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Abstract—Constructing fast wavelength division multiplexing
switches with cheap, integratable components, less power con-
sumption and noise accumulation, and low complexity is an
important problem in optical networking. Typically, there are two
request models widely considered. In one model, a connection
request asks to go from a wavelength on an input fiber of the
WDM switch to a particular wavelength on an output fiber. In the
other, a connection only needs to get to a particular output fiber,
irrespective of what wavelength it will be on. In this paper, we give
novel constructions of strictly nonblocking and rearrangeably
nonblocking WDM switches for both request models using limited
range wavelength converters and arrayed waveguide grating
routers. We fully analyze their blocking characteristics. Our
designs are all relatively simple and easy to be laid out, consume
little power, do not accumulate much noise, and are useful for
both optical circuit-switching and optical packet/burst switching.
As far as we know, these are the first of such constructions.

Index Terms—Limited-range wavelength converters, non-
blocking WDM cross-connects.

I. INTRODUCTION

DESPITE the recent downturn in the telecommunication
industry in general and the optical networking sector in

particular, Internet traffic is still doubling every year. In order
to meet the ever increasing bandwidth demand from a large
number of users in scientific computing and academic commu-
nities, as well as in military and other government agencies,
there is a renewed interest in photonic switching as evident from
several ongoing and planned national-scale projects in the U.S.,
Europe, and Asia (see, for example, DARPA’s recent BAA on
Data in the Optical Domain Networks1).

As the number of wavelengths in a wavelength division
multiplexed (WDM) network increases to hundreds or more
per fiber, and each wavelength operates at 10 Gb/s (OC-192)
or higher [15]–[17], electronically switching the traffic carried
on tens of fibers at each node, or equivalently, thousands of
wavelengths at an aggregated throughout of several Terabits
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per second, becomes challenging due not only to the high
costs of optical–electronic–optical (OEO) conversion, but also,
more importantly, to the high power consumption (and heat
dissipation) and large footprint (or space consumption). As
the optical device and component technology, and in partic-
ular, opto-electronic integration technology matures, photonic
switching systems not only can potentially achieve hundreds
of Terabits per second or higher throughput [8], but also can
be more cost-effective than their electronic counterparts even
for applications requiring a lower throughout. Indeed, certain
types of photonic switching fabrics such as the so-called WDM
cross-connects (WXCs), or dynamic, reconfigurable optical
add-drop multiplexers (OADMs), have already been deployed
as an economic way to handle a large amount of traffic at the
wavelength granularity.

In this paper, we will focus on cost-effective designs of pho-
tonic switching fabrics for WDM networks. As pointed out in
[27], for cross-connecting wavelengths, that is, switching at the
wavelength granularity for wavelength-routed or optical circuit-
switched networks, it is not cost-effective to simply demulti-
plex all incoming fibers, each having wavelengths, into

wavelengths, and then use a photonic, purely space
domain switch (or space switch for short) having a large (e.g.,

) number of inputs and outputs, along with a stage
of full-range wavelength converters or FWCs (each of which
needs to be capable of converting any one of the wavelengths
to any other one of the wavelengths).

One of the biggest challenges is thus to design cost-effec-
tive photonic switching fabrics that can scale in size beyond
a hundred of inputs and outputs, and at the same time, switch
fast (e.g., tens of nanoseconds or less). For example, while one
can achieve sub-nanosecond switching speed using polarization
independent LiNBO couplers based switches, not many such
couplers can be integrated into a single module to form a large
switch. Similarly, it is difficult to build a large switch with semi-
conductor optical amplifiers (SOAs) and passive InP gate arrays,
mainly due to noise accumulation of the SOAs. On the other
hand, optical microelectromechanical system (MEMS) switches
can be large but switch only at the speed of milliseconds. These
and other switching technologies have been described in [14].

In this work, we address the aforementioned challenge
by—for the first time—presenting both strictly and rearrange-
ably nonblocking WDM switch designs using a combination of
arrayed waveguide grating routers (AWGRs) and limited range
wavelength converters (LWCs). An AWGR, which has been
used for optical packet-switching and as a cross-connect in [11]
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and [18], is wavelength sensitive, and as such is not the same
as a space switch. For instance, a signal carried on wavelength

, , at the first input of a AWGR will be
(statically) routed to say, output of the AWGR without being
able to go to another output, nor a different wavelength at the
output . In order to route the signal to a different output, say

, it has to be converted to wavelength at the first input.
The signal may need to be converted again at output if it is
to be carried on a different wavelength (including the original
wavelength ). On the other hand, signals from multiple inputs
of an AWGR can be routed to the same output as long as
they use different wavelengths, which make it more versatile
(functionally more powerful) than a space switch (wherein only
one input signal can go to any given output).

AWGRs are also interesting because they can be integrated in
a large scale, and unlike a passive star coupler, the signals going
through an AWGR are virtually lossless. In addition, with wave-
length converters (WCs), fast switching is possible since the
switching speed depends only on the speed of wavelength con-
version, which is tens of nanoseconds or less even with current
technology. Of course, in a AWGR router, in order to be
able to route a signal to any one of the outputs, fast tunable
WCs that can cover the entire spectrum of the wavelengths
are needed. And if is large, as in [5] where ,
these WCs become too expensive and perhaps impractical.

Our designs of strictly and rearrangeably nonblocking WDM
switches based on AWGRs and LWCs (each of which covers
the spectrum of less than wavelengths) not only can switch
faster but also are less expensive in terms of wavelength conver-
sion cost than any existing nonblocking switch designs based on
full-range or wider-range WCs such as FWCs [27]. As far as we
know, these are the first such designs based on multistage con-
struction that are strictly nonblocking (SNB) in both the space
and wavelength domains. For example, the design described in
[23] is blocking even though it used FWCs. In addition, a trivial
extension to a multistage design using FWCs would lead to re-
arrangeably nonblocking (RNB) at the best. Later, we will also
present our RNB designs using a minimal number of LWCs,
thus having a lowest wavelength converter cost compared to any
existing RNB designs.

Our designs are useful for both optical circuit-switching
(or wavelength routing) networks and optical packet/burst
switching. More specifically, while our SNB designs are
most effective, for most optical circuit-switching networks, as
well as optical packet/burst switched networks where optical
packets/bursts are switched synchronously or one batch at a
time, our RNB designs which offered a lower cost than the SNB
counterparts, can also be applied.

The rest of this paper is organized as follows. Section II de-
fines key concepts and notations used throughout the paper. Sec-
tions III presents and analyzes an RNB construction for one
request model, where an input signal is to be routed to a spe-
cific output fiber while it does not care about the exact wave-
length it gets carried on. Section IV describes and analyzes SNB
and RNB constructions for the other request model, where an
input signal gets routed to a specific output wavelength on a
specific output fiber. Section V discusses three other construc-
tions and analyzes their blocking properties. Section VI com-

Fig. 1. Heterogeneous WDM cross-connect.

pares and contrasts our constructions with other known designs.
The reader can to refer to Table I at the end of the paper for
an overall picture of different designs discussed in this paper.
Finally, Section VII concludes the paper and discusses future
works.

II. PRELIMINARIES

A. Basic Concepts

A general WDM cross-connect (WXC) consists of input
fibers with wavelengths on each, and output fibers with
wavelengths on each, where (see Fig. 1). The set
of input wavelengths need not have any relation with the output
counterpart. This kind of WXCs were considered in [25] under
the name “heterogeneous WXCs.”

In this paper, we consider the “homogeneous” version where
each WXC2 has input fibers and output fibers, each of which
can carry a set of wavelengths. It should
be noted that our constructions can be extended quite straight-
forwardly to the heterogeneous network case. The restriction
was chosen merely for presentation clarity.

Let and denote the set of input and output fibers, respec-
tively. In the -request model, a connection request is
of the form , which means that a connection is to be
established from wavelength of input fiber to any
free wavelength in output fiber . In the -re-
quest model, the difference is that the output wavelength is
also specified.

Note that the -model is useful for switching op-
tical packets/bursts synchronously or one batch at a time,
as well as for optical circuit-switching in general. The

-model is particularly useful for asynchronous
switching of optical bursts using JET (and void filling) [22],
[28], as well as certain circuit-switching applications requiring
specific quality of service (QoS).

We next define the concepts of strictly nonblocking (SNB)
and rearrangeably nonblocking (RNB) for both request models.

Consider a WXC with a few connections already established.
Under the -model, a new request is said to
be valid if is a free wavelength in input fiber , and there are
at most existing connections at output fiber . Under the

-model, a new request is valid if is
free in and is free in .

2We will use the term WXC to refer also to WDM switches where switching
speed may be fast enough for optical packet/burst switching.
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A request frame under the -model is a set of re-
quests such that no two requests are from the same input wave-
length/fiber pair, and that there are at most requests to any
output fiber.

A request frame under the -model is a set of re-
quests such that no two requests are from the same input wave-
length/fiber pair, and no two requests are to the same output
wavelength/fiber pair.

The following definitions hold for both request models. A re-
quest frame is realizable by a WXC if all requests in the frame
can be routed simultaneously. A WXC is rearrangeably non-
blocking iff any request frame is realizable by the WXC. A
WXC is strictly nonblocking iff a new valid request can always
be routed through the WXC without disturbing existing connec-
tions.

Remark 2.1: Note that RNB or SNB under the
-model implies RNB or SNB under the

-model, respectively. Also, under the same model,
being SNB implies being RNB.

B. Commonly Used Notations

The following notations are used throughout the paper.
Let and be two subsets of wavelengths (having at most
wavelengths each). A limited wavelength converter (LWC)

capable of converting any wavelength in to any wavelength
in is denoted by .

We shall assume that , where and are two positive
integers for which . In practice, the number of wave-
lengths per fiber is much larger than the number of fibers;
hence this assumption is practically no restriction. In the worse
case, we can always take . Our designs also apply to
the case where if we use FWCs, and where if
wider-range WCs are available.

Implicitly, we agree that when to avoid
writing too many mod. Given natural numbers , we use

to denote the set of wavelengths .
Also, define for short.

In several of our designs, the wavelength set is partitioned
into bands of size each. Band consists of
the set of wavelengths.

In this paper, graph theoretic concepts and notations we use
are fairly standard. The reader is referred to [26] for related in-
formation.

C. Arrayed Waveguide Grating Routers

Passive AWGRs are attractive optical switching components
because they are commercially available and inexpensive, rela-
tively simple to fabricate, and they consume virtually no power
[4], [23]. AWGRs also exhibit flat spectral response and low
insertion loss. They can be designed to perform multiplexing
and demultiplexing simultaneously, and are suitable for a large
number of channels. A potential drawback is that they are tem-
perature-sensitive and thus require careful temperature control.

An AWGR on wavelengths has
a fixed routing pattern defined as follows (see Fig. 2). The in-
puts and outputs of the AWGR are numbered from 0 to .
An input signal carried on wavelength at input fiber gets

Fig. 2. Anm �m arrayed waveguide grating router.

routed to output fiber numbered on the same
wavelength .

Remark 2.2: Some authors define the output line to be

instead. This is not a discrepancy, as we can always renumber
the wavelengths and input lines. For example, renaming by

, and input by , then .
Just like a prism, an AWGR allows deflection of an optical

beam at various directions, which has the effect of similar
to a wavelength “space-switch.” When used in combination
with tunable wavelength converters, we can turn an AWGR
into an optical cross-bar as shall be seen later. For instance,
in Fig. 2, if were converted to at the input fiber ,
then would be routed to output instead of

. Additionally, if optical delay lines are used, we
can turn this cross-bar into a time/space switch, facilitating
optical burst/packet routing.

III. THE -REQUEST MODEL

A. Rearrangeably Nonblocking Construction

We use WXC-RNB-1 to denote the construction given in this
section. A sample construction of WXC-RNB-1 is shown in
Fig. 3. Each band are inputs to an AWGR, preceded
by one for each in . The AWGRs are
numbered continuously from to .

At the second stage of the network, only one AWGR is
used. We refer to this AWGR as the middle AWGR. We use only

inputs numbered of the middle AWGR. A
multiplexor , , is connected to input numbered

of the middle AWGR.
For each and , output of

is connected to a separate

and then to the multiplexor .
At the last stage of the construction, there are multiplexors

combining signals to the output fibers. We connect only the first
output lines of the middle AWGR to the output multiplexors.

For each , output numbered of the middle
AWGR is connected to the multiplexor for output fiber .

Remark 3.1: In the description of our construction above,
we used an AWGR in the middle which can take a WDM link
(i.e., a fiber with multiple wavelengths) as one input. This type
of AWGR splits the WDM signals carried on a link inside the



208 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 1, FEBRUARY 2006

Fig. 3. Example of the WXC-RNB-1 construction for the (�; F; F )-request model. The parameters are k = 12, n = 4, b = 3, and f = 2.

fabric as if there is a passive splitter inside the fabric (and cer-
tainly do not need a wavelength demultiplexer inside). It uti-
lizes the effectively different refractive indexes (with respect
to wavelengths) created by different waveguide lengths and an-
gles (bending curves) to statically (or passively) route different
wavelengths to different output ports.

One can also replace this type of AWGR by several AWGRs
which take as inputs fibers with only one wavelength on each.
If this type of AWGRs is used, there is no need to have the
multiplexors at the second stage any more.

The following lemma is a nice observation which leads to
the proof that this construction is rearrangeably nonblocking
in the -model. We use the standard notation

, for any positive integer .
Lemma 3.2: Let , be natural numbers. Let

be a bipartite multi-graph, where and form the vertex
partition, and is the edge set. Further assume that each vertex
in has degree at most , and each vertex in has degree at
most .

Then, the edges of can be colored with colors in the set
so that vertices in are incident to colors with different first

coordinates, and vertices in are incident to different colors.
Remark 3.3: Let be a color in the set , then is

the first coordinate and is the second coordinate of this color.
Two colors in the set are different iff either the first or
the second coordinates are different.

Proof of Lemma 3.2: Construct a bipartite multi-graph
from by splitting each vertex

into vertices so that each of the is

incident to at most edges which were previously incident to .
This is certainly possible, since the degree of in is at most

. In this way, is a bipartite multi-graph with maximum
degree at most .

By König’s line coloring theorem [13], the graph can
properly be edge-colored with at most colors. Recall that a
proper edge-coloring is a coloring for which all vertices are in-
cident to edges of different colors. A few (fast) polynomial-time
coloring algorithms can be found in [3], [6], [7], for instance.

We use for this set of colors, which shall be the first
coordinates of the final coloring. For each , all
edges incident to the th copy of a vertex get as
their second color coordinate.

The coloring (with two coordinate colors) of induces a
coloring of with the desired property.

Theorem 3.4: The WXC-RNB-1 construction described
above is rearrangeably nonblocking under the -re-
quest model.

Proof: Let be a request frame for our WXC under the
-request model. We shall show that all requests in

can be routed simultaneously through the network.
Recall that we number the input-stage AWGRs from

to . Let be an bipartite
multi-graph, i.e., , , constructed from as
follows. Let
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There is (a copy of) an edge for each request
where . Basically, there is

a vertex for band on input fiber .
For any particular pair , there can be at most one request

from in input fiber . Hence, vertices in of the graph
have maximum degree . For any output fiber , there can be at
most requests to it; hence, vertices in of have maximum
degree .

Consequently, can be edge-colored satisfying the conclu-
sions of Lemma 3.2]. Each request thus gets a color in
the set . We shall use this coloring to establish routes
for all requests in simultaneously.

Let be a request which gets colored
.

As an example, we will follow the arguments of this proof
with the request , i.e., of the
sample design shown in Fig. 3. Suppose this request gets colored

. Note that , , and .
The basic idea is to route this request from to the th output

line of its corresponding first-stage AWGR. Next, by construc-
tion there are output lines of the middle AWGR which are con-
nected to the multiplexor on output fiber . The second-stage
LWC finishes the job by routing our connection to the th line
of this set of output lines. Lastly, the properties of the coloring
ensures that our routing algorithm creates no conflict at the mul-
tiplexors as well as at the LWCs.

In order to get to output of the corresponding input-stage
AWGR, the LWC converts to .

In our example, will be converted to .
We claim that no output of any input-stage AWGR is used

twice. The claim directly follows from the fact that requests
coming out of the same band get different colors, thus get routed
through different output line of the band’s AWGR. It follows
easily that all the second-stage LWCs are going to be used at
most once.

Let us now go back to the request which is now
on . As the connection gets out on output , it is
going through an and then to the mul-
tiplexor connected to input numbered of the middle AWGR.

In our example, will get out on output 3 (numbered from
0) of its AWGR, then go through LWC [4], [9], [15], the multi-
plexor, and finally to input numbered 9 of the middle AWGR.

The outputs of the middle AWGR connected to are num-
bered . The th line on this group is
thus numbered . For on input to get out
on output , the wavelength needs to be converted to

Recall that . Hence, the request is
routed to the right destination, so do all requests in .

In our example, is converted to and finally
gets to output fiber as desired.

As noted earlier, our routing algorithm does not use any LWC
twice, which means there is no conflict at the LWCs. We next
confirm that there is also no multiplexor getting the same wave-
length more than once.

Consider first the multiplexors at the middle AWGR. The th
multiplexor gets wavelengths of the form for different
values of and . Recall that , and . Suppose there
is some conflict at the th middle multiplexor, then there are two
requests to some and which get colored ,
such that

This implies

As , , it must be the case that .
Moreover, as , we must have , which
means also. This contradicts our coloring which
says that two requests to the same get different pairs.

Lastly, consider the multiplexors at the last stage. The th
multiplexors get wavelengths of the form for different
values of and . A similar argument as above completes the
proof. We omit the details.

B. Strictly Nonblocking Case

Since the -model is less restrictive than the
-model, one might think that nonblocking

cross-connects under the former are (strictly) cheaper than
those under the later. This intuition is not necessarily true. In
particular, one can show that we save nothing if we require our
cross-connect to be strictly nonblocking. The proof of this fact
requires lengthy rigorous settings which go beyond the scope
of this paper. The reader is referred to [20] for more details.

The key point is that, as far as SNB under the
-model is concerned the SNB construction for the

-model shown in Section IV-B is sufficient.

IV. THE -REQUEST MODEL

The constructions in this section are motivated from the idea
of the three-stage Clos network [2].

A. Rearrangeably Nonblocking Construction

Fig. 4 shows an illustration of this construction, which we
refer to as WXC-RNB-2.

The first stage of the construction is identical to the WXC-
RNB-1 construction described in Section III.

The second stage consists of AWGRs of size , num-
bered from 0 to . The th output of the th first-stage AWGR
is connected to an , and then to the th input of
the th middle-stage AWGR.

The last stage, as before, consists of one multiplexor for each
output fiber. We number the multiplexors from 0 to , as
usual. The connection patterns from the middle-stage AWGRs
to the multiplexors are identical. The th output of a middle stage
multiplexor is connected to an , and then
to the multiplexor numbered .

Theorem 4.1: The WXC-RNB-2 construction described
above is rearrangeably nonblocking under the -re-
quest model.
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Fig. 4. Example of the WXC-RNB-2 construction for the (�; F; � ; F )-request model. The parameters are k = 12, n = 4, b = 3, and f = 2.

Proof: Let be a request frame for our WXC under the
-request model. We shall show that all requests in

can be routed simultaneously through the network.
Recall that we number the input-stage AWGRs from

to . Let be an
bipartite multi-graph, i.e., , con-

structed from as follows. Let and
. There is an edge for each

request where

For any particular pair , there can be at most one request
from of input fiber , and there can be as most one request
to of output fiber . This conclusion comes from the fact
that is a request frame.

Thus, it is straightforward that the maximum degree of is
at most . Intuitively, there can be at most requests from any
band on fiber , and at most requests to any band on fiber .

By König’s line coloring theorem [13], we can properly edge-
colored with at most colors. Hence, each request in gets
a color between 0 and , such that requests coming out of
the same input band and fiber or to the same output band and
fiber get different colors.

In the rest of the proof, we shall use this coloring to route
requests in . The idea is to route request colored to the
middle-stage AWGR numbered .

Consider a request , which gets colored
. We tune the , which is connected to at

input fiber , so that it converts to and
hence it will get out on output of its input-stage AWGR.

This signal shall get to the th middle-stage AWGR at its
input line. At this point, the corresponding LWC

is tuned to convert

to

which shall get routed to output numbered of this
AWGR.

Lastly, this output line is connected to an ,
then multiplexed to output fiber . This last LWC shall convert
the previous wavelength to as desired.

To complete the proof, we need to show that we did not use
any LWC twice.

As the requests from the same input band and fiber get dif-
ferent colors, no two requests shall be routed through the same
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Fig. 5. Example of the WXC-SNB-2 construction for the (�; F; � ; F )-request model. The parameters are k = 6, n = 2, b = 3, and f = 2.

output line of any input-stage AWGR. This means we did not
use any second-stage LWC twice.

Similarly, the requests to the same output band and fiber
get different colors, they will come to the band from different
middle-stage AWGRs.

B. Strictly Nonblocking Construction

Fig. 5 shows an illustration of the construction, called WXC-
SNB-2.

At each input fiber, each line in band is connected to an
and then to one of the first inputs of a
AWGR. Thus, the first stage consists of

AWGRs of larger size than those in the RNB construction.
At the second stage, there are AWGRs of size
. The th output of the th first-stage AWGR is connected to

an , and then to the th input of the th
middle-stage AWGR.

The last stage has one multiplexor for each output fiber. The
connection patterns from middle-stage AWGRs to the multi-
plexors are identical. The th output of a middle-stage AWGR
is connected to an , and then to the multi-
plexor on output fiber .

Theorem 4.2: The WXC-SNB-2 construction described
above is strictly nonblocking under the -request
model.

Proof: Suppose our WXC has had a few connections set
up. Let be a new valid connection request, i.e.,

and are free wavelengths on input fiber and output fiber
, respectively. We want to show that we can find a route for

this request through the WXC without disturbing the routes of
existing connections.

After being demultiplexed at input fiber , comes to

and then connected to the th input of the first-stage
AWGR numbered .

As there can be at most existing connections which
come from band of input fiber , there must be at least

outputs of which carry no signal. With the
help of the , the signal on can get out
on any of these free output lines. Let be a set of middle-stage
AWGRs to which of these free lines are connected to. Then,
a signal on can get to any AWGR in . However, shall be
converted to a wavelength in .

To this end, notice that belongs to band of output
fiber . By construction, each AWGR in the set has one
output line connected to an LWC , and then to the
multiplexor on output fiber . Let be this set of output lines.
Since there can only be at most existing connections to
wavelengths in band of output fiber , and since

, at least one line carries no signal.
Suppose corresponds to the AWGR . We can now

let the signal on the original get to AWGR , at which it is
converted by the to some wavelength in

in other to get out at . Lastly, the will
convert the previous wavelength to .

V. ANALYSES OF OTHER CONSTRUCTIONS

The design given in [23] was not RNB, even in the less re-
strictive -request model. The Ramamirtham–Turner
design essentially looks like the one in Fig. 6, except that there
are no wavelength converters at the second stage. Their design
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Fig. 6. One-stage construction that is generally blocking, but should be more powerful than the one in [23].

has several advantages: it is physically simple to be laid out, it
has only one stage (implying less power consumption, power
attenuation), it also has RNB throughput up to 87% of an RNB
design under the -request model [23] (this result was
obtained through simulation for bursts arriving according to an
exponential distribution).

A few natural questions arise from the kind of construction
in Fig. 6. (Note again that, the design in the figure has one ad-
ditional stage of wavelength converters as compared to the Ra-
mamirtham–Turner design.) For instance, one might wonder if
the second stage of FWCs yields an RNB design, or even SNB.
If the second stage does not induce nonblockingness, would the
blocking behavior be any better than the 87% obtained in [23].
We answer the former question here, leaving the latter for future
works.

In this section, we analyze the design shown in Fig. 6 and an-
other “natural” design shown in Fig. 7, which has one additional
stage of AWGRs and FWCs. The analyses motivates an-
other interesting construction discussed in Section V-C. Some
of the constructions we analyze in this section are blocking.
Their analyses are included for pedagogical reasons, for one
thing. They also are simple and symmetrical designs with few
stages, which are important features when we physically re-
alize them. Thus, even when they are blocking, if they have
good probabilistic blocking behavior, then they can be practi-
cally useful. (The last issue is left for future works.)

Remark 5.1: In most analyses given in this section, we ignore
the issue of divisibility for presentation clarity. In the figures, the
black squares represent FWCs.

A. One-Stage Construction

We analyze the construction shown in Fig. 6 in this section.
We ignore the trivial case when .

Theorem 5.2: The construction shown in Fig. 6 is not rear-
rangeably nonblocking under the -request model,
no matter how we connect the AWGRs to the output multi-
plexors.

Proof: No matter what the connection pattern is, there
must be an output multiplexor to which the first AWGR has

outputs connected. Without loss of generality, assume
there are links from the first AWGR to the
first multiplexor . Let be the outputs
of connected to these links. Then .

Consider a request of the form . In order to
realize this request, has to be converted to some such that

. If , then a second-stage FWC
needs to be used to convert to . From to
there are FWCs. Hence, the existence of requests

which require the use of a second-stage FWC
would imply that the construction is not RNB.

For each , define

Then, for any , the request requires the
use of a second-stage FWC. Note that ,

.
Let be any subset of size of . We claim that

the set collection has a system of distinct
representatives by verifying Hall’s condition [9] that the union
of any members of has size at least . The condition holds
trivially when . When , since whenever

, and since , the union of members
of has cardinality at least . Moreover,

. Hence, Hall’s condition holds for
.
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Fig. 7. Two-stage construction using FWCs that is RNB-2 but not SNB-1.

Now, suppose represents , , in some particular
system of distinct representatives of . Then, the set

is a request frame of size , in which each request requires
a second-stage FWC to be realized. This completes the proof.

Theorem 5.3: The construction shown in Fig. 6 is not strictly
nonblocking under the -request model, no matter how
we connect the AWGRs to the output multiplexors.

Proof: Without loss of generality, assume there is a set
of links from the first AWGR to the first multiplexor .

Let be the set of wavelengths to which has to be con-
verted to, in order to get out on any link in . Noting that

, it is easy to construct a state of the network in
which is not part of any current request, and each FWC on
each link in is used to convert an incoming wavelength to sep-
arate wavelength in .

The request is now blocked.
Lastly, we show that even in the less restrictive -re-

quest model, this design is generally not RNB. Unlike the pre-
vious two theorems, we only prove the following theorem for
the particular connection pattern shown in Fig. 6, where there
are two AWGRs which have the first outputs connected to

.
Theorem 5.4: Consider the construction shown in Fig. 6.

Suppose there is an output multiplexor to which two AWGRs
have their first outputs connected. Then, when
the construction is not rearrangeably nonblocking under the

-request model.
Proof: Without loss of generality, we assume the two

AWGRs are and and the multiplexor is .
Let . Consider a request frame

, in which contains requests from wavelengths
in of input- to output- , , 1. The main idea is to show
that there are not enough FWCs to avoid conflicts at .

For each , let be the set of wavelengths has
to be converted to, in order to get out to , namely

Note that , and, due to the circular shift nature
of AWGRs,

(We ignore the issue of divisibility for clarity.) For each ,
the requests in can only use at most second-stage FWCs,
leaving the other requests not being able to convert
after getting out of the AWGR.

Consequently, when

or , there must be some conflict between re-
quests in and requests in .

We can ensure whenever .
Remark 5.5: Much less restrictive forms of the previous the-

orem can also be shown, at the expense of clarity. Particularly,
we do not need to require the first outputs from the two
AWGRs to be connected to the same multiplexor, any out-
puts from them would be sufficient. It is an interesting open
problem to find a connection pattern for which could
make the design RNB. Section V-C discusses the case when

. It turns out that in this case we need only half as many
converters in the second stage for the design to be RNB.

B. A Two-Stage Construction

The one-stage construction in the previous section is fairly
restrictive. In this section, we analyze the two-stage construction
shown in Fig. 7 and its variations.
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Fig. 8. Two-fiber construction that is RNB-1 using less than two stages of FWCs.

Lemma 5.6: Let , be positive integers where is divisible
by . Let be a -regular bipartite multi-graph,
where is the vertex bipartition, and is the edge set.

Then, the edges of can be colored with colors such that
each vertex is incident to exactly edges of any particular
color.

Proof: Splitting each vertex into copies
of degree each, we obtain an -regular graph . Köonig’s
theorem [13] ensures that is -edge colorable. (Again, col-
oring algorithms can be found in [3], [6], and [7].) This coloring
of induces a desired coloring of .

Theorem 5.7: The construction shown in Fig. 7 is rearrange-
ably nonblocking under the -request model. The
connection patterns could be arbitrary, as long as they are evenly
divided into groups of size at each stage.

Proof: Without loss of generality, consider a full request
frame of size . If all full request frames are realizable, then
all request frames are realizable.

Construct an bipartite multi-graph ,
where

and there is an edge for each request
.
Clearly is -regular and can be colored according to

Lemma 5.6. Let be the set of colors. We separately
route requests from which were colored to the th
second-stage AWGR. Each of these requests can be routed on
a separate link to the AWGR. As there are also requests
colored to output fiber , the FWCs at the th AWGR can
be used to distribute requests on links to each output
fiber. The last stage of FWCs finishes the job by converting
their incoming wavelengths to the desired wavelengths.

Remark 5.8: The details of the above proof can be done in a
similar fashion as in Theorem 3.4. The proof implicitly contains
a routing algorithm.

Theorem 5.9: The construction shown in Fig. 7 is not strictly
nonblocking under the -request model.

Proof: The proof of this fact is quite simple, yet fairly te-
dious to present formally. Inspection for the case should

give the reader a good idea of how a blocking network state can
be constructed. We omit the details.

C. Rearrangeably Nonblocking Construction for Under
the -Request Model

In this section, we present an interesting and very simple con-
struction, albeit limited to . We believe that this con-
struction contains a good idea (the pigeonhole principle based
routing idea) to be explored further.

The construction is shown in Fig. 8. It is self-explanatory. All
wavelength converters are FWCs.

Theorem 5.10: The construction for shown in Fig. 8 is
rearrangeably nonblocking under the -request model.

Proof: Consider a fixed output fiber , . We first
claim that any request frame of at most requests of the
form , , , is realizable without using
the second-stage converters. In fact, we can route all requests
in in a greedy manner. Consider a state of the cross-connect
where there are connections already established to .
Let be a new request to . The input FWC for
allows different choice for to get out on . Each of these
choices requires to be converted to a different wavelength. As
there are currently wavelengths at the multiplexor for ,
there is always one available choice for .

Next, we show that any request frame of requests of the
form , for a fixed , is realizable. This fact will com-
plete the proof.

Let be the subset of requests of initiated from fiber .
Without loss of generality, assume and .

Suppose , then all requests in can be routed
through the first output of the second AWGR. (The first output is
connected to output fiber .) For the set we can route them
through separate outputs of the first AWGR. These outputs are
connected to FWCs, which shall convert the requests to the free
wavelengths. Note that this is possible since and there
are available wavelengths.

On the other hand, suppose . This set along
with requests from can be routed greedily. The
other requests from make full use of wavelength
converters.
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TABLE I
TABULATED COMPARISONS OF DIFFERENT CONSTRUCTIONS

The second half of the table contains our constructions, referred to by the section numbers in which they were analyzed. Note that k = nb.
We use p
 q to mean p AWGRS of size q. RNB/SNB-1 means RNB/SNB under the (�; F; F )-model. RNB/SNB-2 is for the (�;F; � ; F )-model.

Remark 5.11: The above proof implicitly yields a routing
algorithm, whose details we omit.

VI. COMPARISONS WITH KNOWN CONSTRUCTIONS

A. The -Request Model

Wilfong et al. [27] proposed several rearrangeably non-
blocking architectures, and also a strictly nonblocking con-
struction under the -model. Their architectures did
not make use of AWGRs. The basic components of their
designs were multiplexors and demultiplexors, 2 2 wave-
length selective cross-connects (WSCs) or optical add-drop
multiplexors (OADMs), and a special component called the
wavelength interchanger (WI) which is capable of permuting
the wavelengths on its input fiber to the output. Essentially, a
WI is equivalent to full-range wavelength converters (FWCs).

Their rearrangeably nonblocking designs include the
WI-Beneš and the WI-Cantor cross-connects. The WI-Beneš
design needs about OADMs and WIs, which are equiv-
alent to FWCs. The WI-Cantor design needs about
OADMs and WIs, which are equivalent to FWCs.

Their strictly nonblocking design is the Cantor/2-
Beneš-Cantor/2 (CBC) cross-connect. This architecture needs
about OADMs and WIs, which are equivalent
to FWCs.

All the above three networks have number of stages.
Ramamirtham and Turner [23] proposed an architecture

using AWGRs, which is not rearrangeably nonblocking. How-
ever, their simulations show that their construction can achieve
a throughput of 87% of a nonblocking switch. This construction
has essentially one stage, and uses AWGRs and
FWCs.

As compared to the constructions above, our 2-stage RNB
construction in Section III uses LWCs, AWGRs,
and one AWGR.

It is quite difficult to compare these designs which use dif-
ferent types of optical components. Number-wise, however, our
construction for this request model is definitely competitive.

B. The -Request Model

Rasala and Wilfong [24], [25] described a strictly non-
blocking construction using the so-called WDM split cross-con-
nects, which consists of two WSCs and a number of WIs in
the middle. If the number of WIs is , then the split
cross-connect is strictly nonblocking. On the other hand, al-
though not mentioned in their papers, it is quite easy to show
that WIs are necessary and sufficient for a split cross-connect
to be rearrangeably nonblocking.

In summary, a SNB split cross-connect requires two
WSCs and about FWCs. A RNB split cross-

connect requires two WSCs and about FWCs.
Our SNB construction from Section IV uses

-AWGRs, -AWGRs, and a total of
LWCs of various kinds.

In the worst case when , we need LWCs.
Our RNB construction from Section IV requires

-AWGRs, -AWGRs, and a total of LWCs of
various kinds.

Again, it is quite difficult to compare these different construc-
tions as we used more limited wavelength converters than their
full wavelength converters. On the other hand, the AWGRs are
much cheaper than the WSCs. One of our future works is to find
a good cost model to compare these different constructions.

Table 1 compares all constructions in this paper with the
known constructions. Entries marked with “ ” mean NO, and
entries marked with “?” are open questions.
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VII. CONCLUSIONS AND FUTURE WORKS

We have given a number of novel constructions of rear-
rangeably nonblocking (RNB) and strictly nonblocking (SNB)
WDM cross-connects (or switches) under two different request
models. The optical components we used are multiple stages
of limited-range wavelength converters (LWCs) and small to
medium sized arrayed waveguide grating routers (AWGRs).
Our designs are all relatively simple and easy to be laid out,
and are useful for both optical circuit-switching and optical
packet/burst switching.

There is no prior multistage SNB or RNB designs based on
AWGRs and certainly not LWCs. For example, the design pro-
posed in [23] which used a single stage of AWGRs is blocking,
in addition to using full-range wavelength converters (FWCs).
Other known designs have used wavelength selective cross-con-
nects and FWCs [27].

We have not considered a nonblocking degree called wide-
sense nonblocking [1] (WSNB), which is less restrictive than
strictly, yet more powerful than rearrangeably nonblocking, One
particular reason is that even in the classical switching networks,
there are relatively few results on WSNB. The reader is referred
to [10] and [12] for some recent WSNB works.

Last but not least, developing a good cost, complexity and
performance model taking into consideration the switching
speed, the amplification needed, the signal-to-noise ratio, and
the integrability, for the purpose of evaluating and comparing
various WDM cross-connects, especially those constructed
from wavelength converters and AWGRs is an interesting
research topic. Initial works along this direction can be seen in
[19] and [20].
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