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Abstract. The assessment of chess players is both an increasingly attractive op-

portunity and an unfortunate necessity. The chess community needs to limit po-

tential reputational damage by inhibiting cheating and unjustified accusations of 

cheating: there has been a recent rise in both. A number of counter-intuitive 

discoveries have been made by benchmarking the intrinsic merit of players’ 

moves: these call for further investigation. Is Capablanca actually, objectively 

the most accurate World Champion? Has ELO rating inflation not taken place? 

Stimulated by FIDE/ACP, we revisit the fundamentals of the subject to advance 

a framework suitable for improved standards of computational experiment and 

more precise results. Other games and domains look to chess as demonstrator of 

good practice, including the rating of professionals making high-value decisions 

under pressure, personnel evaluation by Multichoice Assessment and the organ-

ization of crowd-sourcing in citizen science projects. The ‘3P’ themes of per-

formance, prediction and profiling pervade all these domains. 
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1 Introduction 

This position paper is motivated by the recent proliferation of studies and analyses of 

chess players’ skill. A more serious requirement is the need for both scientific rigour 

and clarity of explanation stemming from the rise in the number of alleged and proven 

accusations of computer-assisted cheating over the board. FIDE and the Association 

of Chess Professionals (ACP) are taking urgent action, involving the third author, to 

defend the reputation and commercial dimensions of the game [1]. 

The aim here is to introduce a framework for the discussion and analysis of as-

sessment methods that evaluate the ‘intrinsic merit’ of the subject’s decisions. It clear-

ly separates the goals of metrics for Performance and Prediction, and quantifies the 

use of Profiling. Performance refers to quantitative measures that can be correlated 

with ELO ratings. Prediction means anticipating the distribution of some 100-300 

move choices that a player might make in a tournament. Both recognise that strong 



players will find better moves but anti-cheating tests have to do better than merely 

identify someone who is ‘playing too well’. This is required if analyses of excellent 

play are to have more statistical significance and more reliably trigger further investi-

gation.  

Profiling refers to the use of information about a player’s behavior and achieve-

ments prior to the period of time relevant to that player’s later assessment. Bayesian 

inference as used by Haworth et al [2-9] is the natural vehicle for this as it combines 

an expression of prior belief with the modification of that belief in the light of subse-

quent evidence. Players may also be profiled from a ‘cold start’ if ‘know nothing’ 

priors are adopted. The new FIDE Online Arena with its AceGuard cheating-detection 

system is notable for its user-profiling which is not done by other statistical methods 

[10]. Arguably it should have no role in measuring performance but its ability to pre-

dict is something that this paper’s recommendations will help to study.  

1.1 The Chess Engine as Benchmarking Player 

All assessment research approaches now use computer-generated move analysis as 

the benchmark. The reality is that computers are now better and quicker decision 

makers than humans in the vast majority of chess positions. The top-ranked chess 

engines are now rated some 300-400 ELO points better than the top human players 

and no prominent equal-terms match has been played since December 2006. Chess 

engines deliver their verdicts on the available moves at each nominal ply-depth of 

their forward-search process. The current top two engines, KOMODO 8, STOCKFISH 6 

and others do so via the standard UCI communication protocol [11]. Moves may 

‘swing up’ or ‘swing down’ as they gain or lose apparent merit at increased depths. 

This illustrates both the engines’ fallibility induced by the finiteness of their vision 

and the theoretically proven trend to greater precision at higher depths. 

However, it is clear that chess engines’ centipawn evaluations of positions are not 

definitive but merely best estimates: engines are fallible agents, even if the best are 

less fallible than human players. They tend to depart from 0.00 as a decisive result 

becomes more obvious with increased depth of search, and they vary from engine to 

engine on the same position [12, 13]. Only in the endgame zone where endgame ta-

bles (EGTs) have been computed does an infallible benchmark exist [3-6]. 

Chess engines operate in one of two modes, Single-PV and Multi-PV. They focus 

on what they deem to be the best move in Single-PV mode, testing its value rather 

than also testing ‘inferior moves’ for comparison. Multi-PV guarantees full evaluation 

to search-depth sd of up to k ‘best’ moves as determined by the last round of search. 

Setting k to 50 essentially gives an sd-evaluation of every reasonable legal move and 

many others. Multi-PV working requires more time than Single-PV working but is 

required if the full move-context of a move is to be considered. 

Alternative-move evaluations are the only input to the benchmarking processes be-

low. No information about the clock-regime, move number, material, relative ELO 

difference or clock-times is considered, although there is evidence of the error-

inducing zeitnot effect as players approach move 40 under classic conditions [14]. 



1.2 A Framework of Requirements for Assessment Methods 

The approach here is to re-address the fundamental question ‘What are the objectives 

of player assessment?’, to identify the requirements in more detail, and then consider 

a portfolio of assessment methods in the context of those requirements. All this may 

be done under our headings of performance and prediction. As will be seen, all the 

methods reviewed below measure past performance, some less informed than others. 

Only a subset of the methods are suitable for reliable prediction. 

A more detailed list of requirements is as follows: 

1. identifying the current or overall performance of players on some scale, 

2. identifying their ‘intrinsic skill’, i.e., on the basis of their moves, not results, 

3. doing so in terms of a ‘most likely’ scale-point and with c% confidence limits, 

4. identifying performance across the years, including the pre-ELO years, 

5. ranking players relative to each other on the basis of their intrinsic skill, 

6. understanding the stability of methods when subject to small input changes, 

7. comparing methods as to the uncertainty budgets associated with their verdicts, 

8. using ‘robust’ methods which are least sensitive to small input changes, 

9. improving assessment methods where the opportunity to do so arises, 

10. identifying suspected cheating with a suitably high degree of confidence, 

11. identifying suspected cheating in real-time in order to trigger further action [15], 

12. quashing ‘false positive’ accusations of over the board cheating, 

13. discouraging players from cheating with evidence of good anti-cheating methods, 

14. discouraging unfounded accusations of cheating in a similar way, and 

15. estimating the probability that player P will play move m in a given position.  

The following classification of information illustrates the range of algorithmic sophis-

tication available to a notional punter betting on future moves: 

A) Played move and engine-optimal move(s) as evaluated at greatest search-depth, 

B) Values of all (reasonable) legal moves as evaluated at greatest search-depth, 

C) Values of all (reasonable) move at all available depths of search, 

D) Information about the chess position other than move values, and 

E) Information as to a player’s tendencies prior to the time of the moves assessed. 

 

Category ‘C’ highlights the fact that this information has been available but has only 

recently been recognised as valuable [16]. We argue that ‘C’ is where the separation 

of performance and prediction should be focused. The demerit of a superficially at-

tractive move which ‘traps’ the opponent only becomes visible at the greater depths of 

search. Heading ‘D’ includes considerations of pawn structure, attack formations and 

whether a move is advancing or retreating. Observations on how such factors influ-

ence move-choice are made by kibitzers but have not yet been captured by computer 

algorithm. Time management might be taken into account. Heading ‘E’ involves con-

sidering players’ past game and how they might help predict future moves.  

  



2 Useful notation 

The following notation is used in subsequent sections:  

 AP, the assessed player 

 BP, the benchmark player against which AP is assessed 

 CP, the cheating player, not only cheating but deceiving an assessment method 

 HP, the honest player who is not cheating 

 RP, a Reference Player, i.e., a stochastic agent with defined choice-behaviour 

 pi  position i, often implicitly understood to be one of a sequence of positions 

 {mj, vj,d}  moves from a position, resulting in values (at depth d) vj,d: vj,1  vj,2 etc. 

 aci  the apparent competence of player AP after moving from position pi  

3 Survey of Assessment Methods 

This section gives names to each of the methods known, and lists the methods’ abso-

lute and relative advantages (‘+’), caveats (‘’) and disadvantages (‘–’). The first list 

applies to all methods. 

+ chess engines are the only benchmarks which perform consistently across time, 

+ the best chess engines are now thought to be better than humans at all tempi, 

+ increasing engine ELO decreases move-choice suboptimality by the engine, 

+ increasing search-depth increases engine ELO and decreases suboptimality, 

+ ‘cold start’, defined-environment, single-thread running ensures reproducibility, 

+ skill-scales may be calibrated in ELO terms using ‘Reference ELO e players’ 

+ skill assessments on such calibrated scales lead to inferred ELO ratings, 

 results from different benchmarking engines BPi may be combined with care, 

– AP’s actual competence varies within games, tournaments and over the years, 

– move-choices stem from a plan but are modelled as independent events, 

– chess engines are not fully independent, tending to make the same mistakes,  

– multithread processing, though attractive, introduces lack of reproducibility, 

– there is a probability pm > 0 that cheating player CP will not be detected, 

– there is a probability pfp > 0 that honest player HP will be accused of cheating. 

 

The eight methods reviewed below are classified under three headings: 

 ‘Agreement’: the observance of agreement between AP and BP, 

 ‘Average Difference’: the recording of centipawn value ‘lost’ by AP, and 

 ‘Whole Context’: the appreciation of AP’s move in the full context of options.  

3.1 Agreement between AP and BP 

The methods here are ‘MM: Move Matching’ and its enhancement ‘EV: Equal-value 

Matching’ requiring a little more data as from Multi-PV mode. 



MM: Move Matching. Observers of games commonly note whether the human play-

er’s choice move matches that of some ‘kibitzer-engine’ and compute a %-match 

MM. Specific merits (+) and demerits (-) of this method: 

+ Engine- and human-moves are easily generated, communicated and compared, 

+ the method applies to all moves, even those where engines see ‘mate in m’, 

+ ‘MM(AP)=1.00’ is a clear ‘best possible performance’ calibration point, 

+ there is no need to scale centipawn values provided by engine BP,  

– MM(AP) changes on forced moves when nothing is learned about AP’s skill,  

– different but equivalent/equi-optimal moves are not regarded as ‘matches’, 

– some engines may randomly choose different equi-optimal moves to top their list, 

– cheater CH can easily lower their MM(CH) at minimal cost, 

– ‘Canals on Mars syndrome’: observers are attracted to high-MM(AP) coincidences, 

– this method uses the least information of any method. 

EV: Equal-value Matching. Disadvantages 2-3 of MM are addressed [17]. Equi-

optimal moves are regarded as ‘matches’, requiring the engines to identify them all: 

+ EV is not susceptible to random ordering by chess engine BP whereas MM is, 

+ EV results are reproducible whereas MM results from a ‘randomising BP’ are not, 

– EV, unlike MM, requires all equi-optimal moves to be communicated.  

3.2 ‘Average Difference’ methods 

AD: Average Difference. Note that we chose AD not AE (Average Error) as the error 

may come from the benchmarking computer BP rather than from AP [18-20]:  

+ The requisite information is again easily generated, communicated and used, 

+ ‘AD(AP) = 0.00’ is a clear ‘best possible performance’ calibration point, 

+ AD, using more information than MM or EV, should give more robust ratings, 

– AD(AP) changes on forced moves when nothing is learned about AP’s skill, 

– AD(AP) changes when AP has only equi-optimal moves to choose from,  

– AD only uses information about the best apparent move and AP’s choice, 

– BP1 and BP2 may return different AD(AP), even when choosing the same moves,  

– AD cannot be used where the engine gives ‘mate in m’ rather than an evaluation, 

– AD does not scale ‘differences’ in consideration of the position’s absolute value. 

AG: Accumulated Gain. This method [21] varies from AD. AP’s move is credited 

with the difference between BP’s evaluation of the position before and after the move. 

+ AG uses only BP’s position evaluation at depth d before and after the played move, 

 AG guarantees that the winner will be higher rated than the loser, 

– AG conflates the ‘horizon effect’ with AP’s performance, 

– AG can give a positive score for a suboptimal move if BP sees a win more clearly, 

– AG can penalize an optimal move by the loser as BP sees the win more clearly, 

– AG, unlike AD, does not produce a clear mark (0.00) of perfect performance. 



Had AG evaluated the position after AP’s move at search-depth d-1, it would be close 

to AD. However, it moves BP’s horizon on by one ply and therefore credits AP with 

BP’s change of perception one ply later. It does not compare AP’s and BP’s decisions 

at the same moment. The concept seems flawed and is not considered further here. 

 

Fig. 1. Unscaled AP/BP differences, before and after scaling [14]. 

ASD: Average Scaled Difference. The last caveat on the AD method anticipates a 

key finding by Regan [14, 22] that average-difference correlates with the absolute 

value of the position, see Figure 1. This may be because (a) humans are only sensitive 

to the relative values of moves, (b) humans with an advantage tend to avoid the risk 

associated with the sharpest tactical plans, and/or (c) engines see the win more clearly 

when the position is relatively decisive already. The case for scaling seems clear. 

If pv = |position value|, AP’s ‘difference ad relative to BP’s choice is scaled to be 

ad/ln(1 + pv). Regan reports that he now prescales all differences in his industry-scale 

computations. The recommendation here is that all results produced by the AD meth-

od should be revisited and scaled in this way. 

A detailed study of results from the EV and AD methods [17] also notes the danger 

of ‘false positive’ conclusions about suspected cheating over the board. It points to 

extreme ratings, which any corpus of results will have, which would at first sight be 

suspicious had they not been achieved before the availability of chess engines at 

grandmaster level. Table 1 highlights some games analysed with STOCKFISH 3.0. 

Table 1. Achievements over the board which would be or are ‘ false positives’ [17] 

 

Unscaled and Scaled

AP/BP differences

A
D

(A
P

)

Advantage

Book Search Moves

# Year White Black Res. depth Depth Anal. CV Comment

1 1857 Kennicott Morphy 0-1 29 18 10 —/1.00 Morphy moves 15-24

2 1857 Schulten Morphy 0-1 8 16 13 —/1.00 Morphy moves 5, 17

3 1866 Morphy Maurian 1-0 12 18 12 1.00/— Morphy moves 7, 18

4 1889 Weiss Burille 1-0 13 20 26 1.00/— Weiss moves 8-33

5 1965 Carames Fedorovsky  ½-½ 18 18 0.85/0.82 Dead drawn, positions 62b-101w

6 1980 Browne Timman 1-0 33 8 23 1.00/— Browne moves 18-40

7 2009 Mamedyarov Kurnosov 0-1 31 var. 6 —/— too few moves; CV insignificant



3.3 ‘Whole context’ analysis: deepest evaluations only 

These methods potentially draw on the full context of a move-choice to assess the 

choice made by AP. They deploy a set SBP {BP(ci)} of stochastic benchmark play-

ers of defined competence ci. As ci increases, the expected value of BPi’s chosen 

move increases if this is possible. For these methods: 

+ a much fuller use of the move-context is being made, 

+ ‘apparent competence’ does not change if nothing is learned from the move-choice, 

+ these methods can easily calculate MM/EV and AD/ASD as byproducts, 

– the method potentially requires all moves to be evaluated, 

– the method uses the evaluation of the moves at the greatest depth only, 

– the number MultiPV of ‘best moves’ considered is a computation parameter, 

– the definition of qj,i {Pr[m=mj | BP(ci)]} requires some domain-specific insight, 

– the task of communicating statistical significance is greater than for other methods, 

– the results of two SR computations cannot easily be combined. 

 

SR: Statistical Regression. This method, deployed by Regan [14, 22, 23] identifies 

the BPi which best fits the observed play: it is essentially frequentist. The probability 

of BP(ci) playing moves m1-mk is p(ci)  qj,i and ci is found to maximize p(ci). The 

model also generates variances and hence provides z-scores for statistical tests em-

ploying the MM, EV, and AD/ASD measures. 

– the results of two SR computations cannot easily be combined. 

We report here that SR, carried out to FIDE/ACP guidelines, comes to a negative 

rather than a positive conclusion on all the games of Table 1, and on the aggregate of 

Morphy’s moves. Given a distribution of MM/EV figures for players of Morphy’s 

standard, the MM/EV figures’ z-scores are less than the minimum mark of 2.75 stated 

[1] as needed to register statistical support for any ‘positive’ conclusion about cheat-

ing likelihood. The Browne-Timman and Mamedyarov-Kurnosov results are less than 

0.50. The reason is that the whole-context analysis finds these and Weiss’s and Mor-

phy’s games to be unusually forcing, so SR gives higher projections than the simpler 

MM/EV or AD/ASD analyses as [17] would expect. Thus, our category ‘B’ out-

classes ‘A’ here for the purpose of prediction. This distinction is legislated in [1]. 

 

SK: Skilloscopy, the Bayesian approach. Classical probability asks how probable a 

future event is given a defined scenario. Bayesian analysis asks instead ‘What is the 

probability of each of a set of scenarios given (a) a prior belief in the likelihood of 

those scenarios and (b) a set of observed events?’ An important advantage is that his 

simple formula can be used iteratively as each new observation arrives. 

Skilloscopy is the name given to the assessment of skill by Bayesian Inference [2-

9]. It proceeds from initial inherited or presumed probabilities pi that AP ‘is’ BP(ci): 

AP’s initial presumed apparent competence ac is therefore i pi. Given a move mj and 

the probability qj,i {Pr[m=mj | BP(ci)]}, the {pi} are adjusted by the Bayesian formula 

 pi  qj,i  pi 



The {pi} continue to represent how specifically AP’s apparent competence on the ci-

scale is known: AP’s apparent competence ac = i pi. 

Skilloscopy was first conceived [3-5] in the context of that part of chess for which 

endgame tables (EGTs) hold perfect information. These EGTs provided infallible 

benchmark players BPc so the above caveats about the fallibility of BP do not apply.  

+ SK can combine the results of two independent, compatible computations, 

+ SK may evaluate the moves in any order, chronologically or not, 

– the choice of {BP(ci)} affects APj’s rating acj after a defined input of evidence, 

– APj’s rating acj is meaningful only relative to other ratings acj. 

3.4  ‘Whole context’ analysis: evaluations at all depths 

The most recent addition to the spectrum of assessment methods [16] is labelled 

‘SRA’ here, being SR but taking move-valuations from all depths of BP’s search. It is 

clear that if a move takes and retains top ranking early in the search, it is more likely 

to be selected by AP than a move that emerges in the last iteration of the search. 

Therefore, to ignore shallower-depth evaluations is to ignore valuable information. 

Similarly, one can study the way in which such indices as MM/EV and AD/ASD 

plateau out as search-depth increases. It appears that greater depths are required to get 

stable MM/EV/ASD ratings for better players. Figure 2 generated from the 

STOCKFISH v2.31 and v3 data [16] shows this for ASD and also corroborates the con-

tention of Guid and Bratko [18-20] that even CRAFTY’S relatively shallow analysis of 

world champions suffices to rank them accurately if not to rate them accurately. The 

sixty players in the 2013 World Blitz championship (WB) had average rating 2611 

but showed a competence lower than 2200 at classical time controls. 

 

 

Fig. 2. ‘Average Difference’ statistics reaching a plateau as BP’s search depth increases. 
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4 The Reference ELO Player 

RPe, a Reference Player with ELO e may be defined by analyzing the moves of a set 

of players with ELO e, e.g., [2690, 2710]. This was done [7-9], in fact restricting 

chosen games to those between two such players.
1
 The players’ ratings in MM/EV, 

AD/ASD and SR/SK terms may be used to calibrate their respective scales. 

Following such calibration, any set of move-choices may be given an Inferred Per-

formance Rating, IPR. That IPR may be placed in the distribution of IPRs by nomi-

nally similar players and may be admired or investigated as appropriate. 

 

 

Fig. 3. The set of ELO e Reference Players used by Skilloscopy [7-9]. 

5 Standards for a Research Community 

The statistical assessment of IPRs requires large amounts of relevant data. The large 

choice of chess engines, versions, search depths and other computational parameters 

does not help in combining results by different workers. There is a natural preference 

to use the best available engines to reduce position-evaluation inaccuracy, and the 

typical reign of the ‘best engine’ is usually short.
2
 

However, greater interworking in the community may be assisted by: 

 the ‘separation’ of move-analysis, skill-rating and inferred performance rating, 

 computational experiments being done in a defined and reproducible way, 

 a comprehensive data-model encompassing the computations’ results, and 

 a robust, accessible repository of results consonant with the data-model about: 

 move analyses, skill-rating exercises and inferences of ‘apparent ELO’.   

                                                           
1 This probably increased the apparent competence ac of RPe: draws exhibited higher ac. 
2
 Over the last four years, the winners of the TCEC events [12] have been HOUDINI 1.5a, 

HOUDINI 3, KOMODO 1142, STOCKFISH 170514 and KOMODO 1333. 
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The reproducibility of computational experiments certainly requires single-thread 

mode [17], non-learning mode, and the full specification of UCI parameters.
3
 Figure 4 

is a proposed data-model which may be implemented in Relational or XML data-

bases. The advent of the web-related XML family of standards
4
 and the lighter weight 

‘JSON’ Javascript Object Notation have greatly improved the communication and 

manipulation of hierarchical data. 

 

 

Fig. 4. Data Model: Computer-assessments of game-moves at various search-levels. 

6 Summary and View Forward 

A number of skill assessment methods have been compared. They vary in their con-

clusions but differences between workers’ computations make definitive comparison 

difficult at this time.  

Greater interworking within the community of those interested in skill assessment 

is required to quantify the intuitive, widely held but qualitative belief that: 

“The more information is used by a method, the better the method is.” 

Specifically, here, it is believed that MM  EV  AD  ASD  SR/SK  SRA.
5
 The 

FIDE/ACP committee certainly regards MM/EV/AD as ‘screening methods’ but 

looks to more informed methods for definitive assessments [1]. 

Therefore the first requirement is to agree on a shared computational approach and 

on a set of computation subjects in order to quantify the belief above. Agreed tools 

and data-management interfaces will facilitate progress within the community.  

                                                           
3 UCI = Universal Chess Interface [11] 
4 An example of chess-position in XML format is given in [17]. 
5 The notation here is:  means ‘worse than’ and  means ‘much worse than’.  
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Finally, the authors have sought here not only to bring a new coherence to the 

community of those assessing chess skill but to explore better ways to communicate 

the subtleties of assessment to the non-specialist and the public. Data supporting this 

article is freely available and is being evolved [24].  
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