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ABSTRACT

Although fingerprints have been used in forensic identification for over a century, establishing

the degree of uniqueness a given fingerprint has remained elusive since it involves relation-

ships and correlations hidden in a large amount of fingerprint data. We develop machine

learning approaches to this problem focusing on two aspects: better generative models for

fingerprints, and estimating probabilistic metrics for individuality and rarity. Generative

approaches are used to evaluate fingerprint Individuality, defined as the probability of ran-

dom correspondence (PRC) within a tolerance. The evaluation uses Bayesian networks and

three fingerprint representations: ridge flow, minutiae, and ridge points. Mixture models of

features are used, with parameters estimated using the EM algorithm. Fingerprint PRCs

are determined for given numbers of available and matching minutiae. A Bayesian method

based on graphical models is introduced to compute fingerprint rarity. The model is able to

handle the large number of variables and the complexity of the distributions. Since latent

prints are often incomplete and the core point may be missing in the field of view, a machine

learning approach based on Gaussian process regression is proposed to predicate the core

point. The coordinate system is transformed into standard position based on finding the core

point. A graphical model, which takes into account inter-minutia dependencies and minutia
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confidences, is used to determine evidence probability from which the specific probability

of match among n is evaluated. To improve the accuracy of rarity estimation for low qual-

ity latent prints, a fully Bayesian treatment allows considering core point uncertainty. The

generative model is validated using a goodness-of-fit test. Rarity evaluation is illustrated us-

ing several examples, including simple configurations of minutiae, randomly selected latent

fingerprints in a database, and a well-known case of erroneous identification.
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Chapter 1

INTRODUCTION

This dissertation explores the roles of machine learning in fingerprint individuality and rarity

evaluation. Although fingerprints have been used in forensic identification for over a hundred

years, the uniqueness for each individual fingerprint is being challenged. A scientific basis on

individuality and rarity is required for fingerprint evidence presented in courtroom scenarios.

Capturing the high complexity of relationships and correlations hidden among large amount

of fingerprint data is the main difficulty in fingerprint probability evaluation. To establish

the strength of the fingerprint modality or a given piece of fingerprint evidence, this re-

search focuses on using machine learning approaches to formulate and compute probabilistic

metrics for measuring fingerprint individuality and rarity. This introduction describes the

motivation, contribution, and the structure of this study.

1



CHAPTER 1. INTRODUCTION 2

1.1 Background and Motivation

Machine learning provides strong tools to the tasks that cannot be defined well except by

examples or the amount of knowledge available might be too large for explicit encoding by

humans. This section provides brief background and motivation for using machine learning

approaches to evaluate fingerprint probabilities.

1.1.1 Machine Learning for Forensics

Recently, some high-profile cases such as the 1999 lawsuit of USA vs Mitchell and the 2004

Mayfield case grab the headlines and our attention. The erroneous identification in these

cases points to an underlying problem with classical forensic methodology. The fact is

that many forensic tests have never been exposed to stringent scientific scrutiny. One of

the main problems with forensics evidence is that it must be analyzed and interpreted by

a person, whose own theory of the crime can introduce a bias in the results. There can

also be significant uncertainty in the analyst’s conclusions, but oftentimes that uncertainty

is never quantified or conveyed to judges and juries. And yet, these traditional forms of

forensics evidence can be very helpful, provided they can be looked at objectively and the

uncertainty of the results can be measured and properly explained. The relatively new field

of computational forensics has sprung up to address those needs.

Computational forensics is an emerging interdisciplinary research domain. It is under-

stood as the hypothesis-driven investigation of a specific forensic problem using computers,

with the primary goal of discovery and advancement of forensic knowledge. Computational

methods find a place in the forensic sciences in three ways. First, they provide tools for the
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human examiner to better analyze evidence by overcoming limitations of human cognitive

ability, thus they can support the forensic examiners in their daily casework. Secondly they

can be used to provide the scientific basis for a forensic discipline or procedure by providing

for the analysis of large volumes of data which are not humanly possible. Thirdly they can

ultimately be used to represent human expert knowledge and for implementing recognition

and reasoning abilities in machines. It involves modeling and computer simulation and/or

computer- based analysis and recognition in studying and solving forensic problems. There-

fore, much of computational algorithms used to assistant forensic methods are dominated

by statistically based algorithms such as machine learning algorithms. These methods are

ideally suited to forensics where there is a need to demonstrate error rates and calculate

probabilities.

Machine learning, a branch of artificial intelligence, is a scientific discipline concerned

with the design and development of algorithms that allow computers to capturing the pat-

terns or evolve behaviors based on large amount of empirical data. A learner can take

advantage of examples (data) to capture characteristics of interest of their unknown under-

lying probability distribution. Machine learning provides fundamental techniques and have

been successfully implemented to supporting forensic investigation. The objective of this

research is to explores the roles of machine learning to analyze the evidence, assist in the

interpretation of identification results, and reveal previously unknown patterns/links and

new rules for one of the most widely used forensic evidences: fingerprints.
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1.1.2 Probabilities of Fingerprints

In forensics there are several modalities for identifying an object or individual from evidence.

It is useful to establish the strength of a given modality or a given piece of evidence within

a given modality. Not least of the reasons for such analysis being court rulings that require

a scientific basis for evidence presented [65]. As one of the most wildly used evidences,

fingerprints collected at a crime scene or on items of evidence from a crime have been used

in forensic science to identify suspects, victims and other persons who touched a surface. The

use of fingerprints in human identification has been based on two premises, that (i) they do

not change with time, and (ii) they are unique for each individual. Though the first premise

has been accepted, the second one on individuality is being challenged under the basis that

the premises have not been objectively tested and error rates established. To address this

problem, we develop machine learning approaches to compute two important probabilities:

fingerprint individuality and fingerprint rarity.

The terms class characterization and individualization are commonly used in forensics.

In addition terminology from the biometric domain, such as verification and identification

are also present. Thus it is useful to first define these terms. Class-characterization is the

narrowing down of the evidence into a sub-class within the forensic modality, e.g., ethnicity.

Individualization is sometimes defined as the exclusion of all other sources for the given

evidence. Verification is the determination of whether a given evidence is from a given

source and is a binary decision. Identification is the determination of the best match of the

evidence given a finite set of sources for that evidence. A match here does not necessarily

mean an exact match but a match within given tolerance levels. Finally individuality of a
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forensic modality or of a piece of forensic evidence is the degree of distinctiveness of that

type of evidence in a population.

Fingerprint individuality studies date back to the late 1800s. More than twenty models

have been proposed to establish the improbability of two random people (or fingers) have

the same fingerprint [53]. These models can be classified into four different categories: grid-

based [18, 40], ridge-based [40], fixed probability [20], and relative measurement [63]. All

models try to quantify the uniqueness property of the fingerprints. In the modality based

on visual patterns such as fingerprints, the set of measurements made from the evidence

have an inherent variability even for the same object or individual. Since evidence can

be characterized by quantitative measurements [1], a natural metric for individuality is a

probability or a probability distribution. Such a metric can be evaluated, for a particular

modality, measurement (or feature vector) or a given sample of data, by using one of the

classical approaches of machine learning: generative approach[25, 6]. In generative approach,

representative samples of evidence are used to construct models during a training phase.

Generative models are statistical models that represent the distribution of x [35, 15, 54].

They are referred to as being generative in that given the distribution, samples can be

generated from them. In these models, a distribution of x is learned through a training

data set. Samples can be generated from this distribution to determine the probability of

random correspondence. The training set used is immaterial as long as it is representative

of the entire population. In contrast with other models, the generative model is a full

probability model of all variables. A generative model can be used, for example, to simulate

(i.e. generate) values of any variable in the model. If the observed data are truly sampled

from the generative model, then fitting the parameters of the generative model to maximize
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the data likelihood is a common method.

Fingerprint rarity is determined by the probability of finding a random match for the

evidence in a database of n prints. Knowing the rarity of a given fingerprint could be useful

to forensic scientists who are trying to determine how valuable the fingerprint is as evidence.

We just found something that is unusual, and that makes it an important piece of evidence.

Rarity is especially valuable for latent fingerprints. Latent fingerprints are crime scene prints

that are usually incomplete patterns taken off doorknobs or glass. The uniqueness of latent

prints usually varies dramatically due to the different amounts and quality of features the

latent prints contain. Yet methods to compute rarity of features have been elusive due to

the large number of variables and the complexity of the distributions. This dissertation, for

the first time, presents a systemic approach to calculate the rarity for any given fingerprints.

1.2 Contribution of the Work

We proposed generative models for forensic evidence where the goal is to describe the distri-

butions using graphical models and to use such models to compute probabilistic metrics for

measuring the degree of individuality of a forensic modality such as fingerprints. The metric

is defined as the probability of random correspondence (PRC) when evidence consists of a

set of measurements and correspondence is within a tolerance. Computation of these prob-

abilities is described using Bayesian networks which make all the variables explicit. Three

forms of fingerprint representation are considered: ridge flow, minutiae, and ridge points.

Mixture models are used to model location and orientation of minutiae. With parameters

estimated from standard databases, fingerprint PRCs are determined for given numbers of
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available and matching minutiae.

A method for computing the rarity of any given fingerprints represented by minutiae is

proposed. It allows determining the probability of finding a random match for the evidence

in a database of n prints. First, the coordinate system is transformed into standard position

based on finding the core point. Since latent prints are often incomplete and the core point

may be missing in the field of view, a machine learning approach based on Gaussian process

regression is proposed. Next a generative model, that takes into account inter-minutia de-

pendencies and minutia confidences, is used to determine evidence probability from which

the specific probability of match among n is evaluated. The generative model is validated

using a goodness-of-fit test. Rarity evaluation is illustrated using several examples, including

simple configurations of minutiae, randomly selected latent fingerprints in a database, and

a well-known case of erroneous identification.

1.3 Outline of Dissertation

The theme of this dissertation is using machine learning algorithm for fingerprint probability

evaulation. We worked on two aspects of this problem: generative models and probabilistic

metrics for fingerprint individuality, Graphical models and Bayesian method for fingerprint

rarity. Naturally, these two pieces of work are described in Chapter 2 and Chapter 3, one in

each chapter.

Chapter 2 discusses the issues on evaluating fingerprint individuality. Probability of

random correspondence is defined to measure the individuality. Generative models of finger-

prints are presented by modeling ridge flow type, minutiae, and representative ridges. Using
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generative approach, we describe the PRC evaluation based on graphical models.

Chapter 3 introduces and solves several problems in fingerprint rarity evaluation. A

Gaussian processes based core point prediction algorithm is presented to align coordinates

and normalize features. Bayesian networks are applied to capture the relation and correlation

among the fingeprints. A fully Baysien method is formulated to compute the specific nPRC,

a metrics for rarity.

Due to the independence between these two different aspects, each chapter is self-contained

with its own introduction and conclusions. Readers my read the chapters of interest in any

order.



Chapter 2

FINGERPRINT INDIVIDUALITY

The use of fingerprints in human identification has been based on two premises, that, (i)

they do not change with time and (ii) they are unique for each individual. While in the past,

identification based on fingerprints had been accepted by courts, more recently their use has

been questioned under the basis that the premises stated above have not been objectively

tested and error rates not been scientifically established [64]. Though the first premise has

been accepted, the second one on individuality is being challenged. We consider generative

model approach for forensic evidence where the goal is to describe the distributions using

graphical models and to use such models to compute probabilistic metrics for measuring the

degree of individuality of a forensic modality such as fingerprints. The metric is defined as

the probability of random correspondence (PRC) when evidence consists of a set of mea-

surements and correspondence is within a tolerance. Computation of these probabilities is

described using Bayesian networks which make all the variables explicit. Three forms of

fingerprint representation are considered: ridge flow, minutiae, and ridge points. Mixture

models are used to model location and orientation of minutiae. With parameters estimated

9
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from standard databases, fingerprint PRCs are determined for given numbers of available

and matching minutiae.

2.1 Introduction

The terms class characterization and individualization are commonly used in forensics. In

addition terminology from the biometric domain, such as verification and identification are

also present. Thus it is useful to first define these terms. Class-characterization is the

narrowing down of the evidence into a sub-class within the forensic modality, e.g., ethnicity.

Individualization is sometimes defined as the exclusion of all other sources for the given

evidence. Verification is the determination of whether a given evidence is from a given

source and is a binary decision. Identification is the determination of the best match of the

evidence given a finite set of sources for that evidence. Finally individuality of a forensic

modality is the degree of distinctiveness of that type of evidence in a population. In this

chapter, we look into the issues on fingerprint individuality.

2.1.1 Discriminative and Generative Methods

In many modalities, particularly those based on visual patterns, the set of measurements

made from the evidence have an inherent variability even for the same object or individual.

Since evidence in many forensic modalities can be characterized by quantitative measure-

ments [1], a natural metric for individuality is a probability or a probability distribution.

Such a metric can be evaluated, for a particular modality or measurement(or feature vector),
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by using either one of the classical approaches of machine learning: discriminative and gen-

erative [25, 6]. In both approaches, representative samples of evidence are used to construct

models during a training phase.

In the discriminative approach to measuring individuality, samples are directly used to

construct either a two-class or a multi-class classifier [47]. One such approach is that based

on determining a similarity (or kernel) function s whose value is high when the input and

a template have the same origin and low when they are not. Such a method is used, for

instance, in automated fingerprint identification systems that determine the degree of match

between two fingerprints [68]. By thresholding the value of s into binary classes: same and

different, an accuracy measure can be estimated from known training samples, e.g., average

probability of error or risk. The accuracy estimate itself provides a measure of individuality

of measurement x. Since the nature of the testing set is crucial, data from cohort groups

such as twins are often used to determine error rates [49, 48].

Generative models are statistical models that represent the distribution of x. They are

referred to as being generative in that given the distribution, samples can be generated from

them. In these models, a distribution of x is learnt through a training data set. Samples can

be generated from this distribution to determine the probability of random correspondence.

The training set used is immaterial as long as it is representative of the entire population.

Generative models contrast with discriminative models, in that a generative model is

a full probability model of all variables, whereas a discriminative model provides a model

only of the target variable(s) conditioned on the observed variables. A generative model

can be used, for example, to simulate (i.e. generate) values of any variable in the model,

whereas a discriminative model allows only sampling of the target variables conditioned on
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the observed quantities. If the observed data are truly sampled from the generative model,

then fitting the parameters of the generative model to maximize the data likelihood is a

common method.

Both approaches have their advantage and limitations. In the generative approach, the

problems with realistic modeling of all the parameters of the measurement may become un-

surmountable. But a good model would be a method of gaining insights into the fundamental

accuracy bounds of the measurement; more typically, these models may be relatively less

effective in predicting performance. In the discriminative approach, definition of decision

thresholds based on minimizing risk is an issue [16]. Discriminative methods lead to higher

performing automated systems, but do not readily lead to fundamental understanding of

underlying issues [8].

2.1.2 Organization of Rest of Chapter

The focus of this chapter is generative models for fingerprints and defines probabilistic met-

rics that are useful for a given modality or given evidence within a modality. We introduce

the related work in Section 2.2. Section 2.3 describes the individuality measurements. The

metric is defined as the probability of random correspondence (PRC) when evidence con-

sists of a set of measurements and correspondence is within a tolerance. Computation of

these probabilities is described using Bayesian networks which make all the variables explicit.

Generative models for fingerprints are discussed in Section 2.4. Three forms of fingerprint

representation are considered: ridge flow, minutiae, and ridge points. Mixture models are
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used to model location and orientation of minutiae. With parameters estimated from stan-

dard databases, fingerprint PRCs are determined for given numbers of available and matching

minutiae. In Section 2.6, we present experimental results on standard fingerprint dataset.

We conclude in Section 2.7.

2.2 Related Work

Fingerprint individuality studies date back to the late 1800s. Much of it has focused

on demonstrating or asserting the mere fact of the absolute non-duplication of complete

fingertip-sized areas of friction ridge skin. This is true of both of the two major strands of

fingerprint research. Anatomical research focused on detailing the formation of friction ridge

skin, while occasionally commenting that this process was sufficiently complex to support

an assumption of non-duplication as a working principle [70]. Statistical research focused on

estimating the probability that exact duplicate areas of friction ridge skin (usually complete

fingertips) exit. All models try to quantify the uniqueness property, eg. the probability of

false correspondence. These models can be classified into three categories: fixed probability

[20], relative measurement [63], and most recently, generative models. Generative models

are used to learn the distribution of fingerprint features such as minutiae. A couple of gen-

erative models have been proposed. Pankanti etal. [35] modeled the minutiae as uniformly

and independently distributed. Zhu etal. [71] proposed a mixture model to account for the

clustering tendency of minutiae. We proposes generative models that incorporate ridge flow

types, minutiae, and ridge information.
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2.3 Probability of Random Correspondence

Generative approaches to machine learning involve describing the underlying probability

distributions and then using such models to compute probabilities. We consider generative

models for forensic evidence where the goal is to describe the distributions using graphical

models and to use such models to compute probabilistic metrics for measuring the degree of

individuality of a forensic modality such as fingerprints. The process involves the following

steps:

Step 1: Consider a generative model (proposal) for measurement x

Step 2: Formulate a method for estimating parameters of the model

Step 3: Evaluate the parameters from a data set

Step 4: Use the model to evaluate relevant individuality metrics.

The first four steps are to determine the distribution of the data. The final step involves

computing the probability of match or correspondence within some tolerance between two

samples. Tolerance specification depends on the modality and type of measurement, e.g., in

the case of a continuous scalar it can be specified as ±ǫ.

As measures of individuality, two probabilities can be defined: PRC (Probability of

Random Correspondence), nPRC (Probability of Random Correspondence given n samples).

These definitions are further described below.

1. PRC: probability that two randomly chosen samples have the same measured value x

within specified tolerance ǫ.

2. nPRC: the probability that among a set of n samples, some pair have the same value

x, within specified tolerance, where n ≥ 2. Since there are
(
n

2

)
pairs involved this
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probability is higher than PRC. Note that when n = 2, PRC=nPRC.

We note that PRC and nPRC characterize the forensic modality as described by a set of

measurements and furthermore, the second is a function of the first.

Figure 2.1: Graphical models for computing coincidence probabilities. The models corre-
spond to: (a) PRC, the probability of two samples having the same value, (b) nPRC, the
probability of at least two samples among n having the same value. Here x, y, ys and yi are
feature vectors with identical distribution. We are interested in the distributions of z and z′

which express probabilities of match/non-match.

Since probability distributions and their computation play a central role in this discussion,

it is useful to represent them using graphical models [6]. Directed graphical models for PRC,

nPRC and specific nPRC are shown in Figure 2.1. Each node represents a random variable

(or a group of random variables), and the links express conditional probabilistic relationships

between them. The variables are: x is a random variable corresponding to the feature vector,

y is another random variable with the same distribution, {yi} where i = [1, .., n] represents

a set of n random variables using the plate representation and ys where s ∈ [1, .., n] is a

random variable among {yi}.

A binary-valued random variable z in Figure 2.1(a) indicates that if x is the same as y

within a tolerance ǫ, in which case z = 1 and z = 0 otherwise. This leads to the following

definition
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p(z|x,y) =





p(z = 1|x,y) = 1 and p(z = 0|x,y) = 0 if x = y

p(z = 1|x,y) = 0 and p(z = 0|x,y) = 1 if x 6= y

(2.1)

By marginalizing the joint distribution as

p(z) =
∑

x

∑

y

p(x,y, z ), (2.2)

applying Bayes rule to write

p(z) =
∑

x

∑

y

p(z |x,y)p(x,y), (2.3)

and noting the independence of x and y

p(z) =
∑

x

∑

y

p(z |x,y)p(x)p(y), (2.4)

we obtain the PRC as ρ ≡ p(z = 1).

Next we consider the case of nPRC where there are n identically distributed random

variables Y = [y1,y2, ..,yn]. This is shown using the plate representation in Figure 2.1(b),

where z′ is the state indicating if in a set of n random variables at least one value yi is

the same as another value yj in which case z′ = 1 and z′ = 0 otherwise. This leads to the

following definition

p(z′|Y) =





p(z′ = 1|Y) = 1 and p(z′ = 0|Y) = 0 if ∃yi,yj ∈ Y ∋ yi = yj

p(z′ = 1|Y) = 0 and p(z′ = 0|Y) = 1 if ∀yi,yj ∈ Y ∋ yi 6= yj

(2.5)
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The marginal distribution of z′ is obtained as

p(z′) =
∑

Y

p(z′|Y)p(Y). (2.6)

The specific instance of p(z′ = 1) , which is the nPRC, can be written as

p(z′ = 1) = 1 − p(z′ = 0) = 1 − [1 −
∑

x

∑

y

p(z = 1|x,y)p(x)p(y)]
n(n−1)

2 (2.7)

Denoting the nPRC value as ρ[n] ≡ p(z′ = 1) and using (2.4), we have a relationship

between PRC and nPRC as

ρ[n] = 1 − (1 − ρ)
n(n−1)

2 (2.8)

The rest of this paper concerns the application of the developed methods to three cases:

birthdays, human heights and fingerprints represented by minutiae and ridges. In the case

of birthdays, which are discrete-valued, the tolerance is zero, i.e., requiring exact match. In

the case of heights, which are continuous-valued scalars, a tolerance is specified in terms

of the height differences that are considered to be the same. In the case of fingerprints,

the measurement is a variable-length vector with each element represented as a triple, and

tolerance is specified within the fingerprint matching algorithm.

2.4 Generative Models for Fingerprints

Our goal is to model the distribution of fingerprints based on features. Features for rep-

resenting fingerprints are classified into three types [3]. Level 1 features provide class-

characterization of fingerprints based on ridge flow. They are divided into five primary
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classes: whorl, left loop, right loop, arch and tent (Figure 2.2). Some of the primary classes

have secondary classes resulting in a total of eight class types.

(a) (b) (c)

(d) (e)

Figure 2.2: Examples of five main types of ridge flow in fingerprints, referred to as Level 1
features: (a) arch, (b) left loop, (c) right loop. (d) tented arch, and (e) whorl. From NIST
Special Database 4.

Level 2 features, which are more useful for identification, are also known as minutiae.

Fingerprints such as those shown in Figure 2.2 are first aligned. This is done manually where

core points are identified and then the image is centered. The minutiae correspond to ridge

endings and ridge bifurcations. Automatic fingerprint matching algorithms use minutiae as

the salient features, e.g., [68], since they are stable and are reliably extracted. A minutia is

represented by its location and direction; direction is determined by the ridge ending at the

location (Figure 2.3). The type of minutiae (either bifurcation or ending) is not distinguished
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(a) (b)

Figure 2.3: Representation of fingerprints using minutiae: (a) locations of ridge endings and ridge
bifurcations are indicated by circles, and (b) minutiae directions are indicated by line segments in
a skeletonized fingerprint image.

since this information is not as reliable as the information on location and direction. Level

3 features, such as pores and scars are ancillary features and seldom used in practice.

In this research, we consider the distributions for ridge flow types (Section 2.4.1), minutiae

only (Section 2.4.2) and a combination– one based on minutiae and representative ridges

(Section 2.4.3). Methods for estimating distribution parameters are discussed in Section

2.4.4.

2.4.1 Distribution of Ridge Flow Type

A simple distribution of the Level 1 ridge flow types is obtained by counting the relative

frequency of each of the primary and secondary types in a fingerprint database. In one such

evaluation [48] loops account for 64% of the fingers, with the secondary types being: 30%

left loops, 27% right loops and 7% double loops. Arches account for 18% of the primary

types, with the seondary types being: plain arches (13%) and tented arches (5%). Whorls
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Table 2.1: Ridge Flow Types: nPRC
n 2 3 4 5 6 7 8

nPRC 0.2233 0.5314 0.7805 0.9201 0.9774 1 1

account for the remainder of the Level 1 types (19%).

Level 1 features are clearly broad class characteristics which are useful for exclusion of

individual fingers but not by themselves useful for the tasks of verification, identification and

individualization.

Assuming that fingerprints are distinguished by 6 secondary types, the PRC for ridge flow

types is calculated by Eq.2.3. Given above type frequencies, we have PRC value pǫ = 0.2233.

The nPRC and specific nPRC can be caculated by Eq.2.8 and Eq.??. Table 2.1 and table

?? show the nPRC and Specific nPRC with different n.

2.4.2 Distribution of Minutiae

Each minutia is represented as x = (s, θ) where s = (x1, x2) is its location and θ its direction.

The distribution of minutiae location conditioned on ridge flow is shown in Figure 2.4 where

there were 400 fingerprints of each type. In the model we develop the combined distribution

over all types is used (Figure 2.4(f)).

Since minutia location has a multimodal distribution, a mixture of K Gaussians is a

natural approach. For the data set considered a value of K = 3 provided a good fit, as

validated by a goodness of fit test. Values of K = 4, 5 do not fit the data as well. A

Gaussian mixture with k = 3 is shown in Figure 2.5.

Since minutiae orientation is a periodic variable, it is modeled by a circular normal or

von Mises distribution which itself is derived from the Gaussian [6, 30]. Such a model is
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: Distribution of minutia location for different types of ridge flow: (a) arch, (b)
left loop, (c) right loop, (d) tent, (e) whorl, and (e) all types combined.

better than mixtures of hyper-geometric and binomial distributions [35, 15].

Such a model for minutiae distributions involves a random variable z that represents the

particular mixture component from which the minutia is drawn. In this model both minutiae

location and orientation depend on the component they belong to. Minutiae location and

orientation are conditionally independent given the component. This is represented by

p(x|z) = p(s, θ|z) = p(s|z)p(θ|z), (2.9)
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(a) (b)

(c) (d)

Figure 2.5: Models for minutiae distribution using Gaussian mixture for location and von
Mises for direction: (a) Gaussian mixture model for minutia location with three components,
(b) three-dimensional plot of mixture model, (c) von Mises distributions of minutiae orien-
tation for each of the three components, where the green curve corresponds to the upper
cluster, blue the lower left cluster and red the lower right cluster, and (d) sample generated
from model.

whose graphical model is shown in Figure 2.6 from which we have the joint distribution

p(x, z) = p(z)p(x|z). (2.10)

Marginalizing over the components, we have the distribution of minutiae as

p(x) =
∑

z

p(z)p(x|z). (2.11)
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Figure 2.6: Mixture model for distribution of minutiae x = (s, θ). The joint distribution of
minutia location and orientation is given by p((s, θ), z) = p(z)p(s|z)p(θ|z).

Substituting (2.9) in (2.11) we have

p(x) =
∑

z

p(z)p(s|z)p(θ|z). (2.12)

Since minutiae location within each component is Gaussian and minutiae orientation

within each component is von Mises we can write

p(x|Θ) =
K∑

k=1

πk · N (s|µk,Σk) · V(θ|νk, κk), (2.13)

where K is the number of mixture components, πk are non-negative component weights that

sum to one, N (s|µk,Σk) is the bivariate Gaussian probability density function of minutia

with mean µk and covariance matrix Σk, V(θ|νk, κk) is the von Mises probability density

function of minutiae orientation with mean angle νk and precision (inverse variance) κk, and

Θ = {πk, µk,Σk, νk, κk, ρk} where k = 1, 2, .., K is the set of all parameters of the k Gaussian

and von Mises distributions.

Rather than using the standard form of the von Mises distribution for the range [0, 2π],

since minutiae orientations are represented as being in the range [0, π), we use the alternate

form [?] as follows
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V(θ|νk, κk, ρk) = ρkυ(θ) · I{0 ≤ θ < π} + (1 − ρk)υ(θ − π) · I{π ≤ θ < 2π} (2.14)

where I{A} is the indicator function of the condition A,

υ(θ) ≡ υ(θ|νk, κk) =
2

I0(κi)
exp[κicos2(θ − νk)], (2.15)

minutiae arising from the kth component have directions that are either θ or θ + π and the

probabilities associated with these two occurrences are ρk and 1 − ρk respectively.

Since fingerprint ridges flow smoothly with very slow direction changes, direction of

neighboring minutiae are strongly correlated, i.e., minutiae that are spatially close tend to

have similar directions with each other. However, minutiae in different regions of a fingerprint

tend to be associated with different region-specific minutiae directions thereby demonstrating

independence [13, 21]. The model allows ridge orientations to be different at different regions

(different regions can be denoted by different components) while it makes sure that nearby

minutiae have similar orientations (as nearby minutiae will belong to the same component).

Since several minutiae are observed in a finger, a joint distribution model is needed. The

minutiae are assumed to be independent of each other, with each minutiae, consisting of an

(s, θ) pair, being distributed according to a mixture of component densities. This is discussed

further when we consider parameter estimation in Section 2.4.4.



CHAPTER 2. FINGERPRINT INDIVIDUALITY 25

2.4.3 Distribution of Representative Ridges

In the model just discussed, only minutiae was used in the framework of generative models for

fingerprints. Models based purely on minutiae may be sufficient to model biometric scenarios

where finger-prints are obtained in controlled conditions [35][15], but are insufficient to model

forensic scenarios where latent prints are lifted off of surfaces. Due to the poor quality of

latent prints, the detected minutiae are of low quantity and quality [61].

In forensics, ridge details in fingerprints provide vital information about fingerprints.

Verification systems using minutiae together with ridge information are more accurate than

using minutiae alone. Also, any generative model that makes use of ridge details can only be

a better representation of the generative model for fingerprints. Ridge features are illustrated

in Figure 2.7 where three different fingerprints are shown. In fingerprints 1 and 2, minutiae

m1 and m2 are similar as well as the associated ridges r1 and r2, are similar. In fingerprint

3, minutia m3 is similar to m1 and m2 but the ridge r3 is dissimilar to r1 and r2. Thus two

minutiae matching with each other on location and orientation may actually have two very

different ridge shapes. Thus, to make more reliable decisions on whether two fingerprints

match, we use ridge information as well as minutiae location and orientation information.

With this motivation, the distribution of ridge information is embedded into generative

models [57].

Since nearby ridges always maintain similar trend, too much redundancy would be in-

volved if all the ridges are modeled. We only consider ridges where the minutiae lie. These

ridges are called representative ridges. A representative ridge contains two parts, the minu-

tiae and the following ridge. The latter part is represented as a set of ridge points sampled
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Figure 2.7: Representation of fingerprints using minutiae and ridge information: similarity
of ridge shapes allows the matching of corresponding minutiae pair. Three fingerprints are
shown, two of which are similar and one dissimilar. Minutiae m1 and m2 in fingerprints 1
and 2 are similar since not only their locations are similar but also the associated ridges r1
and r2 are similar. However, minutiae m3 in fingerprint 3 has a location similar to m1 and
m2 but the associated ridge r3 is dissimilar to r1 and r2.

at equal interval of inter ridge width [17].

The length of the ridge lr is defined as the number of ridge points that could be sampled

on the ridge. Three types of ridges are defined: (i) short: lr ≤ L/3, (ii) medium: L/3 < lr ≤

2L/3 and (iii) long: lr > 2L/3, where L is the average ridge length of the top 10% longest

representative ridges in the fingerprints database, e.g. in FVC2002, L is 18. By choosing the

value of maximum ridge length L as the average of long ridges in the database, unusually

long ridges caused by artifacts is avoided. The three possible ridge length types can be

associated with any representative ridge. Without loss of generality, we can assume that

there exist only three possible ridge length types corresponding to a representative ridge.

The distribution of ridge length lr is modeled as

p(lr) =
c1
c
· I{lr ≤ L/3} +

c2
c
· I{L/3 < lr < 2L/3} +

c3
c
· I{2L/3 ≤ lr ≤ L} (2.16)
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where I{C} is the indicator function of condition C, c1, c2 and c3 are the numbers of short,

medium and long representative ridges, and c = c1 + c2 + c3.

For ridges with different lengths, different ridge points are picked as anchors. For medium

ridges, ⌊L/3⌋th ridge point is picked and for long ridges, both ⌊L/3⌋th and ⌊2L/3⌋th are

picked. No ridge point is chosen for short ridges. The rationale for choosing these two ridge

points is described in [17].

Let x = {xm,xr} denote the feature vector of a representative ridge, where minutiae

feature vector xm is given by {sm, θm} and ridge feature vector xr is represented by a ridge

point set given by {xri : i ∈ A∧ i ≤ lr} where xri is the feature vector of the ith ridge point,

A is the anchor point index set {⌊L/3⌋, ⌊2L/3⌋} and lr is the length of the ridge. In contrast

to the model for minutiae, ridge points are represented in polar coordinates as shown in

Figure 2.8. The location of ridge point sri is given by {ri, φi} and the direction of ridge point

is θi. Thus the ridge point xri is represented as the combination of location and direction

{ri, φi, θi} where ri is the distance from the ith ridge point to the minutia, φi is the positive

angle required to reach the ith ridge point from the polar axis.

A graphical model that represents the use of ridge information in addition to minutiae is

given in Figure 2.9. The model can be represented as

p(lr,xm,xr) = p(lr) · p(xm|lr) · p(xr|xm, lr) (2.17)

where p(lr) is the distribution of ridge length, p(xm|lr) is the distribution of minutiae given

certain ridge length type and p(xr|xm, lr) is the distribution of ridge points given corre-

sponding minutiae and ridge length type. For different ridge length, the distribution of ridge



CHAPTER 2. FINGERPRINT INDIVIDUALITY 28

Figure 2.8: Representation of ridge points in polar coordinates. The sixth ridge point from
the minutia at the center is represented by ((r, φ), θ), where r and φ are polar coordinates
of its location, with the origin at the minutia, and its direction θ is the angle the tangent at
the ridge point makes with the horizontal.

Figure 2.9: Graphical model for representative ridges.



CHAPTER 2. FINGERPRINT INDIVIDUALITY 29

points xr is given as

p(xr|xm, lr) =





1 lr ≤
L
3

p(xr⌊L
3
⌋|xm, lr)

L
3
> lr ≤

2L
3

p(xr⌊ 2L
3
⌋|xm, lr) · p(xr⌊L

3
⌋|xm, lr) lr >

2L
3

(2.18)

where xr⌊L
3
⌋ and xr⌊ 2L

3
⌋ represent the feature vectors of ⌊L

3
⌋
th

and ⌊2L
3
⌋
th

ridge points.

The generative model is based on the distribution of representative ridges. Mixture

distributions consisting of Ki components, i = 1, 2, 3, is used to model representative ridges

of three ridge length types. Each component is distributed according the density of the

minutiae and density of ridge points. Assuming that the minutiae and ridge points are

independent, representative ridge distribution is given by

p(x|Θ) =





p(lr) ·
∑K1

g=1 πkpk(sm, θm|Θk) lr ≤
L
3

p(lr) ·
∑K2

k=1 πkpk(sm, θm|Θk)

·pk(r⌊L
3
⌋, φ⌊L

3
⌋, θ⌊L

3
⌋|Θk)

L
3
< lr <

2L
3

p(lr) ·
∑K3

k=1 πkpk(sm, θm|Θk) · pk(r⌊L
3
⌋, φ⌊L

3
⌋, θ⌊L

3
⌋|Θk)

·pk(r⌊ 2L
3
⌋, φ⌊ 2L

3
⌋, θ⌊ 2L

3
⌋|Θk) lr ≥

2L
3

(2.19)

The first condition corresponds to minutiae alone, the second to minutia and one ridge

point, and the third to minutia and two ridge points. pk(sm, θm|Θk) is the component

distribution for minutiae location sm and direction θm and pk(ri, φi, θi|Θk) is the component
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distribution for the ith ridge point. They are defined as in (2.20) and (2.21) respectively.

pk(sm, θm|Θk) = N (sm|µmk,Σmk) · V(θm|νmk, κmk, ρmk) (2.20)

pk(ri, φi, θi|Θk) = pk(ri, φi|µik,Σik, ν
φ
ik, κ

φ
ik, ρ

φ
ik) · V(θi|ν

θ
ik, κ

θ
ik, ρ

θ
ik) (2.21)

where pk(sm, θm|Θk) can be caculated by Eq. 2.13 and pk(ri, φi, θi|Θk) is the product of

the probabilities of ridge point locations and directions, where V(θi|ν
θ
ik, κ

θ
ik, ρ

θ
ik) presents

the distribution of the ridge point direction, θi is the direction of the ith ridge point and

pk(ri, φi|µik,Σik, ν
φ
ik, κ

φ
ik, ρ

φ
ik) is the distribution of ridge point location given by

pk(ri, φi|µik, σik, ν
φ
ik, κ

φ
ik, ρ

φ
ik) = N (ri|µik, σik) · V(φi|ν

φ
ik, κ

φ
ik, ρ

φ
ik) (2.22)

where N (ri|µik, σik) is a univariate Gaussian distribution whose mean µik and variance

σik are learnt from a fingerprint database.

2.4.4 Parameter Estimation

We now develop an equivalent formulation of the mixture distribution given in (2.13) by

involving an explicit latent variable. This will allow us to formulate the problem of parameter

estimation in terms of the expectation maximization (EM) algorithm.

We define the joint distribution p(x, z) in terms of a marginal distribution p(z) and a

conditional distribution p(x|z), corresponding to the graphical model in Figure 2.10(a).

Given that the total number of minutiae observed in a finger is D, a joint distribution

model is needed. The D minutiae are assumed to be independent of each other, with each
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(a) (b)

Figure 2.10: Graphical models representing mixture for: (a) single minutia whose distribu-
tion is expressed as p(x, z) = p(x)p(x|z), (b) set of D identically distributed minutiae with
corresponding latent points zn, where n = 1, .., D.

minutiae, consisting of an x(s, θ) pair, being distributed according to a mixture of component

densities. This is shown in Figure 2.10(b).

The K-dimensional random variable z has a 1-of-K representation in which a particular

element zk is equal to 1 and all other elements are equal to 0, we can write

p(z) =
K∏

k=1

πzkk (2.23)

Similarly the conditional distribution of x given a particular value for z is given by

p(x|zk = 1) = N (x|µk,Σk) · V(θ|νk, κk, ρk) (2.24)

which can also be written in the form

p(x|z) =
K∏

k=1

N (x|µk,Σk)
zk · V(θ|νk, κk, ρk)

zk . (2.25)
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The joint distribution is given by p(z)p(x|z), and the marginal distribution of x is ob-

tained by summing the joint distribution over all possible states of z to give

p(x) =
∑

z

p(z)p(x|z) =
K∑

k=1

πk · N (s|µk,Σk) · V(θ|νk, κk, ρk) (2.26)

where we have made use of (2.23) and (2.25). Thus the marginal distribution of x is a

mixture of the form (2.13). If we have several observed minutiae x1,x2, ..xD then, because

we have represented the marginal distribution in the form p(x) =
∑

z p(z)p(x|z), it follows

that for every observed minutia xn, there is a corresponding latent variable zn.

We are now able to work with the joint distribution p(x, z) instead of the marginal distri-

bution p(x) . To estimate the unknown parameters using the maximum likelihood approach,

we use the EM algorithm. The number of components K for the mixture model was found

after validation using k-means clustering.

E-Step: Using γdk is to denote the responsibility of component k for minutiae xd, its

value can be found using Bayes’s theorem

γdk ≡ p(zk = 1|xd) =
p(zk = 1)p(xd|zk = 1)

∑K

k=1 p(zk = 1)p(xd|zk = 1)

=
πkN (sd|µk, σk)V(θd|νk, κk, ρk)∑K

k=1 πkN (sd|µk, σk)V(θd|νk, κk, ρk)
(2.27)

M-Step: The estimates of the Gaussian distribution parameters πk, µmk and Σmk at the
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(n+ 1)th iteration, are given by

π
(n+1)
k =

1

D

D∑

d=1

γ
(n)
dk (2.28)

µ
(n+1)
mk =

∑D

d=1 γ
(n)
dk sm∑D

d=1 γ
(n)
dk

(2.29)

Σ
(n+1)
mk =

∑D

d=1 γ
(n)
dk (sm − µ

(n+1)
mk )(sm − µ

(n+1)
mk )T

∑D

d=1 γ
(n)
dk

(2.30)

The parameters for orientation distributions are obtained using expectation maximization

for the von Mises distribution [4]. The estimates of νmk and κmk at the (n + 1)th iteration

are given by

ν
(n+1)
mk =

1

2
tan−1

(∑D

d=1 γ
(n)
dk sin2ψd∑D

d=1 γ
(n)
dk cos2ψd

)
(2.31)

I ′0(κ
(n+1)
mk )

I0(κ
(n+1)
mk )

=

∑D

d=1 r
(n)
dk cos2(ψd − ν

(n+1)
k )

∑D

d=1 r
(n)
dk

. (2.32)

The solution for (2.32), which involves Bessel functions, obtained using an iterative

method gives the estimate for κmk. The estimate of ρmk is then obtained as

ρ
(n+1)
mk =

∑D

d=1 I{c
(n+1)
d = k, θd ∈ [0, π)}

∑D

d=1 I{c
(n+1)
d = k}

(2.33)

where c
(n+1)
d = arg maxkγ

(n+1)
dk is the component label for the observation d at the (n+ 1)th

iteration, ψj is the orientation of the minutiae mj.
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The parameters in generative models for minutiae (Eq. 2.13) can be learned by Eq. 2.28,

2.29, 2.30, 2.31, 2.32 and 2.33. In the same way, the parameters for ridge point νθik, κ
θ
ik, ρ

θ
ik

and νφik, κ
φ
ik, ρ

φ
ik can be estimated by Eq. 2.31, 2.32 and 2.33, when ψj is set as θi and φi

respectively.

2.5 Evaluation of PRCs

To compute the PRCs, we first define correspondence, or match, between two minutiae. Let

xa = (sa, θa) and xb = (sb, θb) be a pair of minutiae. The minutiae are said to correspond if

for tolerance ǫ = [ǫs, ǫθ],

|sa − sb| ≤ ǫs and |θa − θb| ≤ ǫθ (2.34)

where |sa − sb|, the Euclidean distance between the minutiae location sa = (xa1, xa2) and

sb = (xb1, xb2), is given by

|sa − sb| =
√

(xa1 − xb1)2 + (xa2 − xb2)2 (2.35)

Then, the probability that a random minutia xa would match a random minutia xb is

given by

pǫ(x) = p(|xa − xb| ≤ ǫ|Θ)

=

∫

xa

∫

|xa−xb|≤ǫ

p(xa|Θ)p(xb|Θ)dxadxb (2.36)

where Θ is the set of parameters describing the distribution of the minutiae location and



CHAPTER 2. FINGERPRINT INDIVIDUALITY 35

direction.

Finally, the PRC, or the probability of matching at least m̂ pairs of minutiae within ǫ

between two randomly chosen fingerprint f1 and f2 is calculated as

pǫ(m̂,m1,m2) =

(
m1

m̂

)(
m2

m̂

)
m̂! · pǫ(x)m̂(1 − pǫ(x))(m1−m̂)·(m2−m̂) (2.37)

where m1 and m2 are numbers of minutiae in fingerprints f1 and f2, pǫ(x)m̂ is the probability

of matching m̂ specific pairs of minutiae between f1 and f2, (1 − pǫ(x))(m1−m̂)·(m2−m̂) is the

probability that none of minutiae pair would match between the rest of minutiae in f1 and

f2 and
(
m1

m̂

)(
m2

m̂

)
m̂! is the number of different match sets that can be paired up.

Given n fingerprints and assuming that the number of minutiae in a fingerprint m can

be modeled by the distribution p(m), the general PRCs p(n) is given by

p(n) = 1 − p̄(n) = 1 − (1 − pǫ)
n(n−1)

2 (2.38)

where pǫ is the probability of matching two random fingerprint from n fingerprints. If we set

the tolerance in terms of number of matching minutiae to m̂, pǫ is calculated by

pǫ =
∑

m′

1∈M1

∑

m′

2∈M2

p(m′
1)p(m

′
2)pǫ(m̂,m

′
1,m

′
2) (2.39)

where M1 and M2 contain all possible numbers of minutiae in one fingerprint among n

fingerprints, and pǫ(m̂,m
′
1,m

′
2) can be calculated by Eq. 2.37.
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2.6 Experiments

Parameters of the fingerprint generative model introduced in Sections 2.4.2 was evaluated

using the NIST fingerprint database. The NIST fingerprint database, NIST Special Database

4, contains 8-bit gray scale images of randomly selected fingerprints. Each print is 512 ×

512 pixels with 32 rows of white space at the bottom of the print. The entire database

contains fingerprints taken from 2000 different fingers with 2 impression of the same finger.

Thus, there are a total of 2000 fingerprints using which the model has been developed. The

fingerprints are classified into one of five categories (left loop, whirl, right loop, tented arch,

and arch) with an equal number of prints from each class (400). The number of components

K for the mixture model was found after validation using k-means clustering. In order to

justify the generative models, goodness-of-fit test is perform on FVC2002 DB1 dataset. The

results are shown in Section 2.6.1. Section 2.6.2 presents the table for PRC values.

2.6.1 Goodness-of-fit Test

Goodness of fit means how well a sample of data agrees with a given distribution as its

population. To test the goodness of fit, the chi-square statistical hypothesis test is applied.

Chi-square goodness of fit test determines whether observed sample frequencies differ sig-

nificantly from expected frequencies specified in the null hypothesis. The test is applied to

binned data (i.e., data put into classes) and requires a sufficient sample size in each bin

in order for the chi-square approximation to be valid [38]. In the case of fingerprint, we

partitioned the minutiae location and direction space into 16 × 4 non-overlapping blocks.

The blocks are combined with adjacent blocks until both observed and expected numbers
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Table 2.2: Results from the Chi-square tests for testing the goodness of fit of the mixture
models with and without ridge information.The total number of fingerprints in FVC2002
DB1 is 800.

p-value Without Ridge information With Ridge information
p− value > 0.01
(Model Accepted) 574 679
p− value ≤ 0.01
(Model Rejected) 226 121

of minutiae in the block are greater than or equal to 5. The test statistic used here is a

chi-square random variable χ2 defined by the following equation.

χ2 =
∑

i

(Oi − Ei)
2

Ei
(2.40)

where Oi is the observed minutiae count for the ith block, and Ei is the expected minutiae

count for the ith block.

The p-value, the probability of observing a sample statistic as extreme as the test statistic,

associated with each test statistic χ2 is then calculated based on the chi-square distribution

and compared to the significance level. For the FVC2002 DB1, we chose significance level

equal to 0.01. The numbers of fingerprints with p-values above (corresponding to accept

the model) and below (corresponding to reject the model) the significance level are then

computed. The results are given in Table 3.2. Of the 800 fingerprints, 679 are accepted

with ridge model which is higher than 574 and 121 are rejected whichis smaller than 226.

The results imply that the mixture model with ridge information offers a better fit to the

observed fingerprints compared to the model without ridge information.
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2.6.2 PRC Evaluation with Fingerprint Datasets

Values of PRC pǫ are calculated using the formula introduced in Section 2.5. The tolerance

is set at ǫs = ǫr = 10 pixels and ǫθ = ǫφ = π/8. For comparison, the empirical PRC p̂ǫ(x)

was calculated with the same tolerance. To compute p̂ǫ(x), the empirical probabilities of

matching a minutiae pair or ridge pair between imposter fingerprints are calculated first by

p̂ǫ(x) =
1

I

I∑

i=1

m̂i

mi ×m′
i

(2.41)

where I is the number of the impostor fingerprints pairs, m̂i is the number of matched

minutiae or ridge pairs and mi and m′
i are the numbers of minutiae or pairs in each of the

two fingerprints. Then, the empirical PRC p̂ǫ can be calculated by Eq.2.37.

Both the theoretical and empirical PRCs are given in Table 2.3. The PRCs are calculated

through varying number of minutiae or ridges in two randomly chosen fingerprint f1 and f2

and the number of matches between them. We can see that more minutiae or ridges the tem-

plate and input fingerprint have, higher the PRC is. It should be noted that the PRC values

with ridge information model are never greater than PRC values without ridge information,

which indicates that ridge information strengthens individuality of fingerprints. Note that

the theoretical PRC based on our model are close and have the same trend to empirical PRC.

The consistency between the theoretical probabilities and empirical probabilities shows the

validation of our generative model. The PRCs for the different m1 and m2 with 6, 16, 26

and 36 matches are shown in Figure 2.11. It is obvious to note that, when m̂ decreases or

m1 and m2 increase, the probability of matching two random fingerprints is more.

Based on the PRC value, nPRC can be computed. Table 2.4 shows the nPRCs in 100, 000
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Table 2.3: PRC for different fingerprint matches with varying m1(number of minutiae/ridges
in fingerprint f1 ),m2 (number of minutiae/ridges in fingerprint f2) and m̂ (number of
matched minutiae/ridges) - With ridge information and without ridge information. pǫ is
the theoretical PRC for the general population and p̂ǫ is the empirical PRC for NIST 4
database.

Minutiae Only Minutiae and Ridge Points
m1 m2 m̂ pǫ(m1,m2, m̂) p̂ǫ(m1,m2, m̂) pǫ(m1,m2, m̂) p̂ǫ(m1,m2, m̂)
16 16 6 6.3 × 10−9 1.0 × 10−8 3.7 × 10−11 5.9 × 10−10

12 3.4 × 10−23 1.0 × 10−22 5.1 × 10−28 9.2 × 10−26

16 1.2 × 10−37 5.4 × 10−37 6.4 × 10−46 4.3 × 10−45

36 36 6 2.1 × 10−4 3.4 × 10−4 8.3 × 10−6 7.0 × 10−5

12 1.1 × 10−11 3.1 × 10−11 6.0 × 10−14 1.8 × 10−14

24 4.0 × 10−34 3.6 × 10−33 5.2 × 10−40 7.6 × 10−39

36 3.6 × 10−72 9.9 × 10−71 1.3 × 10−86 8.7 × 10−84

56 56 6 1.8 × 10−2 2.6 × 10−2 9.1 × 10−3 2.8 × 10−3

12 7.8 × 10−7 2.1 × 10−6 5.2 × 10−9 2.1 × 10−9

24 2.6 × 10−21 2.2 × 10−20 7.2 × 10−26 7.7 × 10−25

36 1.7 × 10−42 4.5 × 10−41 8.9 × 10−51 4.1 × 10−50

48 5.0 × 10−72 4.1 × 10−70 3.5 × 10−87 3.9 × 10−86

56 1.1 × 10−101 2.0 × 10−99 6.8 × 10−123 5.3 × 10−120

76 76 6 1.4 × 10−1 1.8 × 10−1 7.5 × 10−2 2.2 × 10−2

12 5.0 × 10−4 1.1 × 10−3 5.8 × 10−6 3.9 × 10−5

24 5.6 × 10−14 4.2 × 10−13 2.5 × 10−18 4.7 × 10−17

36 4.4 × 10−29 1.1 × 10−27 3.3 × 10−36 8.3 × 10−35

48 3.6 × 10−49 2.8 × 10−47 8.1 × 10−63 6.3 × 10−62

60 3.6 × 10−75 8.8 × 10−73 8.0 × 10−92 6.3 × 10−90

76 4.9 × 10−128 5.4 × 10−125 3.4 × 10−155 6.3 × 10−151
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Figure 2.11: PRCs with different numbers of the matched minutiae for (a) m̂ = 6, (b)
m̂ = 26, (c) m̂ = 56, and (d) m̂ = 76.

fingerprints through varying number of minutiae or ridges in each fingerprint m and number

of matches m̂.

2.7 Conclusions

While forensic evidence of many modalities have long been used in the judicial system, e.g.,

impression evidence (latent prints, handwriting, shoe-prints), trace evidence (paint flakes,

pollen, fibers, glass, hair), etc, characterizing their accuracy in identification is still needed

to provide a scientific basis. The degree of individuality of a forensic modality can be

established quantitatively by using either discriminative or generative approaches. In the

former an error rate is determined after a suitable classifier is constructed. In the latter a
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Table 2.4: Fingerprint Probabilities: nPRCs with varying n and m̂
No. of No of Minutiae only Minutiae and Ridge Points

fingerprints n matches m̂ pǫ(n, m̂) pǫ(n, m̂)
1000 16 1 2.8790 × 10−1

36 4.1731 × 10−5 8.7502 × 10−6

56 1.7219 × 10−18 7.8466 × 10−20

76 4.8546 × 10−38 1.1363 × 10−42

96 4.2369 × 10−64 5.1036 × 10−75

100,000 16 1 8.3978 × 10−1

36 3.4146 × 10−1 4.988 × 10−2

56 1.7236 × 10−14 5.3583 × 10−16

76 4.8594 × 10−34 1.4617 × 10−38

96 4.2411 × 10−60 9.3221 × 10−69

10,000,000 16 1 1
36 1 7.980 × 10−2

56 1.7236 × 10−10 9.2801 × 10−12

76 4.8594 × 10−30 3.4857 × 10−35

96 4.2411 × 10−56 3.8824 × 10−64

probability distribution is determined from which different types of probabilities of random

correspondence (PRC) are evaluated.

Generative models of individuality attempt to model the distribution of features and then

use the models to determine the probability of random correspondence. We have proposed

such models of individuality for fingerprints. Individuality is evaluated in terms of two

probability measures: probability of random correspondence (PRC) between two individuals,

and general probability of random correspondence (nPRC) between two individuals among

a group of n individuals.

Models for fingerprint individuality have been proposed for ridge flows, minutiae only

and minutiae with ridge points. Mixture distributions are proposed to model minutiae

and ridge information. Goodness-of-fit tests are conducted to prove the validation of the

proposed generative models. The new generative model is also compared by implementation
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and experiments with the empirical results on the NIST 4 dataset. The PRC obtained

for a fingerprint template and input with 36 minutiae each with 12 matching minutiae is

1.1 × 10−11. This probability is very close to the empirical result which is 3.1 × 10−11.

nPRC and specific nPRC of fingerprints are computed also. Considering the case of 100, 000

fingerprints, the nPRC with minutiae information where 56 minutiae pairs are matched

is 1.7236 × 10−14. Given a specific fingerprint with 71 minutiae, the specific nPRC with

minutiae information where 55 out of 71 minutiae are matched is 8.5815 × 10−276. The

proposed generative model offers a reasonable and accurate fingerprint representation. The

results provide a much stronger argument for the individuality of fingerprints in forensics

than previous generative models.



Chapter 3

FINGERPRINT RARITY

Since the earliest days of forensic fingerprint identification, the importance of considering the

rarity of features used in the comparison of prints has been known. Yet methods to compute

rarity of features have been elusive due to the large number of variables and the complexity

of the distributions. When a latent print, typically found in a crime scene, is compared

to a known, such as inked or live scan prints in a database, the degree of uncertainty is

influenced by rarity as well as similarity. A method for computing the rarity of latent

fingerprints represented by minutiae is proposed. It allows determining the probability of

finding a random match for the evidence in a database of n prints [55]. First, the coordinate

system is transformed into standard position based on finding the core point. Since latent

prints are often incomplete and the core point may be missing in the field of view, a machine

learning approach based on Gaussian process regression is proposed. Next a generative

model, that takes into account inter-minutia dependencies and minutia confidences, is used

to determine evidence probability from which the specific probability of match among n is

evaluated. The generative model is validated using a goodness-of-fit test. Rarity evaluation

43
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is illustrated using several examples, including simple configurations of minutiae, randomly

selected latent fingerprints in a database, and a well-known case of erroneous identification.

3.1 Introduction

In the forensic sciences it has become necessary to quantify the value of evidence. Recent

court challenges have highlighted the need for characterizing uncertainty rather than implic-

itly threshold it into individualization or exclusion [66, 31]. The ”gold standard” for the

forensic sciences is DNA evidence, where a probability statement can be made after a match

has been confirmed between evidence and known, e.g., the chance that a random person on

earth would have the same STR (short tandem repeat) pattern is 1 in 24,000,000– which is

a description of rarity of the evidence/known [9].

Impression evidence consists of marks created by physical contact between object and

surface. In the case of friction ridge impressions, the evidence mark is a latent print which is

made visible to the naked eye using powder or ultraviolet illumination. Features commonly

used to characterize friction ridge impressions are known as level 1, 2 and 3 detail. Level

1 detail, which characterize ridge flow types such as loops, arch and whorl, is only useful

for exclusion. Level 2 detail, which are minutiae that correspond to ridge bifurcations and

endings, contain the most discriminative information. Level 3 detail (pores) are not usually

available in latent prints. Features most useful to characterize friction ridge impressions

are minutiae which correspond to ridge bifurcations. trifurcations and endings (Figure 3.1).

Associated with each such point is an attribute of orientation, which is determined by the

associated ridge, and the confidence of its presence. Every configuration of points has a
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center, called a core point, specified both by its location and direction.

(a) (b)

Figure 3.1: Fingerprint as spatial point set: (a) points are ridge endings/bifurcations, and
(b) extracted points (x) and inferred center/core (o). Each point has attributes such as
orientation, confidence and type.

Practitioners implicitly assign weights to fingerprint features in the their analysis of

latent prints and subsequent evaluation of similarity to a known. Since the earliest days of

fingerprint- based identification it has been recognized that observed features ought to be

assessed as a function of their relative rarity while allowing also for a proper consideration

of clarity [29]. This weighing is done at present manually, mainly based on subjective,

experience-based judgments of the probability associated with their occurrence. The process

is essentially holistic and the subjective probabilities are not explicit.

3.1.1 Likelihood Ratio Methods and Rarity

Latent print evidence used for identification has uncertainty at two levels: rarity of the mark

and similarity between evidence and known. These uncertainties can be characterized as

probabilities determined by the type(s) of features measured. One measure of the weight of

evidence is a likelihood ratio (LR) whose numerator is the joint probability that the evidence
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x and known y come from the same source (also known as the prosecution (p) hypothesis),

and the denominator is the joint probability that the two come from two different sources

(defense (d) hypothesis) [1]. This ratio of the two joint distributions of x and y, under the

prosecution and defense hypotheses, can be written as pp(x,y)

pd(x,y)
. If the underlying distributions

are Gaussian (univariate or multivariate) the LR can be simplified as the product of two

factors [27]. The first factor is a Gaussian whose exponent of the squared difference of x

and y, which can be interpreted as a probability measure of similarity – which is also a

significance test of the null hypothesis of identity. The second factor is a reciprocal of a

Gaussian whose exponent is the squared difference of x and the mean of its distribution –

which is precisely the reciprocal of the probability of x and is therefore a measure of rarity.

While this is an elegant result, evaluation of the joint probability is difficult for fingerprints.

This is because the number of possible transformations, e.g., distortions of x and y, is very

large, the number of possible variables, e.g., minutiae, are typically between 6 and 40 and

each minutia itself is expressed as a 3-tuple (two spatial co-ordinates and an angle) with

associated uncertainties.

The likelihood ratio computation is made tractable by using a similarity (or kernel)

function k(x,y). Ideally this is a tangent distance function that takes into account all

possible transformations [43]. Again due to the complexity of fingerprint transformations,

the kernel is a much simpler score function such as those commonly used in Automatic

Fingerprint Identification Systems (AFIS)[68]. Given the distribution of k(x,y) under the

prosecution and defense hypotheses, the corresponding likelihood ratio is pp[k(x,y)]

pd[k(x,y)]
[33, 32, 45].

While this allows the joint distribution over many variables to be replaced by the distribution

over a single variable, there is clearly a severe loss of information. Moreover the kernel only
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deals with similarity and any consideration of rarity is lost.

Since rarity is the reciprocal of probability, the probability of evidence is itself a measure

of rarity. A more useful measure of rarity is the probability that the evidence could be

randomly found in a database of a given size, which is low for a rare input and high for

a common configuration. This probability can be evaluated from the distribution of the

evidence, which can be learnt from a representative training sample, and a tolerance as

to how close the evidence and database entry need to be. An example of learning the

distribution of points from training samples and the rarity of two point configurations is

shown in Figure 3.2, where points are denoted by crosses and the core point, which functions

as coordinate origin, is represented by a circle.

The starting point for determining minutia distribution is to find the core point of a

minutia set since it functions as the coordinate system origin. However a latent print may or

may not contain a core point within it, e.g., a poor quality latent print may only represent

a portion of a finger. The area of finger skin that the evidence comes from is determined

probabilistically by finding its core point, which in turn is determined using regression.

3.1.2 Organization of Rest of Chapter

Previous work on characterizing minutiae distribution and core point determination are de-

scribed in Section 3.2. Using the core point to transform the coordinate system into a

standard position and determining the core point of a latent print image is described in Sec-

tion 3.3. Modeling the distribution of minutiae is considered next where a Bayesian network

is used to take into account minutia dependencies (Section 3.4); the model is validated using
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Rarity of point sets: (a-d) configurations used as training set, where each has a
core point (denoted as a circle), (e) an input configuration that is determined to be commonly
occurring, and (f) an input that is rare. Rarity of each input configuration is computed using
not only spatial information of points with respect to the core point but also an attribute of
orientation associated with each point.

a goodness-of-fit test. As a measure rarity, the probability of random correspondence of a

specific print among n samples is defined in Section 3.5. It takes into account uncertainty

associated with the core point and the minutiae. Several examples of evaluation of rarity of

latent prints and minutia configurations are given in Section 3.6.

The overall process of rarity evaluation is shown in Figure 3.3. Core point prediction and

minutia distribution involve learning from sample sets.
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Figure 3.3: Process of rarity evaluation. First, the latent print is processed to get its ori-
entation map. Regression is used to predict the core point. Next the coordinate system is
transformed with core point as origin. A generative model is used to provide a distribution
for the sequence of minutiae observed. Finally a probability of random correspondence for
the specific configuration of minutiae in a database of n entries is evaluated.

3.2 Related Work

3.2.1 Relation to Fingerprint Individuality

Relevant to the task of determining the rarity of a given fingerprint are several classical

studies on fingerprint individuality [53]. Dating to over a hundred years, the goal of these

studies was to determine the degree to which fingerprints are unique. Galton [18] computed

the probability of a fingerprint as a product of three factors: factor A is that the configuration

is present/absent in each of 24 six-ridge square regions of the fingerprint, factor B is that the

region is one of sixteen pattern types and factor C is that the correct number of ridges would

enter and exit each region. The three factors are evaluated to have values (1/2)24, (1/16) and

(1/256). Their product gives the probability of any given fingerprint as 10−11. This model

was considered to be a gross underestimate of the variability of fingerprints and improved by

Pearson [36] by replacing the (1/2) term by (1/36) to reflect different minutia configurations,
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yielding a probability of 1.09×10−41. These evaluations remained untested and subsequently

replaced by methods such as those based on minutia types. Stoney and Thornton [50, 51]

proposed a set of desired features for a fingerprint model and attempted to meet some

conditions using their survey of minutiae and subsequent data analysis. Two limitations

to Stoney and Thornton were: the limited scope of the survey and lack of accommodation

for prints in poor condition. Champod and Margot [10] presented a statistical model that

utilized computer-generated frequencies of minutiae occurrence and minutia densities. A

new variable was introduced as compound minutia length. Known weaknesses of the model

include: position of the print on the finger must be known, and not allowing connective

ambiguities.

3.2.2 Core point determination

A core point corresponds to the center of the north most loop type singularity. For finger-

prints that do not contain loop or whorl singularities, the core is usually associated with the

point of maximum ridge line curvature[22]. The standard approach for core point detection

is the Poincare Index (PI) [26, 5, 23]. Another method, based on a sine map, is realized by

multi-resolution analysis [24]. Methods using Fourier expansion[37], fingerprint structures

[67] and multi-scale analysis [28] have also been proposed. All of these methods, which are

inspired by computational vision, require that the fingerprint is complete and that the core

point is present somewhere in it. This assumption does not hold for latent fingerprints,

which are usually partial and do not contain core points. So there is no way to detect them

by any of the proposed computational vision approaches.



CHAPTER 3. FINGERPRINT RARITY 51

3.2.3 Minutiae Distribution

Several efforts have been made to characterize the distribution of fingerprint features. Since

fingerprints can be generated from these models they may be termed as generative. The

generative model for level 1 detail simply consists of the probabilities for each ridge flow

pattern such as right loop (30%), left loop (27%), double loop (7%), arch (13%), tented arch

(5%) and whorl (19%) [46].

Modeling level 2 detail is more important, since fingerprint identification is largely based

on features at that level, viz., minutiae. The minutiae correspond to ridge endings and

ridge bifurcations. A minutia is represented by its location and direction. The direction

is determined by the ridge at the location. Automatic fingerprint matching algorithms use

minutiae as the salient features [68], since they are stable and are reliably extracted.

However a generative model becomes much more complex due to the large and variable

number of features involved. The simplest model assumes that minutiae locations and orien-

tations are uniformly and independently distributed [35]. An improved model assumes that

although minutiae are independent of each other minutiae orientation and location were

dependent. Such a model is better than mixtures of hyper-geometric and binomial distribu-

tions. A mixture model to account for the clustering tendency of minutiae was proposed [71].

A Markov point process to model minutia location has been attempted [11] with shortcom-

ings, e.g., direction is not incorporated, being based on relative spatial relationships minutia

sets from different regions will have the same rarity, and pair potential cannot be expressed

in closed form making usability impractical.

There have also been efforts to model distributions beyond minutiae alone. Since latent
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print examiners rely on minutiae as well as ridge information, ridges can be represented

discretely as ridge points and the model accounts for both minutiae and ridge points [54].

Extending to level 3 detail, a model that incorporates minutiae, ridge and pore features has

been recently proposed[14].

Minutiae that are spatially close tend to have similar directions with each other [41].

Moreover, fingerprint ridges flow smoothly with very slow orientation change. The variance

of the minutiae directions in different regions of the fingerprint are dependent on both their

locations and location variance [51, 12]. These observations on the dependency between

minutiae need to be accounted for in eliciting reliable statistical models. The proposed

generative model of fingerprint incorporates the distribution of minutiae and the dependency

relationship between them.

All existing models for level 2 detail have the drawback of assuming independence of

minutiae which leads to inaccurate probability estimates. This paper describes an effort to

incorporate minutiae dependencies as well as minutiae uncertainties.

3.3 Core Point Transformation

Latent prints usually correspond to only a small portion of the complete fingerprint. Thus

feature sets, such as minutiae, extracted from the print contain only relative spatial rela-

tionships. Feature sets with the same relative spatial relationship can lead to different rarity

if they come from different areas of the finger. To solve this problem of localization, we

first predict the center of the fingerprint, as defined by its core point, and then align the

fingerprint by translating the coordinates so that the center is located at the core point and
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rotate the coordinates so that the core point orientation points north [56].

3.3.1 Orientation Map

Since ridge flow directions reveal intrinsic features of ridge topologies, they have a critical

impact on the core point. A fingerprint field orientation map is defined as a collection of

two-dimensional direction fields. It represents the directions of ridge flows in a regularly

spaced grid. The gradients of gray intensity of enhanced fingerprints are estimated to obtain

reliable ridge orientation [23].

The input fingerprint image is divided into blocks of size W ×W where W is the size in

pixels , e.g., W = 10. Then compute the gradients Gx and Gy, the gradient magnitudes in

the x and y directions, at each pixel in each block. Finally, estimate the local orientation of

each block using:

θo =
1

2
tan−1

( ∑W

i=1

∑W

j=12Gx(i, j)Gy(i, j)
∑W

i=1

∑W

j=1(G
2
x(i, j) −G2

y(i, j))

)
. (3.1)

An example orientation map is given in Figure 3.4. In an image who field of view includes

objects other that the latent print, extraneous regions are manually erased.

3.3.2 Gaussian Process (GP) Regression

Determining the core point of a latent print can be formulated as a regression problem

where the independent variable consists of the fingerprint field orientation map and the

target variable is the core point. Using a machine learning approach [6], the regression

function can be learnt from training data consisting of orientation maps and corresponding

core points.
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(a)

(b)

Figure 3.4: Fingerprint orientation map: (a) fingerprint image and (b) vector of gradient
values. The corresponding core point has value of s = (253, 221), and θ = 85.

The Gaussian process (GP) approach to regression is particularly suitable. GPs dispense

with the parametric model and instead define a probability distribution over functions di-

rectly. It provides more flexibility and is a better predictor than other approaches such as

linear regression, neural networks, etc. The GP model also has the advantage of a Bayesian

formulation[39], where instead of a point estimate, the prediction is in the form of a full

distribution.

Let the training set D consist of N fingerprints, D = {(gi, yi)|i = 1, . . . , N}, where gi is

an orientation map with core point yi. The regression model with Gaussian noise is given

by yi = f(gi) + ǫ where f(gi) is the value of the process or function at gi and ǫ is a random

noise variable whose value is chosen independent for each observation. Assuming a noise

process with Gaussian distribution p(yi|f(gi)) = N (f(gi), σ
2), where σ2 is the variance of
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noise, the likelihood function is given by

p(y|f) = N (f , σ2I) (3.2)

where y = (y1, ..yN)⊤ is the observed (learning) set of core points and f = (f(g1), ..f(gN))⊤

contains the corresponding orientation maps gi, i = 1, .., N .

From the definition of a GP, its prior is given by a Gaussian whose mean is zero and

covariance is defined by a covariance function k(g,g′) so that f(g) ∼ GP(0, k(g,g′)). A GP

with Gaussian kernel is used to specify the covariance between pairs of variables. k(g,g′) =

exp(−||g − g′||2/2).

Core Point Distribution

For an input orientation map g∗ the predictive distribution of core point y∗ can be evaluated

by conditioning the joint Gaussian prior distribution on the observation (G,y), where G =

(g1, . . . ,gN)⊤. The predictive distribution is given by

p(y∗|g∗, G,y) = N (m(y∗), cov(y∗)) (3.3)

where m(y∗) = k(g∗, G)[K + σ2I]−1y,

cov(y∗) = k(g∗,g∗) + σ2 − k(g∗, G)⊤[K + σ2I]−1k(G,g∗),

k(g∗, G) = (k(g∗,g1), .., k(g
∗,gN))⊤ and K is the Gram matrix with elements k(gi,gj).
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Point Estimate of Core Point

Rather than work with the distribution of the core point we can work with the maximum a

posteriori probability (MAP) solution. Since g∗ may represent the orientation map in one

of several possible locations we maximize among all m possible translations and rotations

over the set {g∗
i |i = 1, . . . ,m}. Using Eq. (3.3), we obtain the predictive distributions

p(y∗|g∗
i , G,y) for all g∗

i . The core point ŷ∗ should maximize p(y∗|g∗
i , G,y) with respect to

g∗
i . Thus the core point is given by

ŷ∗ = k(g∗
MAX , G)[K + σ2I]−1y (3.4)

where g∗
MAX , the orientation map corresponding to the most probable core point, is given

by

g∗
MAX = argmax

g∗

p(m(y∗)|g∗, G,y) (3.5)

The point estimate is used in evaluating the performance of the GP method in Section

3.3.3 and in the coordinate transformation process described in Section 3.3.4.

3.3.3 Performance of GP Core Point Estimation

The GP model was trained on the NIST 4 database of fingerprint images [69] and tested on

the NIST 27 set [19] 1. Ridge orientation maps were extracted from the fingerprint images

using the gradient-based approach defined by Eq. 3.1. The images were first divided into

1NIST 4 contains 8-bit gray scale images of randomly selected fingerprints. Each print has 512 × 512
pixels. The entire database contains fingerprints taken from 2000 different fingers with 2 impression of the
same finger. The database is evenly distributed over each of the five classifications with 400 fingerprint pairs
from each class. NIST 27 contains latent fingerprints from crime scenes and their matching rolled fingerprint
mates. There are 258 latent cases separated into three quality categories of good, bad, and ugly.
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Core point prediction using GP regression for two latent prints (from NIST27):
(a) image g90 which contains a latent print within a rectangle, (b) computed orientation
map containing the predicted core point (cross) and true core point (circle), (c) ten-print
where the true core point is visible, (d-f) image g69 with corresponding images. Note that
in the second case the predicted core point lies outside of the latent print.
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equal-sized blocks of N×N pixels, where N is the average width of a pair of ridge and valley.

The value of N is 8 in NIST 4 and varies in NIST 27. The gradient vectors were calculated

by taking the partial derivatives of image intensity at each pixel in Cartesian coordinates.

Ridge orientation is perpendicular to the dominant gradient angle in the local block. The

training set consisted of orientation maps whose corresponding core points were manually

marked.

The learnt GP model was applied to three groups of latent prints in different quality,

good, bad and ugly. Figure 3.5 shows the results of core point prediction and subsequent

latent print localization given two latent fingerprints from NIST 27. For each pixel in the

smoothed orientation field the PI at pixel (i,j) is defined with respect to a digital curve which

consists of a sequence of pixels that are on or within a distance of one pixel from the curve.

It takes the form PI(i, j) = 1
2π

∑Nψ−1

k=0 ∆(k) where ∆(k) are orientation differences between

neighboring pixels on the curve with Nψ pixels. Assign the corresponding pixel a label 1 if

its PI = 1/2. For each labeled connected component, if its area is larger than 7, a core point

is detected at the centroid of the connected component. Further details of the PI algorithm

can be found in [23].

Performance of the GP point estimate was compared to that provided by the baseline

Poincare Index (PI) method [5] which is based on purely local topological considerations.

To evaluate performance of both methods, test latent prints were extracted from the image

database with extraneous regions manually erased. The true core point of each latent print

was determined from its matching 10-print in the database. Prediction accuracy was deter-

mined by comparing the location and direction distances between predicted and true core

points with the threshold parameters set at Ts = 16 pixels, and Tθ = π/6.
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Table 3.1: Core point prediction accuracy of standard and proposed methods.
Poincare Index(PI) Gaussian Process(GP) Point Estimate

Good 91% 93%
Bad 68% 87%
Ugly 47% 73%

Overall 69% 85%

Prediction accuracies of the PI and GP approaches are given in Table 3.1. The good set

has 88 images that mostly contain core points. Both bad and ugly sets contain 85 images of

small size that usually do not include core points. For good prints, the two approaches are

close. For the bad and ugly prints there is a distinct difference between the methods with

GP predicting core points even when it is absent in the latent prints. The GP method also

results in higher overall performance.

Since the overall error rate in the point estimate is still as high as 15%, the use of a

distribution in further analysis is preferable. A disadvantage of GP core point prediction is

its O(N3) complexity, where N is the number of finger prints in the training set; due to an

inversion of the N ×N covariance matrix. However, more efficient GP implementations are

available [44, 42].

3.3.4 Coordinate Transformation

After the core point is determined, with a point estimate, the Cartesian coordinate system

is transformed such that the origin is the core point and the core point orientation points to

π/2 (Fig. 3.6). Given a minutia (s, θ) and predicted core point (s∗, θ∗), where s = (sx, sy)

represents location and θ the direction, the transformed minutia (s′, θ′) is given by
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(a) (b)

Figure 3.6: Fingerprint coordinate transformation based on core point: (a) original finger-
print image with minutiae (represented by circles) and core point (dot and arrow), and (b)
fingerprint image after translation and rotation of the core point to the center.

s′x = sx − s∗x − sin(θ − θ∗) ‖s− s∗‖

s′y = sy − s∗y − cos(θ − θ∗) ‖s− s∗‖

θ′ = θ − θ∗ + π/2

Distribution of the extent of the transformation on the 4, 000 NIST 4 images are given

in Appendix 1, for translation δxy and rotation δθ. In subsequent modeling of minutiae

distributions, the coordinate system is transformed first.
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3.4 A Generative Model for Minutiae

Next is the task of modeling the joint distribution of minutiae. Each minutia is represented

as x = (s, θ) where s = (sx, sy) is its location and θ its direction.

We begin with a model for the distribution of individual minutiae p(x) and then consider

modeling the joint distribution of a set of minutiae X = {x1, . . . ,xN} where we do not wish

to assume minutiae independence.

3.4.1 Marginal Distribution of Minutiae

An obvious and effective model for minutiae location is to choose a mixture of Gaussians

[71, 58]. For minutiae orientation, which is an angular distribution, the circular normal or

von Mises distribution [6, 30] is useful.

The distribution of minutiae location is shown in Fig. 3.7(a); the minutiae data are from

2,000 fingerprints in the NIST4 database. This multimodal distribution is naturally modeled

as a mixture of k Gaussians (Fig. 3.7(b)) with k = 3. Minutiae orientation θ is modeled by

the von Mises distribution as shown in Fig. 3.7(c). A simple Bayesian network to represent

the marginal distribution of individual points as a mixture model is shown in Figure 3.7 (d).

3.4.2 Joint Distribution of Minutiae

It is unsatisfactory to model the joint distribution of minutiae as a product of their marginal

distributions particularly when significant dependences exist. In the case of fingerprints,

studies indicate that minutiae direction is related to its own location as well as the location

of neighboring minutiae [41, 51, 12]. These known dependences can be readily incorporated
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(a) (b) (c) (d)

Figure 3.7: Gaussian mixture model of location and orientation: (a) Distribution of spatial
location s = (x1, x2) is modeled by a mixture of three bivariate Gaussians whose contours of
constant density are shown (b) 3D plot of mixture model for location, (c) von Mises distribu-
tions of orientation θ for each of the three components, where the green curve corresponds to
the upper cluster, blue the lower left cluster and red the lower right cluster, and (d) graphical
model of mixture where zn are latent variables corresponding to mixture components and
parameters are as in Eq. 3.8.

into a causal Bayesian network. Conditional dependences of minutiae can be incorporated

by linearizing them by defining a unique sequence of points. Linearization is used in agglom-

erative clustering of N points where a point is assigned to a cluster whose mean is nearest;

where nearest can be defined in terms of distance to the mean (centroid), closest or furthest

point of the cluster[16].

The sequence starts with the point x1 whose location is closest to the center (core point).

Each remaining point xn is the spatially closest to the centroid defined by the arithmetic

mean of the location coordinates of all the previous points x1, . . .xn−1. Given this sequence,

the fingerprint can be represented by a minutiae sequence X = (x1, . . . ,xN). The sequence is

robust to the variance of the minutiae because the next minutia is decided by the all the previ-

ous minutiae. Given the observation that spatially closer minutiae are more strongly related,

we only model the dependence between xn and its nearest minutiae among {x1, . . . ,xn−1}.

Although not all dependences are taken into account, this is a good trade-off between model
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(a) (b)

Figure 3.8: Sequential ordering of minutiae: (a) given minutiae {x1,x2,x3,x4} with centroid
c, the next minutia x5 is selected by comparing the remaining minutia distances to c, thereby
providing a sequencing, (b) dependency between the sorted minutiae is represented by arrows.

Figure 3.9: Bayesian network to represent the joint distribution of minutiae: this
graphical model corresponds to example in Figure 3.8(b). Minutiae locations are
represented by nodes labeled sn and corresponding orientations are represented by
nodes labeled θn. This joint distribution can be written directly from the model as
p(s1)p(θ1|s1)p(s2)p(θ2|s1, s2, θ1)p(s3)p(θ3|s1, s3, θ1)......

accuracy and computational complexity. Figure 3.8(a) presents an example where x5 is de-

termined because its distance to the centroid of {x1, . . . ,x4} is minimal. Figure 3.8(b) shows

the minutiae sequence and the minutiae dependency (arrows) for the same configuration of

minutiae.

A directed graphical model, or Bayesian network, can be used to represent probabilistic

relationships between minutiae. Examples of such relationships are: minutia orientation is

dependent on near minutiae (both location and orientation), minutia location is conditionally
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dependent on the location of neighboring minutiae given their directions. A graphical model

for the minutiae set in Figure 3.8 is given in Figure 3.9, where nodes sn and θn represent the

locations and directions of minutia xn. For each conditional distribution, a directed link is

added from nodes corresponding to the variables on which the distribution is conditioned.

A general expression for the joint distribution of any minutiae set X is

p(X) = p(s1)p(θ1|s1)
N∏

n=2

p(sn)p(θn|sn, sψ(n), θψ(n))

= p(s1, θ1)
N∏

n=2

p(sn)p(θn|sn, sψ(n), θψ(n)) (3.6)

where sψ(n) and θψ(n) are the location and direction of minutiae xi which have the minimal

spatial distance to minutia xn, and ψ(n) = argmin
i∈[1,n−1]

‖xn−xi‖. To compute the joint probabil-

ity p(X), three distributions are needed: p(s), distribution of minutia location, p(s, θ), the

distribution of minutia location and direction, p(θn|sn, sψ(n), θψ(n)), the conditional distribu-

tion of minutiae direction given its location, and the location and direction of the nearest

minutiae. Each of these are addressed next.

Minutia location. Since minutiae tend to form clusters [41] a mixture of Gaussians, with

K1 components, is used:

p(s) =

K1∑

k1=1

πk1N (s|µk1 ,Σk1). (3.7)

Minutiae location and direction. Since minutiae in different regions are associated with

different region-specific directions, a mixture of joint Gaussian and von-Mises distributions
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with K2 components is used:

p(s, θ) =

K2∑

k2=1

πk2N (s|µk2 ,Σk2)V(θ|νk2 , κk2). (3.8)

While we can get p(s) by marginalizing p(s, θ) for each continuous value of s, it is time

consuming and unnecessary and thus Eq 3.7 is used.

Conditional minutia direction. Minutiae direction, given its location and the the nearest

minutiae among x1 to xn−1, is a mixture of von-Mises densities with K3 components:

p(θn|sn, sψ(n), θψ(n)) =

K3∑

k3=1

πk3V(θn|νk3 , κk3). (3.9)

where πkiare non-negative component weights that sum to one, N (s|µk,Σk) is the bivari-

ate Gaussian probability density function of minutiae with mean µk and covariance matrix

Σk, and V(θ|νk, κk) is the von-Mises probability density function of minutiae orientation with

mean angle νk and precision (inverse variance) κk3 [6]

V(θ|νk, κk) =
1

2πI0(κk)
exp[κkcos(θ − νk)]. (3.10)

The number of components Ki in each of the mixture distributions can be determined us-

ing the Bayes information criterion (BIC). Other parameters are determined using the EM

algorithm (see Appendix (1)).
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3.4.3 Goodness-of-fit Test

It is necessary to validate the model, using a goodness of fit test, before using it in rarity

evaluation. Goodness of fit means how well a sample of data agrees with a given distribution

as its population. To test the goodness of fit, the chi-square statistical hypothesis test was

used. The test determines whether observed sample frequencies differ significantly from

expected frequencies specified in the null hypothesis. The test, applied to binned data,

requires a sufficient sample size in each bin in order for the chi-square approximation to be

valid [38]. Three different tests were conducted for each of the distributions in Eqs. 3.7,

3.8, and 3.9. For minutiae location, minutiae location space was partitioned into 16 non-

overlapping blocks. For minutiae location and orientation, there were 16×4 non-overlapping

blocks. For minutia dependency, the orientation space was divided into 9 non-overlapping

blocks. The blocks were combined with adjacent blocks until both observed and expected

numbers of minutiae in the block were greater than or equal to 5. The test statistic used was

the chi-square random variable χ2 =
∑

i

(Oi−Ei)
2

Ei
where Oi is the observed minutiae count

for the ith block, and Ei is the expected minutiae count for the ith block. The p-value, the

probability of observing a sample statistic as extreme as the test statistic, associated with

each test statistic χ2 is then calculated based on the chi-square distribution and compared

to the significance level. For the NIST 4 dataset, we chose significance level equal to 0.01.

The generative models were trained using 4000 fingerprints. BIC yielded K1 = K2 = 3. For

K3 there are 4096 different values for different condition settings.

To test the models for minutia location, and minutia location and orientation, the num-

bers of fingerprints with p-values above (corresponding to accept the model) and below
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Table 3.2: Chi-square goodness of fit test for generative models.
Generative model Data size Accept Reject

p(s) 4000 3387 613
p(s, θ) 4000 3216 784

p(θn|sn, sψ(n), θψ(n)) 4096 3558 538

(corresponding to reject the model) the significance level were computed. The results are

shown in Table 3.2.

Of the 4, 000 fingerprints, 3, 271 were accepted and 729 rejected for minutia location

model, and 3, 103 were accepted and 897 rejected for minutia location and orientation model.

To test the model for minutia dependency, we first collected all the linked minutia pairs in

the minutia sequences produced from 4, 000 fingerprints. Then these minutia pairs were

separated by the binned locations of both minutiae (32 × 32) and orientation of leading

minutiae (4). Finally, the minutia dependency models were tested on corresponding minutia

pair sets. Of the 4, 096 dependency models, 3, 558 were accepted and 538 rejected. The

results imply that both generative models have a reasonable and accurate fit for fingerprints.

3.5 Rarity Evaluation

The probability that an input x coincides with one of n samples, within specified tolerance,

is defined as the specific nPRC [58]. Since it is conditional to the known input it can also

be referred to as the conditional nPRC. Specific nPRC is different from the probability of

random correspondence (PRC), which is the probability that a random pair of samples will

have the same value. It is also different from nPRC which is the probability that some pair

of samples among n have the same value.
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We make this idea precise using the graphical model of Figure 3.10, where x represents

the input in a feature space, and Y = {y1, ...,yn}, in plate notation, represents the set of

n database entries. The binary-valued indicator random variable z takes one of two values

{z0, z1}. It has value z0 when at least one database element yi has the value x, and z1

otherwise. The conditional probabilities can be written as P (z0|x ∈ Y) = 1, P (z0|x /∈ Y) =

0, P (z1|x ∈ Y) = 0, P (z1|x /∈ Y) = 1. By marginalizing over Y, the specific or conditional

nPRC is given by

P (z = z0|x) =
∑

Y

P (z = z0|x,Y)P (Y) (3.11)

where P (Y) is the joint probability, or likelihood, of Y. Since the space of Y consists of all

possible entries in the database, which is huge, we use an alternative method of determining

the conditional nPRC. Assume that database entries are independent and identically dis-

tributed. Since the probability of x not matching each element in the database is 1 − P (x)

we have

P (z = z0|x) = 1 − (1 − P (x))n (3.12)

If x is continuous with distribution p(x) the conditional nPRC is the probability of finding

an element among n within tolerance ǫ is

P (x,Y : ǫ, n) = 1 − (1 − pǫ(x))n (3.13)

where pǫ is the probability of x in the interval x ± ǫ.

Minutia tolerance is defined as follows. Minutia pair xa = (sa, θa) and xb = (sb, θb)
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Figure 3.10: Graphical model for rarity. Specific nPRC is the conditional probability that
a known x is found among at least one of y1, ..,yn, where z is an indicator variable for a
match.

correspond if for tolerance ǫ = [ǫs, ǫθ]

‖ sa − sb ‖≤ ǫs ∧ |θa − θb| ≤ ǫθ (3.14)

where ‖sa − sb‖ is the Euclidean distance between their locations. A match implies the

existence of at least m̂ corresponding pairs for specified ǫ and m̂.

Since s and θ are continuous-valued, and tolerance is considered, the evaluation of specific

nPRC involves integrating over the relevant distributions. Also, since minutiae quality varies

greatly in latent images, it is useful to take into account minutia confidence in specific nPRC

evaluation. We describe next these evaluations with and without consideration of uncertainty

in minutiae and core point.

3.5.1 Minutiae and Core Point with Point Estimates

Here we assume that the core point and minutiae have no associated uncertainty, i.e., they

are point estimates. For the core point the MAP estimate, as provided by the GP in Eq.

3.4, is used and for detected minutiae the confidence values are ignored.
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Let X be a fingerprint with N minutiae. Let X′ be another fingerprint with M minutiae.

Let X̃ be the set of m̂ minutiae common to both X and X′ where the matching minutiae

are within ǫ of each other. The distribution of the common points can be written from Eq

3.6 as

pǫ(X̃) = pǫ(s1, θ1)
m̂∏

n=2

pǫ(sn)pǫ(θn|sn, sψ(n), θψ(n)) (3.15)

where the three product terms are expanded as

pǫ(sn, θn) =

∫

|s−s′n|≤ǫs

∫

|θ−θ′n|≤ǫθ

p(s, θ)dsdθ,

pǫ(sn) =

∫

|s−s′n|≤ǫs

p(s)ds, and

pǫ(θn|sn, sψ(n), θψ(n)) =

∫

|θ−θ′n|≤ǫθ

p(θ|sn, sψ(n), θψ(n))dθ

The specific nPRC is computed using Eq. (3.13) by

pǫ(X, m̂, n) = 1 − (1 − pǫ(X, m̂))n (3.16)

where pǫ(X, m̂), the probability that m̂ pairs of minutiae correspond, is given by

pǫ(X, m̂) =
∑

m′∈M

p(m′)

(
m′

m̂

)
pǫ(X̃) (3.17)

where M contains all possible numbers of minutiae in one fingerprint among n fingerprints,

p(m′) is the probability of a random fingerprint having m′ minutiae, minutiae set X̃ =
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(x1,x2, ...,xm̂) is the subset of X and pǫ(X̃) is the joint probability of minutiae set X̃ given

by Eq. (3.15).

3.5.2 Minutiae Uncertainty

Next we consider a model for uncertainty associated with minutiae. These arise from confi-

dence values assigned either by a human examiner or by an AFIS system.

Assume that confidence of minutia xn is given by (dsn , dθn), where dsn is location confi-

dence and dθn is direction confidence. Given minutiae xn = (sn, θn) and their confidences,

the distributions of location s′ and direction θ′ can be modeled by Gaussian and von-Mises

distributions

c(s′|sn, dsn) ∼ N (s′|sn, d
−1
sn

) (3.18)

c(θ′|θn, dθn) ∼ V(θ′|θn, dθn) (3.19)

where the precision (inverse variance) of location distribution dsn represents location con-

fidence and the concentration parameter of direction distribution dθn represents direction

confidence.

Ranges for these values can be assigned based on image resolution, e.g., since ridges are

ten pixels wide in the NIST dataset, location confidence dsn is in the interval [0.01, 1] and

orientation confidence dθn is in the interval [1, 10], where a high confidence value implies a

high quality minutia.

By application of the sum rule of uncertainty of minutiae, the conditional distributions

involved in Eq. (3.15) are given by
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pǫ(sn, θn)

=

∫

s′

∫

θ′

∫∫

|x−x′|≤ǫ

c(s′|sn, dsn)c(θ
′|θn, dθn)p(s, θ)ds

′dθ′dsdθ

pǫ(sn) =

∫

s′

∫

|s−s′|≤ǫs

c(s′|sn, dsn)p(s)ds
′ds (3.20)

pǫ(θn|sn, sψ(n), θψ(n))

=

∫

θ′

∫

|θ−θ′|≤ǫθ

c(θ′|θn, dθn)p(θ|sn, sψ(n), θψ(n))dθ
′dθ

Specific nPRCs can again be computed by Eq. (3.16) and Eq. (3.17). Since confidence

distributions are sharply peaked and the definite integral intervals are small, numerical in-

tegration can be used in probability calculation.

The complexity of joint probability of a print with m̂ matching minutiae is O(m̂). The

computational cost of specific nPRC for a certain minutia set is O(Mm̂), where M is the

maximum number of minutiae in a fingerprint.

3.5.3 Core Point Uncertainty

Here we take the Bayesian approach where the core point does not have a fixed value but

has a distribution instead. Let y be the core point whose distribution is p(y) as given in
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Eq. 3.3. Thus the distribution of X̃, which is the set of minutiae common to X and X′, is

obtained by integrating out the core point parameter as

pǫ(X̃) =

∫
pǫ(X̃|y)p(y)dy (3.21)

where pǫ(X̃|y) is given by Eq.3.15 and the minutia set are subjected to coordinate transfor-

mation specified by core point y.

3.6 Examples of Rarity Evaluation

Evaluation of fingerprint rarity is demonstrated with three sets of examples: (i) a few simple

minutia configurations where we assume point estimates of core point and minutiae, (ii) the

Madrid train bombing case where we use a point estimate of the core point and minutiae

with/without confidence values, and (iii) latent prints from a standard data set where we

use a fixed core point and an uncertain core point.

As in any machine learning scenario, the evaluation of rarity depends on the data set

from which the parameters are determined. The database should be representative enough.

We used the largest publicly available database for the learning phase, viz., NIST special

database 4, which contains 2, 000 8-bit gray scale fingerprint image pairs.

3.6.1 Simple Minutia Configurations

Determining the rarity of configurations of few minutiae is useful to the latent print examiner

who needs to decide whether to proceed further. A minutia configuration involving only three
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(a) (b) (c)

Figure 3.11: Simple configurations of minutia and core points: (a) a common configuration
with three minutiae m1, m2 and m3 and core point c, (b) an uncommon configuration
obtained by changing the orientations of m1 and m3 and (c) an uncommon configuration
obtained by translating the three minutiae with respect to the core point. For n = 1000,
their specific nPRC values are: (a) 1.2×10−2, (b) 7.97×10−4 and (c) 2.3×10−6 respectively.

minutiae, with no uncertainty in either minutiae or core point, is shown in Figure 3.11. It

has a high specific nPRC of 0.012 in a database of 1, 000 entries. When the common minutia

structure is perturbed, by changing a few minutiae orientations, a much lower probability of

finding a match is observed.

3.6.2 Madrid Bombing Case

The Madrid train bombing case provides a useful test scenario since both the latent print

and minutiae annotations of the image are available. Particulars of the case are relevant

since they illustrate the value of rarity evaluation.

In 2004 there was a terrorist bombing in the Madrid train system leading to the death

of nearly 200 individuals and injury of 2,000 more people. A latent print, tagged as LFP17,

was found on a plastic bag of detonators in a nearby van (Figure 3.12(a)). This was erro-

neously identified as corresponding to the inked ten-print of Brandon Mayfield, an attorney

in Oregon, in the FBI database of 470 million fingerprints (Figure 3.12(b)). The latent print
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(a) (b)

(c) (d)

Figure 3.12: Madrid bombing case latent prints and ten-prints: (a) latent print LFP17 found
at crime scene with seven marked minutiae (initial annotation), (b) matching ten-print of
Mayfield found in FBI database with 15 charted minutiae, (c) LFP17 re-annotated with the
same 15 minutiae as in (b), and (d) ten-print of Daoud with ten matching minutiae(from
[62]).
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Table 3.3: Probability of randomly matching latent print in Madrid bomber case with entry
in FBI database.

Minutiae Uncertainty 7 Min. in 15 Min. in
Assumption Fig 3.12(a) Fig 3.12(c)

1. Point Estimates 0.78 1.2 × 10−6

2. Uncertain Minutiae 0.93 7.8 × 10−7

was initially marked as having seven identifiable minutiae. Upon observing the Mayfield

ten-print (Fig. 3.12(b)), LFP17 was re-annotated as having 15 minutiae that correspond to

the Mayfield ten-print (Figure 3.12(c)). Subsequently Spanish National police identified the

true perpetrator as an Algerian national, Ouhnane Daoud, whose ten-print is shown in Fig.

3.12(d). Rarities of the minutiae sets in this problem, evaluated under two scenarios: full

confidence of minutiae and minutiae with uncertainty, are given in Table 3.3. In both cases

a point estimate for the core point was assumed.

Case 1: Point estimates of minutiae: With n = 4.7 × 108 the specific nPRC of the

seven minutiae evaluates to 0.78, which is a high probability. For the 15 minutiae in the

re-annotated print the specific nPRC is 1.2 × 10−6 which indicates high rarity.

Case 2: Uncertain minutiae: We manually assigned a confidence to each minutia in each

set as described in Section 3.5.2. For the seven minutiae set in Figure 3.12(a), confidences

(ds, dθ) were assigned clockwise starting from 1 o’clock, as follows : (0.1, 7), (0.6, 8), (0.2,

8), (0.7, 6), (0.9, 9), (0.6, 8), (0.9, 9). Specific nPRC evaluates to 0.93, which is a high

probability.

For the 15 minutiae set in Figure 3.12(c) the confidences for (ds, dθ) were: (0.3, 7), (0.1,

7), (0.6, 8), (0.2, 8), (0.6, 7), (0.8, 6), (0.9, 9), (0.9, 9), (0.6, 5), (0.5, 5), (0.6, 8), (0.8, 9),

(0.9, 9), (0.7, 5), (0.6, 5). The specific nPRC is 7.8 × 10−7, which is high rarity.
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Thus the probability of random match of the latent print for the initial minutia annotation

is high (0.78). It is much lower for the re-annotated print (one in a million). Incorporating

minutia uncertainties does not have much effect on the conclusions since the core point is

clearly discerned.

It is interesting to consider the rarity of the ten minutiae that are common between the

re-annotated latent print and the ten-print of Daoud shown in Fig. 3.12(d). The specific

nPRC of the ten minutiae, assuming point estimates, is 0.014, again a high probability. In

general, configurations of ten minutiae are quite rare, e.g., when 200 ten minutiae sets were

randomly chosen from fingerprints in the NIST4 dataset, which contains 4, 000 images, with

n = 470× 106, the average specific nPRC was 7.1× 10−8; this average value is by definition

known as nPRC [59]. We conclude that while ten minutiae have significant discriminatory

power, the particular configuration of ten minutiae common to the latent print and the

Daoud print were those that are more common [60].

3.6.3 Latent Prints from Standard Dataset

Next we consider the effect of core point uncertainty on the evaluation of rarity. Two latent

prints from the NIST 27 data set are shown in Figure 3.13: print b115 is from the bad quality

set and print g73 is from the good quality set. Latent print b115, contains N = 16 minutiae

and g73 contains N = 39 minutiae. Minutiae confidences were manually assigned by visual

inspection; the values assigned for the 55 minutiae are analogous to the smaller minutiae set

of minutiae in the example of Section 3.6.2.

Specific nPRCs for the two prints, computed for varying numbers of matching minutiae
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(a) (b)

Figure 3.13: Two latent prints from NIST27: (a) b115 is from the bad dataset and (b) g73
is from the good dataset. In each case the left image is the print and the right its aligned
version with predicted core point. Corresponding rarity values for n = 100, 000 are given in
Table 3.4. Rarity values of (a) for different values of n and different numbers of matching
minutiae are given in Figure 3.14.
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Figure 3.14: Dependence of specific nPRC of latent print b115 on database size n param-
eterized by number of corresponding minutiae m̂ = 4, 8, 12, 16 and n varying from 103 to
1014.

pairs m̂, assuming fingerprint database size n = 100, 000, are given in Table 3.4. The

tolerance is set at ǫs = 10 pixels and ǫθ = π/8. In each case the first column shows the

specific nPRC with point estimates for the core point and the second column shows the

specific nPRC with core point uncertainty as determined by GP.

The cases show that specific nPRC depends on the given latent fingerprint. As the

number of minutiae to be matched, m̂, increases the probability of finding a random match

decreases. When all the minutiae are considered an extremely low value of specific nPRC

is observed. Thus the values of specific nPRC provide a measure for the strength of latent
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Table 3.4: Probability of randomly finding two NIST27 latent prints (Figure 3.13) in a
database of size n = 100, 000, tolerance: ǫs = 10 pixels and ǫθ = π/8, N is the no. of
minutiae in input X and m̂ is the no. of matching minutiae.

X = Bad Latent Print b115

No. of matching Specific nPRC = pǫ(X, m̂, n)
N minutiae m̂ Core is Point Estimated Core has a distribution

2 0.73 0.79
4 9.04 × 10−6 1.81 × 10−5

16 8 2.46 × 10−19 4.54 × 10−17

12 6.13 × 10−31 6.05 × 10−28

16 1.82 × 10−46 2.93 × 10−41

X = Good Latent Print g73

No. of matching Specific nPRC = pǫ(X, m̂, n)
N minutiae m̂ Core is Point Estimated Core has a distribution

4 1 1
8 3.11 × 10−14 1.50 × 10−15

39 12 2.56 × 10−25 1.07 × 10−26

24 3.10 × 10−52 9.93 × 10−55

39 7.51 × 10−79 6.16 × 10−82

fingerprint evidence.

Whether to use for the core point, a point estimate or a distribution of it, in rarity

evaluation is an interesting question. As was seen in Table 3.1 the fixed estimate of the core

point has a 15% error rate. Thus it is better to use the distribution of the core point unless

the core point is precisely determinable.

It is also interesting to observe how rarity varies with database size. As can be seen in

Figure 3.14 for latent print b115, finding a match for four minutiae, or m̂ = 4, in a database

of a million entries, i.e., log n = 6, is guaranteed, whereas for matching twelve minutiae a

trillion entries are needed.
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3.7 Conclusions

Evaluation of the rarity of minutia configurations is routinely used by latent print examiners

in performing comparisons. This evaluation is largely experience-based and the rarity of

a given configuration of minutiae is not articulated. The proposed approach to explicitly

compute the rarity of a given configuration of minutiae involves determining the core point

distribution and a learnt generative model of minutiae to evaluate a probability random

correspondence in a database of n entries.

Transforming the latent print to a standard coordinate system is performed using the

fingerprint core point. Gaussian process regression is used to determine the core point.

This machine learning approach has several advantages over traditional approaches: (i) a

core point distribution is obtained which can be factored into subsequent probability evalu-

ations, (ii) the point estimate (MAP) is more accurate than the results of a popular method

(Poincare method), and (iii) unlike topology-based approaches it can predict a core point

outside the field of view. In the rare case where the complete fingerprint itself has no core

point, or there are multiple core points, the predicted value simply serves as the origin for

subsequent evaluations.

The distribution of minutiae is modeled using a Bayesian network which takes into ac-

count dependencies between minutiae. Directed edges in the network are determined starting

with the core point and proceeding to nearby minutiae. The model was validated using a

goodness-of-fit test.

The probability of finding a given input latent print in a database of given size can be

computed using the models. This evaluation can be done using either point estimates of
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core point/minutiae or with confidence values associated with them. Use of the models was

illustrated in several cases: (i) simple configurations involving four minutiae, (ii) the Madrid

bombing case with the initially annotated latent print and a re-annotated latent print after

finding a database match, and (iii) two latent prints from the NIST27 dataset.

As in any machine learning approach, the quality of results, i.e., rarity values computed,

are dependent on the learning set employed. Here we used 4, 000 latent prints in the NIST4

dataset to determine various parameters needed. Using the procedures described, rarity

evaluations can be improved, or tailored to, any large dataset of representative prints.

The proposed method takes into account only level 2 detail in the form of minutiae.

Ridge information can be easily incorporated by using ridge point information represented

in a manner similar to minutiae. The types of minutiae such as ridge endings, bifurcations

and trifurcations can be incorporated into the statistical model.



Chapter 4

CONCLUSIONS

This dissertation studies the role of machine learning in fingerprint probability evaluation.

Two major problems, fingerprint individuality and fingerprint rarity, have been investigated.

The contribution of this dissertation is listed as follows.

1. First, we proposed generative models for fingerprints. Three forms of fingerprint rep-

resentation are considered: ridge flow, minutiae, and ridge points. Mixture models

are used to model location and orientation of minutiae. EM algorithms are used to

estimate parameters from standard fingerprint databases. Goodness-of-fit test was

performed to prove that the proposed generative model offers a reasonable and more

accurate fingerprint representation than previous models.

2. Second, we defined probabilistic metrics to measure the degree of individuality of a

forensic modality such as fingerprints. The metric is defined as the probability of

random correspondence (PRC) when evidence consists of a set of measurements and

correspondence is within a tolerance. Computation of these probabilities is described

82
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using Bayesian networks which make all the variables explicit. The experimental results

provide a much stronger argument for the individuality of fingerprints in forensics than

previous generative models.

3. Third, in order to predict core points, a machine learning approach based on Gaussian

process regression is proposed. Since latent prints are often incomplete and the core

point may be missing in the field of view, classic computational vision based core point

detection algorithms usually fails in latent cases. By using Gaussian processes, the

distribution of core points can be discovered. The coordinate system is transformed

into standard position based on finding the core point. The experimental results proven

that this approach can predict core points whether the prints contain the core points

or not.

4. Fourth, a method for computing the rarity of latent fingerprints represented by minu-

tiae is proposed. It allows determining the probability of finding a random match for

the evidence in a database of n prints. A generative model, that takes into account

inter-minutia dependencies and minutia confidences, is used to determine evidence

probability from which the specific probability of match among n is evaluated. The

generative model is validated using a goodness-of-fit test. We extend the rarity cal-

culation with a fully Bayesian treatment by considering uncertainty of core points.

Fingerprint rarity evaluation is illustrated using several examples, including simple

configurations of minutiae, randomly selected latent fingerprints in a database, and a

well-known case of erroneous identification.
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