y} \leq \mathbf{c}, \mathbf{y} \geq \mathbf{0}\}. \end{array}$$

Let x^* and y^* be feasible for the primal and the dual programs, respectively. Then, x^* and y^* are optimal for their respective LPs if and only if

$$\left(\mathbf{c} - \mathbf{A}^{T}\mathbf{y}^{*}\right)^{T}\mathbf{x}^{*} = \mathbf{0}, \text{ and } \left(\mathbf{b} - \mathbf{A}\mathbf{x}\right)^{T}\mathbf{y}^{*} = \mathbf{0}.$$
 (3)

Intuition: for a cut (A, B), set $x_v = 1$ if $v \in A$ and $x_v = 0$ otherwise.

$$\begin{array}{ll} \min & \sum_{e \in E} c_e z_e \\ \text{subject to} & z_e \geq x_u - x_v & \forall e = uv \in E, \\ & z_e \geq x_v - x_u & \forall e = uv \in E, \\ & x_s = 1 \\ & x_t = 0 \\ & z_e, x_v \in \{0, 1\}, \quad \forall v \in V, e \in E \end{array}$$

Let \mathcal{P} be the collection of all s, t-paths

$$\begin{array}{ll} \min & \sum_{e \in E} c_e y_e \\ \text{subject to} & \sum_{e \in P} y_e \geq 1, \quad \forall P \in \mathcal{P}, \\ & y_e \in \{0,1\}, \quad \forall e \in E. \end{array}$$

(4)

MULTIWAY CUT:

Given an edge weighted graph G = (V, E) ($w : E \to \mathbb{R}^+$) and k terminals $\{t_1, \ldots, t_k\}$. Find a min-weight subset of edges whose removal disconnects the terminals from one another.

Let \mathcal{P} be the collection of all s_i, s_j -paths

$$\min \sum_{e \in E} w_e x_e$$
subject to
$$\sum_{e \in P} x_e \ge 1, \quad \forall P \in \mathcal{P},$$

$$x_e \in \{0, 1\}, \quad \forall e \in E.$$
(5)

WEIGHTED VERTEX COVER

Given a graph G = (V, E), |V| = n, |E| = m, a weight function $w : V \to \mathbb{R}$. Find a vertex cover $C \subseteq V$ for which $\sum_{i \in C} w(i)$ is minimized.

An equivalent integer linear program (ILP) is

$$\begin{array}{ll} \min & w_1 x_1 + w_2 x_2 + \dots + w_n x_n \\ \text{subject to} & x_i + x_j \ge 1, \quad \forall i j \in E, \\ & x_i \in \{0, 1\}, \quad \forall i \in V. \end{array}$$

Weighted Set Cover

Given a collection $S = \{S_1, \ldots, S_n\}$ of subsets of $[m] = \{1, \ldots, m\}$, and a weight function $w : S \to \mathbb{R}$. Find a cover $C = \{S_j \mid j \in J\}$ with minimum total weight.

Use a 01-variable x_j to indicate the inclusion of S_j in the cover. The corresponding ILP is thus

$$\begin{array}{ll} \min & w_1 x_1 + \dots + w_n x_n \\ \text{subject to} & \displaystyle \sum_{j:S_j \ni i} x_j \geq 1, \quad \forall i \in [m], \\ & x_j \in \{0,1\}, \quad \forall j \in [n]. \end{array}$$

WEIGHTED MAX-SAT:

Given a CNF formula φ with m weighted clauses on n variables, find a truth assignment maximizing the total weight of satisfied clauses.

Say, clause C_j has weight $w_j \in \mathbb{R}^+$. Here's an ILP

$$\begin{array}{ll} \max & w_{1}z_{1} + \dots + w_{m}z_{n} \\ \text{subject to} & \sum_{i:x_{i} \in C_{j}} y_{i} + \sum_{i:\bar{x}_{i} \in C_{j}} (1 - y_{i}) \geq z_{j}, \qquad \forall j \in [m], \\ & y_{i}, z_{j} \in \{0, 1\}, \quad \forall i \in [n], j \in [m] \end{array}$$