
Randomized Algorithms

Randomized Rounding

Brief Introduction to Linear Programming and Its Usage in
Combinatorial Optimization

Randomized Rounding for Cut Problems

Randomized Rounding for Satisfiability Problems

Randomized Rounding for Covering Problems

Randomized Rounding and Semi-definite Programming

Approximate Sampling and Counting

...
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Some Combinatorial Optimization Problems

maxflow and mincut problems

multiway cut problem

max-2sat, max-e3sat, max-sat problems

set cover, vertex cover problems

They can all be formulated as (integer) linear programs
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Soviet Rail Network, 1955
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Maximum Flow and Minimum Cut Problems

Cornerstone problems in combinatorial optimization

Many non-trivial applications/reductions: airline scheduling, data
mining, bipartite matching, image segmentation, network survivability,
many many many more ...

Simple Example: on the Internet with error-free transmission, what is
the maximum data rate that a router s can send to a router t
(assuming no network coding is allowed), given that each link has
limited capacity

More examples and applications to come
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Flow Networks

A flow network is a directed graph G = (V,E) where each edge e has
a capacity c(e) > 0
Also, there are two distinguished nodes: the source s and the sink t
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Cuts

An s, t-cut is a partition (A,B) of V where s ∈ A, t ∈ B

Let [A,B] = set of edges (u, v) with u ∈ A, v ∈ B

The capacity of the cut (A,B) is defined by

cap(A,B) =
∑

e∈[A,B]

c(e)
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Minimum Cut - Problem Definition

Given a flow network, find an s, t-cut with minimum capacity
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Flows

An s, t-flow is a function f : E → R satisfying
Capacity constraint: 0 ≤ f(e) ≤ c(e), ∀e ∈ E

Flow Conservation constraint:
∑

e=(u,v)∈E

f(e) =
∑

e=(v,w)∈E

f(e)

The value of f : val(f) =
∑

e=(s,v)∈E

f(e)
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Maximum Flow - Problem Definition

Given a flow network, find a flow f with maximum capacity
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First Linear Program for Maximum Flow

max
∑
e∈E

fe

subject to fe ≤ ce, ∀e ∈ E,∑
uv∈E

fuv −
∑

vw∈E

fvw = 0, ∀v 6= s, t

fe ≥ 0, ∀e ∈ E

(1)
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Second Linear Program for Maximum Flow

Let P be the set of all s, t-paths.

fP denote the flow amount sent along P

max
∑
P∈P

fP

subject to
∑

P :e∈P

fP ≤ ce, ∀e ∈ E,

fP ≥ 0, ∀P ∈ P.

(2)
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What are Linear Programs?

Optimize linear objective subject to linear equalities/inequalities
Example 1:

min c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

... . . .
... =

...
am1x1 + am2x2 + . . . + amnxn = bm

xi ≥ 0,∀i = 1, . . . , n,

Or simply: min{cTx | Ax = b,x ≥ 0}
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Standard and Canonical Forms

Certainly, constraints may be mixed: =,≤,≥, some variables may not
need to be non-negative, etc.
Example 3:

min / max aTx + bTy + cTz
subject to A11x + A12y + A13z = d

A21x + A22y + A23z ≤ e
A31x + A32y + A33z ≥ f
x ≥ 0,y ≤ 0.

Note that Aij are matrices and a,b, c,d, e, f ,x,y, z are vectors.

Fortunately, easy to “convert” any LP into any one of the following:

The min and the max versions of the standard form:

min
{
cTx | Ax = b,x ≥ 0

}
, and max

{
cTx | Ax = b,x ≥ 0

}
.

The min and the max versions of the canonical form:

min
{
cTx | Ax ≥ b,x ≥ 0

}
, and max

{
cTx | Ax ≤ b,x ≥ 0

}
.
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Solving Linear Programs

Simplex Method (Dantzig, 1948): worst-case exponential time, but
runs very fast on most practical inputs

Ellipsoid Method (Khachian, 1979): worst-case polynomial time, but
quite slow in practice. Can even solve some LP with an exponential
number of constraints if a separation oracle exists

Interior Point Method (Karmarkar, 1984): worst-case polynomial
time, quite fast in practice, not as popular as the simplex method
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Linear Programming Duality

To each LP (called the primal LP) there corresponds another LP called the
dual LP satisfying the following:

Dual
Feasible Infeasible

Optimal Unbounded

Feasible Optimal X O O
Primal Unbounded O O X

Infeasible O X X

(X = Possible, O = Impossible)

If the primal is a min{. . . }, then the dual is a max{. . . } and vice versa

Theorem (Strong duality)

If both the primal and the dual LPs are feasible, then their optimal
objective values are the same.
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Rules for Writing Down the Dual LP

Maximization problem Minimization problem

Constraints Variables
ith constraint ≤ ith variable ≥ 0
ith constraint ≥ ith variable ≤ 0
ith constraint = ith variable unrestricted

Variables Constraints
jth variable ≥ 0 jth constraint ≥
jth variable ≤ 0 jth constraint ≤

jth variable unrestricted jth constraint =

Table: Rules for converting between primals and duals.
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Primal/Dual Pair - Standard Form

In standard form, the primal and dual LPs are

min cTx (primal program)

subject to Ax = b

x ≥ 0

max bTy (dual program)

subject to ATy ≤ c no non-negativity restriction!.
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Primal/Dual Pair - Canonical Form

In canonical form, the primal and dual LPs are

min cTx (primal program)

subject to Ax ≥ b

x ≥ 0

max bTy (dual program)

subject to ATy ≤ c

y ≥ 0.
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Weak Duality and Strong Duality

Primal LP: min{cTx | Ax ≥ b,x ≥ 0}
Dual LP: max{bTy | ATy ≤ c,y ≥ 0}.

Theorem (Weak Duality)

Suppose x is primal feasible, and y is dual feasible, then cTx ≥ bTy.
In particular, if x∗ is primal-optimal and y∗ is dual-optimal, then

cTx∗ ≥ bTy∗.

Theorem (Strong Duality)

If the primal LP has an optimal solution x∗, then the dual LP has an
optimal solution y∗ such that

cTx∗ = bTy∗.
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Complementary Slackness

Corollary (Complementary Slackness - canonical form)

Given the following programs

Primal LP: min{cTx | Ax ≥ b,x ≥ 0},
Dual LP: max{bTy | ATy ≤ c,y ≥ 0}.

Let x∗ and y∗ be feasible for the primal and the dual programs,
respectively. Then, x∗ and y∗ are optimal for their respective LPs if and
only if (

c−ATy∗
)T

x∗ = 0, and (b−Ax)T y∗ = 0. (3)
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First ILP for Mincut

Intuition: for a cut (A,B), set xv = 1 if v ∈ A and xv = 0 otherwise.

min
∑
e∈E

ceze

subject to ze ≥ xu − xv ∀e = uv ∈ E,
ze ≥ xv − xu ∀e = uv ∈ E,
xs = 1
xt = 0
ze, xv ∈ {0, 1}, ∀v ∈ V, e ∈ E
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Second ILP for Mincut

Let P be the collection of all s, t-paths

min
∑
e∈E

ceye

subject to
∑
e∈P

ye ≥ 1, ∀P ∈ P,

ye ∈ {0, 1}, ∀e ∈ E.

(4)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 28 / 32



Multiway Cut

multiway cut:

Given an edge weighted graph G = (V,E) (w : E → R+) and k
terminals {t1, . . . , tk}. Find a min-weight subset of edges whose
removal disconnects the terminals from one another.

Let P be the collection of all si, sj-paths

min
∑
e∈E

wexe

subject to
∑
e∈P

xe ≥ 1, ∀P ∈ P,

xe ∈ {0, 1}, ∀e ∈ E.

(5)
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Vertex Cover

Weighted Vertex Cover

Given a graph G = (V,E), |V | = n, |E| = m, a weight function
w : V → R. Find a vertex cover C ⊆ V for which

∑
i∈C w(i) is

minimized.

An equivalent integer linear program (ILP) is

min w1x1 + w2x2 + · · ·+ wnxn

subject to xi + xj ≥ 1, ∀ij ∈ E,
xi ∈ {0, 1}, ∀i ∈ V.
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Set Cover

Weighted Set Cover

Given a collection S = {S1, . . . , Sn} of subsets of
[m] = {1, . . . ,m}, and a weight function w : S → R. Find a
cover C = {Sj | j ∈ J} with minimum total weight.

Use a 01-variable xj to indicate the inclusion of Sj in the cover. The
corresponding ILP is thus

min w1x1 + · · ·+ wnxn

subject to
∑

j:Sj3i

xj ≥ 1, ∀i ∈ [m],

xj ∈ {0, 1}, ∀j ∈ [n].

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 31 / 32



Max-SAT

Weighted max-sat:

Given a CNF formula ϕ with m weighted clauses on n variables,
find a truth assignment maximizing the total weight of satisfied
clauses.

Say, clause Cj has weight wj ∈ R+. Here’s an ILP

max w1z1 + · · ·+ wmzn

subject to
∑

i:xi∈Cj

yi +
∑

i:x̄i∈Cj

(1− yi) ≥ zj , ∀j ∈ [m],

yi, zj ∈ {0, 1}, ∀i ∈ [n], j ∈ [m]
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