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Abstract 

In this paper we address the problem of partitioning nested 
loops with non-uniform (irregular) dependence vectors. Although 
many methods exist for nested loop partitioning, most of these 
perform poorly when parallelizing nested loops with irregular de- 
pendences. We apply the results of classical convex theory and 
principles of linear programming to iteration spaces and show the 
correspondence between minimum dependence distance computa- 
tion and iteration space tiling. The cross-iteration dependences are 
analyzed by forming an Integer Dependence Convex Hull (IDCH). 
A simple way to compute minimum dependence distances from the 
dependence distance vectors of the extreme points of the IDCH is 
presented. Using these minimum dependence distances the iter- 
ation space can be tiled. Iterations in a tile can be executed in 
parallel and the tiles can be executed with proper synchronization. 
We demonstrate that our technique gives much better speedup and 
extracts more parallelism than the existing techniques. 

1 INTRODUCTION 
In the past few years there has been a significant progress in 

the field of Parallelizing Compilers. Many new methodologies and 
techniques to parallelize sequential code have been developed and 
tested. Of particular importance in this area is compile time parti- 
tioning of program and data for parallel execution. Partitioning of 
programs requires efficient and exact Data Dependence analysis. 
In general, nested loop program segments give a lot of scope for 
parallelization. Independent iterations of these loops can be dis- 
tributed among the processing elements. So, it is important that 
appropriate dependence analysis be applied to extract maximum 
parallelism from these recurrent computations. 

Although many dependence analysis methods exist for identi- 
fying cross-iteration dependences in nested loops, most of these 
fail in detecting the dependence in nested loops with coupled 
subscripts (i.e.. subscripts are linear functions of loop indices). 
According to an empirical study reported by Shen et. al. [l], 
coupled subscripts appear quite frequently in real programs. They 
observed that nearly 45% of two-dimensional array references are 
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coupled. Coupled array subscripts in nested loops generate non- 
uniform dependence vectors. Example l(a) and Example l(b) 
show nested loop program segments with uniform dependences 
and non-uniform dependences respectively. Example l(a) has a 
uniform set of dependences {(l,O),(O,l)] and its iteration space is 
shown in Fig.l(a). Array A in Example l(b) has coupled subscripts 
and has a non-uniform dependence vector set. Figure I@) shows 
its iteration space and the irregularity of its dependences. 

Example 1 (a): Example l(b): 
for I =  1. 10 

for J = 1, 10 
for I = 1 , l O  

for J = 1, 10 
A(IJ) = ... 
... = A(1-1.J) + A(1. J-1) 

A(2*J+3,1+1) = ... 
... = A(2*1+J+l,I+J+3) 

endfor endfor 
endfor endfor 
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I 
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Figure 1: Iteration spaces with ( a )  Uniform dependences 
and (b) Non-uniform dependences 

Irregularity in the dependence pattern makes the dependence 
analysis very difficult for nested loops. A number of methods 
based on integer and linear programming techniques have been 
presented in the literature. A serious disadvantage with these tech- 
niques is their high time complexity. To analyze the cross-iteration 
dependences for these loops, we apply results from classical con- 
vex theory and present simple schemes to compute the dependence 
information. Once the dependence analysis is carried out. the 
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task now is to analyze and characterize the coupled dependences. 
These dependences can be characterized by Dependence Direction 
Vectors and Dependence Distance Vectors [2] .  Computing these 
dependence vectors for loops with uniform dependences is simple 
and straight forward 131. But for nested loops with non-uniform 
dependences, the dependence vector computation is an interest- 
ing problem. Many approaches based on vector decomposition 
techniques have been presented in the literature [4, 5, 61. These 
techniques represent the dependence vector set using a set of basic 
dependence vectors. With the help of these basic dependence vec- 
tors, the iteration space is partitioned for parallel execution. Nor- 
mally, iterations are aggregated into groups or tiles or supernodes. 
These aggregations are then executed with proper synchroniza- 
tion primitives to enforce the dependences. Most of these vector 
decomposition techniques consider nested loops with uniform de- 
pendences and they perform poorly in parallelizing nested loops 
with irregular dependences. In this paper we present partitioning 
schemes which extract maximum parallelism from these nested 
loops. 
Our approach to this problem is based on the theory of convex 

spaces. A set of diophantine equations is formed from the array 
subscripts of the nested loops. These diophantine equations are 
solved for integer solutions [31. The loop bounds are applied to 
these solutions to obtain a set of inequalities. These inequalities are 
then used to form a dependence convex hull as an intersection of a 
set of halfspaces. We use the algorithm presented by Tzen and Ni 
[6] to construct this dependence convex hull. Every integer point in 
the convex hull corresponds to a dependence vector of the iteration 
space. If there are no integer points within the convex hull, then 
there are no cross-iteration dependences among the nested loop 
iterations. The corner points of this convex hull form the set of 
extreme points for the convex hull. These extreme points have the 
property that any point in the convex hull can be represented as a 
convex combination of these extreme points [71. Since the extreme 
points of a dependence convex hull could be real and therefore are 
not valid iterations, we propose an algorithm (algorithm IDCH) 
to convert the dependence convex hull to an integer dependence 
convex hull with integer extreme points. The dependence vectors of 
the extreme points form a set of extreme vectors for the dependence 
vector set [SI. We compute the minimum dependence distances 
from these extreme vectors. Using these minimum dependence 
distances we tile the iteration space. For parallel execution of these 
tiles, parallel code with appropriate synchronization primitives is 
given. 

The rest of the paper is organized as follows. In section 4 
we introduce the program model considered and review the re- 
lated work previously done on tiling. Dependence analysis for 
tiling is also presented. Section ID discusses dependence convex 
hull computation. In section IV, with the help of theorems based 
on linear programming principles we propose simple methods to 
compute theminimum dependence distances and present minimum 
dependence distance tiling schemes. Finally in section V a com- 
parative performance analysis with some of the existing methods 
is presented to demonstrate the effectiveness of our scheme. 

2 PROGRAM MODEL 
Weconsidernestedloopprogram segmentsoftheform shown in 

Figure 2.  For the simplicity of notation and technique presentation 
we consider only tightly coupled doubly nested loops. However 
our method applies to multidimensional nested loops also. The 
dimension of the nested loop segment is equal to the number of 
nested loops in it. For loop I(J), L I ( L J )  and Ur(Uj) indicate 
the lower and upper bounds respectively. We also assume that the 
program statements insidethesenestedloops aresimpleassignment 
statements of arrays. The dimensions of these arrays are assumed 
to be equal to the nested loop dimension. To characterize the 
coupled array subscripts, we assume the array subscripts to be 
linear functions of the loop index variables. 

Egure 2: Program Model 

In our program model shown in Figure 2, statement s d  defines 
elements of array A and statement S, uses them. Dependence ex- 
ists between s d  and S, whenever both refer to the same element of 
array A. If the element defined by s d  is used by s, in a subsequent 
iteration, then afrow dependence exists between s d  and S, and is 
denoted by Sd&fS , .  On the other hand if the element used in S, 
is defined by s d  at a later iteration. this dependence is called anti 
dependence denoted by SdSaS,. Other types of dependences like 
output dependence and input dependence can also exist but these 
can be eliminated or converted to other types like flow and anti 
dependences. 

An iteration vector ?represents a set of statements that are exe- 
cutedfor a specificvalueof (XJ) = (i, j ) .  It can berepresentedmath- 
ematically by ?=  { ( i , j )  I LI 5 i 5 U I ,  LJ 5 j 5 U J ;  i, j E 
2 )  where Z denotes the set of integers. For any given iteration 
vector ?if there exists a dependence between s d  and S, it is called 
intra-iteration dependence. These dependences can be taken care 
of by considering an iteration vector as the unit of work allotted to 
a processor. The dependence between Sd and S, for two different 
iteration vectors ?I and 2; is defined as cross-iteration dependence 
and is represented by the dependence distance vector z= 2'2 - 2;. 
These dependences have to be honored while partitioning the iter- 
ation space for parallel execution. A dependence vector set d is 
a collection of all such distinct dependence vectors in the iteration 
space and can be defined as d = {dl d= 2'2 - ?I; 

If all the iteration vectors in the iteration space have the same 
set of dependence vectors, then such a dependence vector set is 
called a uniform dependence vector set and the nested loops are 
called shift-invariant nested loops. Otherwise, the dependence 
vector set is called a non-uniform dependence vector set and the 
loops are called ship-vnrianr nested loops. Normally, coupled array 
subscripts in nested loops generate such non-uniform dependence 
vector sets and irregular dependences. The dependence pattern 
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shown in Figure l(b) is an example of such patterns. Because 
of the irregularity of these dependences, it is extremely difficult 
to characterize this dependence vector set. By characterizing the 
dependence vector set we mean representing or approximating it 
by a set of basic dependence vector set. The advantage with such 
characterization is that this dependence information can be used to 
tile the iteration space. In the following subsection, we review the 
work previously done to compute these basic dependence vectors 
and tiling. We also point out the deficiencies and disadvantages of 
those methods. 

2.1 Review of Related Work 

Irigoin and Triolet [5] presented a partitioning scheme for hier- 
archical shared memory systems. They characterize dependences 
by convex polyhedron and form dependence cones. Based on 
the generating systems theory [9], they compute exfreme rays for 
dependence cones and use hyperplane technique to partition the 
iteration space into supernodes. The supernodes are then executed 
with proper synchronization primitives. However the extreme rays 
provide only a dependence direction and not a distance. Also, 
their paper does not discuss any automatic procedure to form the 
rays and choose the supemodes. We present simple schemes to 
compute minimum dependence distance and partition the iteration 
space into tiles. 

Ramanujam and Sadayappan 141 proposed a technique which 
finds extreme vectors for tightly coupled nested loops. Using these 
extreme vectors they tile the iteration spaces. They derive ex- 
pressions for optimum tile size which minimizes inter-tile com- 
munications. While their technique applies to distributed memory 
multiprocessors, it works only for nested loops with uniform de- 
pendence vectors. 

Tzen and Ni [6] proposed the dependence uniformization tech- 
nique. This technique computes a set of basic dependence vectors 
using the dependence slope theory and adds them to every iteration 
in the iteration space. This uniformization helps in applying exist- 
ingpartitioning and scheduling techniques, but it imposes toomany 
dependences to the iteration space which otherwise has only a few 
of them. In our work we extend their cross-iteration dependence 
analysis methods to compute more accurate dependence informa- 
tion by forming an integer dependence convex hull. We tile the 
iteration space by computing minimum dependence distances and 
use tile synchronization methods to synchronize parallel execution 
of tiles. 

Based on integer programming techniques, Tseng et. al. [ 101 
form a minimum dependence vector set. Using this minimum 
dependence vector set, the iterations are grouped. But the method 
they used to compute the minimum dependence vector set may 
not always give minimum dependence distances. We show how 
accurate minimum dependence distance can be computed using our 
approach. We have also observed that their grouping method does 
not work for some cases [8]. We present better tiling techniques 
which work with tile synchronization. 

2.2 Dependence Analysis for Tiling 

For the nested loop program segment shown in Figure 2, de- 
pendence exists between statements s d  and S,  if they both refer to 

the same element of array A. This happens when the subscripts in 
each dimension are equal. In other words, if f l  (il, jl ) = f3( iz ,  j z )  
and f2(i1 , j l )  = f4(& j z )  then a cross iteration dependence ex- 
ists between Sd and S,. We can restate the above condition as 
“cross-iteration dependence exists between Sd and S,  iff there is a 
set of integer solutions (il, j l  I iz, jz) to the system of diophantine 
equations (1) and the system of linear inequalities (2)”. 

We use algorithms given by Banerjee [3] to compute the gen- 
eral solution to these diophantine equations. This general solution 
can be expressed in terms of two integer variables z and y, except 
when f ~ ( i ~ , $ )  = f3(zZ,jZ) is parallel to fz(i2,j2) = f4(i4,j4). 
in which case the solution is in terms of three integer variables 
[6]. Here. we consider only those cases for which we can ex- 
press the general solution in terms of two integer variables. So, 
we have (il , j l ,  22, j z )  as functions of 2, y. which can be written 

sl are functions with integer coefficients. For every valid set of 
integers (21,  j l ,  iz, j z )  there exists a dependence between the state- 
ments Sd andS, for iterations ( i l ,  j l )  and (22,  j z ) .  Thedependence 
distance vector ;is given as ;= ( i ~  - il , j z  - jl } with dependence 
distances di = i~ - il and d, = jz - jl in i and j dimensions. 
respectively. So, from the general solution the dependence vec- 
tor function D(z ,y)  can be written as D(z ,y)  = {(s3(z,y) - 
s ~ ( z ,  y)), (s4(z, y) - s 2 ( 2 , y ) ) } .  The dependence distance func- 
tions in i, j dimensions can be given as d,(z, y) = s3(z, y)  - 
s ~ ( z , y ) a n d d j ( z , y )  = s 4 ( z , y ) - s ~ ( z , y ) .  Thedependencedis- 
tance vector set 6 is the set of vectors i= { (di (2, y), d, (2, y))).  
The two integer variables z,y span a solution space r given by 
I- = {(z, y) I s,(z,y) sa t i s f ies  (1)). Any integer point 
(2, y) in this solution space causes a dependence between state- 
ments Sd and s,, provided the system of inequalities given by 
(2) are satisfied. In terms of the general solution, the system of 
inequalities can be written as 

as (6 , j l  , iz, jz)  = ( S I  (2, Y), 4 2 ,  Y) ,  53(2, Y), s4(z, Y 1). Here 

(3) 

These inequalities bound the solution space r a n d  form a convex 
polyhedron. which can also be termed as Dependence Convex Hull 
(DCH) [6]. In the following section we give a brief introduction to 
convex set theory and explain how we apply the well laown results 
of convex spaces to iteration spaces. 

3 DEPENDENCE CONVEX HULL 

To extract useful dependence information from the solution 
space r, the inequalities in (3) have to be applied. This bounded 
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space gives information on the cross-iteration dependences. Tzen 
and Ni [6] proposed an elegant method to analyze these cross- 
iteration dependences. They formed a DCH from the solution 
space r and the set of inequalities (3). We extend their algorithm 
to compute more precise dependence information by forming an 
Integer Dependence Convex Hull as explained in the following 
paragraphs. 

3.1 Preliminaries 

Definition 1 The set of points specified by means of a linear in- 
equality is called a half space or solution space of the inequality. 
For example LI I SI (2, y) is one such inequality and a set s = 
( ( z ,y ) l s l ( z ,y )  2 L I }  is its half space. From (3) we have eight 
half spaces. The intersection of these half spaces forms a convex 
set. 
Definition 2 A convex set X can be defined as a set of points Xi 
which satisfy the convexity constraint that for any two points XI 
and X2, XXI + (1 - X)X2 E X ,  where X E [0,1]. 
Geometrically. a set is convex if, given any two points in the set, 
the straight line segment joining the points lies entirely within the 
set. The comer points of this convex set are called extreme points. 
Definition 3 A point in a convex set which does not lie on a line 
segment joining two other points in the set is called an extreme 
point. 
Every point in the convex set can be represented as a convex com- 
bination of its extreme points. Clearly any convex set can be 
generated from its extreme points. 
Definition 4 A convex hull of any set X is defined as the set of all 
convex combinations of the points of X .  
The convex hull formed by the intersection of the half spaces 
defined by the inequalities (3) is called a Dependence Convex Hull. 
This DCH can be mathematically represented as 

This DCH is a convex polyhedron and is a subspace of the solu- 
tion spacer. IftheDCHisemptythentherearenointeger solutions 
(21 , j ~ ,  22, j 2 )  satisfying (2). That means there is no dependence 
between satements Sd and S, in the program model. Otherwise, 
every integer point in this DCH represents a dependence vector in 
the iteration space. 

3.2 Integer Dependence Convex Hull 

We use the algorithm given by T z n  and Ni [6] to form the 
DCH. Their algorithm forms the convex hull as a ring connecting 
the extreme points (nodes of the convex hull). The algorithm starts 
with a large solution space and applies each half space from the set 
defined by (3) and cuts the solution space to form a bounded de- 
pendence convex hull. The extreme points of this convex hull can 
have real coordinates, because these points are just intersections 
of a set of hyperplanes. We propose an algorithm to convert these 
extreme points with real coordinates to extreme points with integer 

coordinates. The main reason for doing this is that we use the de- 
pendence vectors of these extreme points to compute the minimum 
and m a x i "  dependence distances. Also. it can be easily proved 
that the dependence vectors of these extreme points form a set of 
extreme vectors for the dependence vector set [SI. This informa- 
tion is otherwise not available for non-uniform dependence vector 
sets. We refer to the convex hull with all integer extreme points as 
Integer Dependence Convex Hull (IDCH). Our algorithm IDCH is 
given in Figure 3. 

Algorithm IDCH: 
input: The Dependence Convex Hull (DCH); 
output: An Integer Dependence Convex Hull (IDCH); 
begin 

Initialize IDCH = DCH; 
Scan the IDCH ring 

if(coordinates of the node or node+next are real) 
1. Form a line equation nextline connecting node (r) 
and node-mext (U); 
2. Find an integer point i closest to r in 
the direction towards n: 

insert i in the ring between r and n 
if i lies on the nextline 

if n is an integer point 
goto next node in the ring; 

3. Compute all the integer points along the boundary 
of the next-line but within the IDCH. 

endif 

remove any redundant and collinear nodes, maintaining 
the convex shape of the IDCH; 

Rescan the IDCH ring: 

end 
Figure 3: Algorithm to compute a two dimensional Integer 
Dependence Convex Hull 

The IDCH contains more accurate dependence information as 
explained later. After constructing the initial DCH, our algorithm 
checks if there are any real extreme points for the DCH. If there 
are none, then IDCH is itself the DCH. Otherwise we construct 
an IDCH by computing integer extreme points. As the DCH is 
formed as a ring, for every node (realnode) there is a prevous node 
(prevaode) and a next node (nextmode). Our algorithm traverses 
the IDCH once, converting all the real extreme points to integer 
form. A line (nextline) joining the realnode and nextslode is 
formed. Now a nearest integer point in the direction of this line but 
within the convex hull is computed. This node is inserted into the 
ring. Similarly, all the integer points that arealong the boundary of 
the line next-line and within the convex hull are computed. Once 
all the extreme points are converted to integer points, our algorithm 
traverses the IDCH again to remove any redundant, collinear nodes 
from thering. Whiledoing this. our algorithm preserves the convex 
shape of the IDCH. We have a simple algorithm to compute the 
integer points [SI. The worst case complexity of this algorithm 
is bounded by O(N)  where N is the number of integer points 
along the perimeter of the DCH. It should be emphasized here that 
considering the nature of the DCH, in most of the cases the integer 
extreme points arecomputed without much computation. The kind 
of speedup we get with our partitioning techniques based on this 
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conversion, make  it affordable. 
We can demonstrate the construction of the DCH and IDCH 

with an example. Consider example l(b) whose iteration space is 
shown in Figure l(b). ’ItKo diophantine equations can be formed 
from the subscripts of array A. 

2 + j + 3  = 2 u i + j + l  
(5)  i + l  = i + j + 3  

By applying the algorithm given by Banerjee [3], we can 
solve these equations. We can obtain the general solution 
(s1(~,y),sz(z,y),s3(az,y),s4(z,y)) to be ~ , Y , - - Z  + 2~ + 
4,22 - 2y - 6) .  So the dependence vector function can be given 
as D(x,y)  = (-22 + 2y + 4,22 - 3y - 6) .  Now. the set of 
inequalities can be given as 

15 2 5 10 
5 10 15 Y 

15 - ~ + 2 y + 4  510  
15 2 2 - 2 y - 6  510  

(6) 

Figure4(a) shows thedependenceconvex hull DCH constructed 
from (6). This DCH is bounded by four nodes r1=(10,6.5), 
r~=(10,3.5), r3=(5,1). r4=(4.5,1). Because there are three real 
extreme points (rl, 1-2, r4), our Algorithm IDCH converts these 
real extreme points to integer extreme points by scanning the DCH 
ring. For a real extreme point, as explained previously, it forms 
a line nextline. For example, consider the node r4=(4.5,1). The 
node rl is r4’s nextnode. So, a next line joining r 4  and rl is 
formed. As shown in Figure 4(a) the integer point closest to r 4  and 
alongthenextlineis h. ~isnodeisinsertedintotheringbetween 
the realnode and the nextnode. Similarly points iz, is, i4 and is 
are computed. Same steps are repeated for the real node rl whose 
nextnode is rz. Once all the real extreme points are converted 
to integer points, we can eliminate redundant or collinear nodes 
from the IDCH ring. For example, nodes h,  i2, i3, and id  can be 
removed from the ring. The resulting IDCH with four extreme 
points (el, ez, e3, e 4 )  is shown in Figure4(b). While joining these 
extreme points our algorithm takes care to preserve the convex 
shape of the IDCH. 

Figure 4 (a) IDCH Computation 
Example l(b) 

(b) DCH and IDCHfor 

As can be seen from Figure 4(b) the IDCH is a subspace of 

DCH. So it gives more precise dependence information. We are 
interested only in the integer points inside the DCH. No useful 
dependence information is lost while changing the DCH to IDCH 
[8]. In the following section we demonstrate how these extreme 
points are helpful in obtaining the minimum dependence distance 
information. 

4 TILING with MINIMUM DEPENDENCE 
DISTANCE 

4.1 Minimum Dependence Distance Computation 

The dependence distance vector function D(z ,y )  gives the 
dependence distances di and d j  in dimensions i and j ,  respec- 
tively. For uniform dependence vector sets these distances are 
constant. But for the non-uniform dependence sets, these dis- 
tances are linear functions of the loop indices. So we can 
write these dependence distance functions in a general form as 
di(z,y) = alx+bly+ci;  d j ( z ,y )  = a2z+hy+c2wherea,. 
b;,  and ci are integers and z, y are integer variables of the diophan- 
tine solution space. These distance functions generate non-uniform 
dependence distances. Because there are unknown number of de- 
pendences at compile time, it is very difficult to how exactly what 
are the minimum and maximum dependence distances. For this 
we have to study the behavior of the dependence distance func- 
tions. The dependence convex hull contains integer points which 
correspond to dependence vectors of the iteration space. We can 
compute these minimum and maximum dependence distances by 
observing the behavior of these distance functions in the depen- 
dence convex hull. In this subsection, we present conditions and 
theorems through which we can find the minimum and maximum 
dependence distances. 

We use a theorem from linear programming that states “For any 
linear function which is valid over a bounded and closed convex 
space, its maximum and minimum values occur at the extreme 
pointsofthe convexspace” [7,11]. Theorem 1 is basedontheabove 
principle. Since both di (2, y)  and d j  (2, y) are linear functions 
and are valid over the IDCH, we use this theorem to compute the 
minimum and maximum dependence distances in both i and j 
dimensions. 

Theorem 1 : The minimum and maximum values of the depen- 
dence distance function d(z,  y) occur at the extreme points of the 
IDCH. 

Proof: The extreme points of the IDCH are nothing but it’s 
corner points. The general expression for dependence distance 
function can be given as d(z, y) = az + by + c. If this function is 
valid over the IDCH. then the line az +by + c = k passes through 
it. Now, suppose the minimum and maximum values of d(z ,  y) 
are dmin and d,,, respectively. The lines az + by + c = dmin 
and az + by + c = d,,, are parallel to the line ax + by + c = 
k .  Since the function d(z,y)  is linear, it is monotonic Over the 
IDCH. Therefore, we have dmin 5 k 5 d,,, for any value 
of k, the function d(z,  y) assumes in the IDCH. Thus, the lines 
a z  + by + c = dmin and az + by + c = d,,, are tangential 
to the IDCH and hence pass through the extreme points as shown 
in Figure 5. So, the function d(z ,  y) assumes its maximum and 
minimum values at the extreme points. 0 
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Figure 5 :  Minimum and maximum values of d(x,  y)  

Hence, we can find the minimum dependence distance from the 
extreme vector list. But as these minimum distances can be nega- 
tive (for anti dependences) we have to find the absolute minimum 
dependence distance. For this we use Theorem 2. 

Theorem 2 : I f d ( z ,  y)  = 0 does not puss through the IDCH then 
the absolute minimum and absolute maximum values of d(x, y) 
appear on the extreme points. 

Proof If d ( z ,  y) = 0 does not pass through the IDCH, then 
the IDCH is either in the d(z,  y) > 0 or d(z,  y )  < 0 side. Let 
us consider the case where IDCH lies on the d(z ,  y)  > 0 side as 
shown in Figure 6(a). By Theorem 1. the minimum and maximum 
values of d(z ,  y) occur at the extreme points. The lines d(z,  y )  = 
dmin and d(z,  y)  = d,,, are tangential to the IDCH. Since both 
dmin and d,,, are positive, the absolute minimum and absolute 
maximumvaluesaretheminimum andmaximumvaluesofd(z, y). 
ForthecasewhereIDCHlieson thed(z, y) < Oside(Figure6(b)), 
theminimum andmaximum values of d ( z ,  y)  arenegative. So, the 
absoluteminimum andabsolutemaximum values arethemaximum 
and minimum values, respectively. 0 

Figure 6: Computation of abs(min) and abs(max1 values of 
d(x ,y )  when(a)IDCHE d ( z , y )  > O(b)IDCHE d ( z , y )  < 
0 

For cases which do not satisfy theorem 2, we assume an ab- 
solute minimum dependence distance of 1. Using the minimum 
dependence distances computed above, we can tile the iteration 
space. 

4.2 Tiling and Tile Synchronization 
In this subsection, we show how to identify partitions (tiles) 

of the iteration space. We also present synchronization schemes 
to order the execution of these tiles satisfying the inter-tile depen- 
dences. 

The tiles are rectangular shaped, uniform partitions. Each tile 
consists of a set of iterations which can be executed in parallel. 
The minimum dependence distances dimin and dimin can be used 

to determine the tile size. We first determine whether di (2, y)=O 
passes through the IDCH. Ifit does not, then dimin can be obtained 
by selecting the minimum dependence distance in dimension a of 
the set of extreme vectors. Otherwise. if d j  (z, y)=O does not pass 
through the IDCH we can determine dim,,. We consider these 
cases separately and propose suitable partitioning methods. With 
the help of examples we demonstrate the tiling and synchronization 
schemes. 
Case I: d;(z,  y)=O does not pass through the IDCH 

In this case, as the di (2, y)=O does not pass through the IDCH, 
the IDCH is either on the d,(z, y) > 0 side or d;(z, y) < 0 side. 
From theorem 2, the absolute minimum of d;  occurs at one of the 
extreme points. Suppose this minimum value of d;(z,  y) is given 
by dimin. Then, we can group the iterations along the dimension 
i into tiles of width dimin. All the iterations in this tile can be 
executed in parallel as there are no dependences between these 
iterations (no dependence vector exists with di < &in) .  The 
height of these tiles can be as large as N where N = UJ - LJ + 1. 
Inter-iteration dependences can be preserved by executing these 
tiles sequentially. No other synchronization is necarsary here. If 
the tiles are too large, they can be divided into subtiles without loss 
of any parallelism. 

We can now apply this method to the nested loop program 
segment given in example l(b). It’s IDCH is shown in Fig. 4(b). 
Here, di (2, y)=O does not pass through the convex hull. So from 
theorem 2, the absolute value of the minimum dependence distance 
can be found to be di,i,=abs(-4)=4. This occurs at the extreme 
points (5.1) and (lo,@. So, we can tile the iteration space of size 
M * N with dimzn=4 as shown in Fig. 7. The number of tiles in 
the iteration space can be given as T, = except near the 
boundaries of the iteration space, where the tiles are of uniform 
size M * diman. Parallel code for example l(b) can be given as 
in Figure 8. This parallel code applies to any nested loop segment 
that satisfies case 1 and of the form as given in 2 with LI = 1, 
Ur = N ,  LJ = 1, UJ = M .  

1 1 1 . 1 1 , . . 1 0  I 

Figure 7 :  Tiling with minimum dependence distance di 

Theoretical speedup for this case can be computed as follows. 
Ignoring the synchronization and scheduling overheads, each tile 
can be executed in one time step. So, the total time of execution 
equals the number of tiles T,. Speedup can be calculated as the 
ratio of total sequential execution time to the parallel execution 
time. 

M * N  
Speedup= - 

T, 
Minimum speedup with our technique for this case is M ,  when 
T, = N (i.e., dimin=l). 
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DOserial K = 1, T, 
Doparallel I = (K-l)*dim,,+1, min(K*di,i,, N) 

Doparallel J = 1, M 
A(2*J+3,1+1) = ...... ; 
...... = A(Z*I+J+l,I+J+3); 

E NDDOparalle I 
E NDDOparalle I 

END Dose rial 
Figure 8: Parallel code for scheme 1 

Case II: d j  (z, y) = 0 does not pass through the IDCH 
Here, since dj (2, y)=O does not pass through the IDCH, we 

have djmin at one of the extreme points. As di(z,y)=O goes 
through the E H ,  we take the absolute value of &,in to be 1. So, 
wetiletheiteration spaceinto tiles with width=l and height=dj,i,. 
This means, the iteration space of s u e  M * N can be divided into 
N groups with T, = [el tiles in each group. Iterations in a 
tile can be executed in parallel. Tiles in a group can be executed 
in sequence and the dependence slope information of Tzen and Ni 
[6] can be used to synchronize the execution of inter-group tiles. 

Tzen and Ni [6] presented a number of lemmas and theorems to 
find the maximum and minimum values of the Dependence Slope 
Function d&ed as DSF = ~ j ~ ; : ~ .  These minimum or maxi- 
mum dependence slopes can be used to enforce the dependence 
constraints among the iterations. The execution of the inter-group 
tiles can be ordered by applying a basic dependence vector with 
min(max) slope. Consider the nested loop given in Example 2. 
Figure 9(a) shows its IDCH. Note that d,(z, y)=O passes through 
the IDCH while d j  (2, y)=O does not pass through the IDCH. The 
djmin can be computed to be 4 and the iteration space can be tiled 
as shown in Figure 9(b). 

Example 2: 
for I =  1, 10 

for J =  1.10 
A(2*1+3J+1) = ...... 
...... = A(Z*J+I+l,I+.J+3) 

endfor 
endfor 

For this example, we can find the minimum dependence slope 
to be -min(M - l , P ) ,  where P=10 and M=ll. Therefore, 
DSFmi,=-lO. Applying this to the iteration space, we find that 
an iteration i of any group (except the first one) can be executed 
as soon as the previous group finishes the (i + iteration. 
As we tile these iterations, we can compute the inter-group tile 
dependence slope as T, = 1- 1. So, we can synchronize 
the tile execution with a inter-group tile dependence vector (l,Ts). 
If T, is negative, then this dependence vector forces a tile i of 
j t h  group to be executed after the tile i + ITs[ of group j - 1. 
Otherwise, if T, is positive then a tile i of group j can be executed 
as soon as (i - Ts)th tile in group j - 1 is executed. Figure 
9(b) shows the tile space graph for this example. In this figure Gi 

denotes a group and T,j denotes j t h  tile of group a. Parallel code 
for this example is given in Figure 10. Speedup for this case can 
be computed as follows. The total serial execution time is M * N .  
Since the parallel execution time is T, + (N - 1) * T,. Hence, 
the speedup is given as 

M * N  
Speedup = 

Tn + ( N  - 1)Ts 

Figure 9: (a)  IDCH of Example 2 (b) Tiling with minimum 
dependence distance d3 

CaseIII: d,(z,y)=Oandd,(z,y)=OpassthroughtheIDCH 
For thecase wherebothd, (2, y)=O andd, (z, y)=Opass through 

the IDCH. we assume both d,,,, and d,,,, to be 1. So, each tile 
corresponds to a single iteration. The synchronization scheme 
given in Figure 10 is also valid for this case. For this case our tech- 
nique performs as good as the dependence uniformization tech- 
nique. 

In the next section, we compare the performance of our tech- 
nique with existing techniques and analyze the improvement in 
speedup. 

Tilenum T, = 
Tile slope T, = *d'F )m," ~1 

DOacross I = 1, N 
Shared integer JlNI 
DOserial J[II = 1, T, 

if (I > 1) then 
while (J(1-1) < (JO+T,)) 

wait; 
DOparalle I K = (J[a -1 )*dj ,in + 1, JDI *dj 

A(21+3, K+1) = ...... ; 
...... = A(I+ZK+l,I+K+3); 

ENDDOparallel 
END Dose rial 

ENDDOacross 
Figure 10 Parallel code for scheme 2 

5 PERFORMANCE ANALYSIS 
Many existing techniques cannot parallelize the type of nested 

loops considered in this paper because of the irregularity of the de- 
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pendences. Though some advances have been made to solve this 
problem, the amount of parallelism that the existing techniques 
extract is very low compared to the available parallelism. In the 
previous sections we have presented simple schemes to campute 
minimum dependence distance and used it to partition the nested 
loop iteration spaces with irregular dependences. Now, we can- 
pare our algorithms with some existing methods. 

The dependence unifarmization method presented by Tzen and 
Ni [a] computes dependence slope ranges in the DCH and forms 
a Basic Dependence Vector (BDV) set which is applied to every 
iteration in the iteration space. The iteration space is divided into 
groups of one column each. Index synchronization is then ap- 
plied to order the execution of the iterations in different graups. 
Our argument is that this method imposes too many dependences 
on the iteration space, thereby limiting the amount of extractable 
parallelism. Consider example l(b). If we apply the dependence 
unifarmization technique, a BDV set can be formed as {(OJ), 
(1,-l)}. The iteration space is uniformized and with index syn- 
chronization, the maximum speedup that can be achieved by this 
technique is Speedup,,if = 9, where r) = 1-t is the delay and t = 
[DSFmin J or rDSF,,,]. This speedup is significantly affected 
by the range of dependence slopes. If the dependence slopes vary 
over a wide range, in the worst case this method would result in 
serial execution. For the example undef cansideration (Example 
l(b)) the speedup with unifarmization technique is 5 .  Figure 7 
shows the tiled itexation space obtained by applying our minimum 
dependence distance tiling method. From the analysis given in the 
previous section the speedup with our method is 9, which is 
more than 30. So, our method gives a significant speedup cam- 
pared to the dependence uniformization technique. Even for the 
case diminzl OUT technique gives a speedup of 10 (M) which is 
much higher compared to the speedup with their technique. An im- 
portant feature of our method is that the speedup does not depend 
on the range of dependence slopes. 

For Example 2, d;(z ,  9 )  = 0 passes thraugh its IDCH and 
d j ( z ,  y) = Odoesnot. So, wefollowour secondapproachtotileits 
iteration space. For this example, the dependence unifarmization 
technique forms the BDV set as {(OJ), (1.-lo)} and the speedup 
can becalculatedas 7 = N 1. Our method gives a speedup of 
T,+f;tl-nll lTa N 3. So, we have a significant speedup improve- 

speedup is as good as the speedup with their technique. Moreover 
the IDCH formed by our method gives more precise dependence 
slope information. 

Though the minimum dependence vector set of Tseng &.al., 
[lo] can be used to farm somewhat similar rectangular partitions, 
their grouping techniques do not consider all the cases. Also, the 
method they used to compute the minimum dependence vector set 
may not always give minimum dependence distances. Moreover, 
they use integer programming techniques to compute the minimum 
dependence vector set which definitely is time consuming. Their 
method does not work for certain cases [81. 

ment in this too. For the case where dimin = djmin=l OUT 

6 CONCLUSION 
In this paper we have presented simple and computationally 

efficient tiling techniques to extract maximum parallelism from 

nested loops with irregular dependences. The cross-iteration de- 
pendences of nested loops with non-unifctrm dependences are ana- 
lyzed by forming an Integer Dependence Convex Hull. Minimum 
dependence distances are computed from the dependence vectors 
of the IDCH extreme points. n e s e  minimum dependence dis- 
tancm are used to partition the iteration space into tiles of uniform 
size and shape. Dependence slope information is used to enforce 
the inter-iteration dependences. Pseudo code for parallel execution 
of the tiles is given. We have shown that our method gives much 
better speedup than the existing techniques and exploits the inher- 
ent parallelism in the nested loops with non-uniform dependences. 
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