
Minimum Dependence Distance Tiling of Nested Loops with Non-uniform
Dependences

Swamy Punyamurtula and Vipin Chaudhary*

Parallel and Distributed Computing Laboratory
Dept. of Electrical and Computer Engineering

Wayne State University,Detroit, MI 48202

Abstract

In this paper we address the problem of partitioning nested
loops with non-uniform (irregular) dependence vectors. Although
many methods exist for nested loop partitioning, most of these
perform poorly when parallelizing nested loops with irregular de-
pendences. We apply the results of classical convex theory and
principles of linear programming to iteration spaces and show the
correspondence between minimum dependence distance computa-
tion and iteration space tiling. The cross-iteration dependences are
analyzed by forming an Integer Dependence Convex Hull (IDCH).
A simple way to compute minimum dependence distances from the
dependence distance vectors of the extreme points of the IDCH is
presented. Using these minimum dependence distances the iter-
ation space can be tiled. Iterations in a tile can be executed in
parallel and the tiles can be executed with proper synchronization.
We demonstrate that our technique gives much better speedup and
extracts more parallelism than the existing techniques.

1 INTRODUCTION
In the past few years there has been a significant progress in

the field of Parallelizing Compilers. Many new methodologies and
techniques to parallelize sequential code have been developed and
tested. Of particular importance in this area is compile time parti-
tioning of program and data for parallel execution. Partitioning of
programs requires efficient and exact Data Dependence analysis.
In general, nested loop program segments give a lot of scope for
parallelization. Independent iterations of these loops can be dis-
tributed among the processing elements. So, it is important that
appropriate dependence analysis be applied to extract maximum
parallelism from these recurrent computations.

Although many dependence analysis methods exist for identi-
fying cross-iteration dependences in nested loops, most of these
fail in detecting the dependence in nested loops with coupled
subscripts (i.e.. subscripts are linear functions of loop indices).
According to an empirical study reported by Shen et. al. [l],
coupled subscripts appear quite frequently in real programs. They
observed that nearly 45% of two-dimensional array references are

'The author's work has been supported in part by NSF M P -
9309489 and Wayne State University Faculty Research award. e-mail:
vipin@eng.wayne.edu

coupled. Coupled array subscripts in nested loops generate non-
uniform dependence vectors. Example l(a) and Example l(b)
show nested loop program segments with uniform dependences
and non-uniform dependences respectively. Example l(a) has a
uniform set of dependences {(l,O),(O,l)] and its iteration space is
shown in Fig.l(a). Array A in Example l(b) has coupled subscripts
and has a non-uniform dependence vector set. Figure I@) shows
its iteration space and the irregularity of its dependences.

Example 1 (a): Example l(b):
for I = 1. 10

for J = 1, 10
for I = 1 , l O

for J = 1, 10
A(IJ) = ...
... = A(1-1.J) + A(1. J-1)

A(2*J+3,1+1) = ...
... = A(2*1+J+l,I+J+3)

endfor endfor
endfor endfor

J

I

1

I

..........

0 . 0 . .

I l l l 5 6 7 l t U 1

Figure 1: Iteration spaces with (a) Uniform dependences
and (b) Non-uniform dependences

Irregularity in the dependence pattern makes the dependence
analysis very difficult for nested loops. A number of methods
based on integer and linear programming techniques have been
presented in the literature. A serious disadvantage with these tech-
niques is their high time complexity. To analyze the cross-iteration
dependences for these loops, we apply results from classical con-
vex theory and present simple schemes to compute the dependence
information. Once the dependence analysis is carried out. the

74
0-8186-6427-4/94 $04.00 0 1994 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 24, 2008 at 14:45 from IEEE Xplore. Restrictions apply.

mailto:vipin@eng.wayne.edu

task now is to analyze and characterize the coupled dependences.
These dependences can be characterized by Dependence Direction
Vectors and Dependence Distance Vectors [2] . Computing these
dependence vectors for loops with uniform dependences is simple
and straight forward 131. But for nested loops with non-uniform
dependences, the dependence vector computation is an interest-
ing problem. Many approaches based on vector decomposition
techniques have been presented in the literature [4, 5, 61. These
techniques represent the dependence vector set using a set of basic
dependence vectors. With the help of these basic dependence vec-
tors, the iteration space is partitioned for parallel execution. Nor-
mally, iterations are aggregated into groups or tiles or supernodes.
These aggregations are then executed with proper synchroniza-
tion primitives to enforce the dependences. Most of these vector
decomposition techniques consider nested loops with uniform de-
pendences and they perform poorly in parallelizing nested loops
with irregular dependences. In this paper we present partitioning
schemes which extract maximum parallelism from these nested
loops.
Our approach to this problem is based on the theory of convex

spaces. A set of diophantine equations is formed from the array
subscripts of the nested loops. These diophantine equations are
solved for integer solutions [31. The loop bounds are applied to
these solutions to obtain a set of inequalities. These inequalities are
then used to form a dependence convex hull as an intersection of a
set of halfspaces. We use the algorithm presented by Tzen and Ni
[6] to construct this dependence convex hull. Every integer point in
the convex hull corresponds to a dependence vector of the iteration
space. If there are no integer points within the convex hull, then
there are no cross-iteration dependences among the nested loop
iterations. The corner points of this convex hull form the set of
extreme points for the convex hull. These extreme points have the
property that any point in the convex hull can be represented as a
convex combination of these extreme points [71. Since the extreme
points of a dependence convex hull could be real and therefore are
not valid iterations, we propose an algorithm (algorithm IDCH)
to convert the dependence convex hull to an integer dependence
convex hull with integer extreme points. The dependence vectors of
the extreme points form a set of extreme vectors for the dependence
vector set [SI. We compute the minimum dependence distances
from these extreme vectors. Using these minimum dependence
distances we tile the iteration space. For parallel execution of these
tiles, parallel code with appropriate synchronization primitives is
given.

The rest of the paper is organized as follows. In section 4
we introduce the program model considered and review the re-
lated work previously done on tiling. Dependence analysis for
tiling is also presented. Section ID discusses dependence convex
hull computation. In section IV, with the help of theorems based
on linear programming principles we propose simple methods to
compute theminimum dependence distances and present minimum
dependence distance tiling schemes. Finally in section V a com-
parative performance analysis with some of the existing methods
is presented to demonstrate the effectiveness of our scheme.

2 PROGRAM MODEL
Weconsidernestedloopprogram segmentsoftheform shown in

Figure 2. For the simplicity of notation and technique presentation
we consider only tightly coupled doubly nested loops. However
our method applies to multidimensional nested loops also. The
dimension of the nested loop segment is equal to the number of
nested loops in it. For loop I(J), L I (L J) and Ur(Uj) indicate
the lower and upper bounds respectively. We also assume that the
program statements insidethesenestedloops aresimpleassignment
statements of arrays. The dimensions of these arrays are assumed
to be equal to the nested loop dimension. To characterize the
coupled array subscripts, we assume the array subscripts to be
linear functions of the loop index variables.

Egure 2: Program Model

In our program model shown in Figure 2, statement s d defines
elements of array A and statement S, uses them. Dependence ex-
ists between s d and S, whenever both refer to the same element of
array A. If the element defined by s d is used by s, in a subsequent
iteration, then afrow dependence exists between s d and S, and is
denoted by Sd&fS , . On the other hand if the element used in S,
is defined by s d at a later iteration. this dependence is called anti
dependence denoted by SdSaS,. Other types of dependences like
output dependence and input dependence can also exist but these
can be eliminated or converted to other types like flow and anti
dependences.

An iteration vector ?represents a set of statements that are exe-
cutedfor a specificvalueof (XJ) = (i, j) . It can berepresentedmath-
ematically by ?= { (i , j) I LI 5 i 5 U I , LJ 5 j 5 U J ; i, j E
2) where Z denotes the set of integers. For any given iteration
vector ?if there exists a dependence between s d and S, it is called
intra-iteration dependence. These dependences can be taken care
of by considering an iteration vector as the unit of work allotted to
a processor. The dependence between Sd and S, for two different
iteration vectors ?I and 2; is defined as cross-iteration dependence
and is represented by the dependence distance vector z= 2'2 - 2;.
These dependences have to be honored while partitioning the iter-
ation space for parallel execution. A dependence vector set d is
a collection of all such distinct dependence vectors in the iteration
space and can be defined as d = {dl d= 2'2 - ?I;

If all the iteration vectors in the iteration space have the same
set of dependence vectors, then such a dependence vector set is
called a uniform dependence vector set and the nested loops are
called shift-invariant nested loops. Otherwise, the dependence
vector set is called a non-uniform dependence vector set and the
loops are called ship-vnrianr nested loops. Normally, coupled array
subscripts in nested loops generate such non-uniform dependence
vector sets and irregular dependences. The dependence pattern

E 2").

75

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 24, 2008 at 14:45 from IEEE Xplore. Restrictions apply.

shown in Figure l(b) is an example of such patterns. Because
of the irregularity of these dependences, it is extremely difficult
to characterize this dependence vector set. By characterizing the
dependence vector set we mean representing or approximating it
by a set of basic dependence vector set. The advantage with such
characterization is that this dependence information can be used to
tile the iteration space. In the following subsection, we review the
work previously done to compute these basic dependence vectors
and tiling. We also point out the deficiencies and disadvantages of
those methods.

2.1 Review of Related Work

Irigoin and Triolet [5] presented a partitioning scheme for hier-
archical shared memory systems. They characterize dependences
by convex polyhedron and form dependence cones. Based on
the generating systems theory [9], they compute exfreme rays for
dependence cones and use hyperplane technique to partition the
iteration space into supernodes. The supernodes are then executed
with proper synchronization primitives. However the extreme rays
provide only a dependence direction and not a distance. Also,
their paper does not discuss any automatic procedure to form the
rays and choose the supemodes. We present simple schemes to
compute minimum dependence distance and partition the iteration
space into tiles.

Ramanujam and Sadayappan 141 proposed a technique which
finds extreme vectors for tightly coupled nested loops. Using these
extreme vectors they tile the iteration spaces. They derive ex-
pressions for optimum tile size which minimizes inter-tile com-
munications. While their technique applies to distributed memory
multiprocessors, it works only for nested loops with uniform de-
pendence vectors.

Tzen and Ni [6] proposed the dependence uniformization tech-
nique. This technique computes a set of basic dependence vectors
using the dependence slope theory and adds them to every iteration
in the iteration space. This uniformization helps in applying exist-
ingpartitioning and scheduling techniques, but it imposes toomany
dependences to the iteration space which otherwise has only a few
of them. In our work we extend their cross-iteration dependence
analysis methods to compute more accurate dependence informa-
tion by forming an integer dependence convex hull. We tile the
iteration space by computing minimum dependence distances and
use tile synchronization methods to synchronize parallel execution
of tiles.

Based on integer programming techniques, Tseng et. al. [101
form a minimum dependence vector set. Using this minimum
dependence vector set, the iterations are grouped. But the method
they used to compute the minimum dependence vector set may
not always give minimum dependence distances. We show how
accurate minimum dependence distance can be computed using our
approach. We have also observed that their grouping method does
not work for some cases [8]. We present better tiling techniques
which work with tile synchronization.

2.2 Dependence Analysis for Tiling

For the nested loop program segment shown in Figure 2, de-
pendence exists between statements s d and S, if they both refer to

the same element of array A. This happens when the subscripts in
each dimension are equal. In other words, if f l (il, jl) = f3(iz , j z)
and f2(i1 , j l) = f4(& j z) then a cross iteration dependence ex-
ists between Sd and S,. We can restate the above condition as
“cross-iteration dependence exists between Sd and S, iff there is a
set of integer solutions (il, j l I iz, jz) to the system of diophantine
equations (1) and the system of linear inequalities (2)”.

We use algorithms given by Banerjee [3] to compute the gen-
eral solution to these diophantine equations. This general solution
can be expressed in terms of two integer variables z and y, except
when f ~ (i ~ , $) = f3(zZ,jZ) is parallel to fz(i2,j2) = f4(i4,j4).
in which case the solution is in terms of three integer variables
[6]. Here. we consider only those cases for which we can ex-
press the general solution in terms of two integer variables. So,
we have (il , j l , 22, j z) as functions of 2, y. which can be written

sl are functions with integer coefficients. For every valid set of
integers (21, j l , iz, j z) there exists a dependence between the state-
ments Sd andS, for iterations (i l , j l) and (22, j z) . Thedependence
distance vector ;is given as ;= (i ~ - il , j z - jl } with dependence
distances di = i~ - il and d, = jz - jl in i and j dimensions.
respectively. So, from the general solution the dependence vec-
tor function D(z ,y) can be written as D(z ,y) = {(s3(z,y) -
s ~ (z , y)), (s4(z, y) - s 2 (2 , y)) } . The dependence distance func-
tions in i, j dimensions can be given as d,(z, y) = s3(z, y) -
s ~ (z , y) a n d d j (z , y) = s 4 (z , y) - s ~ (z , y) . Thedependencedis-
tance vector set 6 is the set of vectors i= { (di (2, y), d, (2, y))).
The two integer variables z,y span a solution space r given by
I- = {(z, y) I s,(z,y) sa t i s f ies (1)). Any integer point
(2, y) in this solution space causes a dependence between state-
ments Sd and s,, provided the system of inequalities given by
(2) are satisfied. In terms of the general solution, the system of
inequalities can be written as

as (6 , j l , iz, jz) = (S I (2, Y), 4 2 , Y) , 53(2, Y), s4(z, Y 1). Here

(3)

These inequalities bound the solution space r a n d form a convex
polyhedron. which can also be termed as Dependence Convex Hull
(DCH) [6]. In the following section we give a brief introduction to
convex set theory and explain how we apply the well laown results
of convex spaces to iteration spaces.

3 DEPENDENCE CONVEX HULL

To extract useful dependence information from the solution
space r, the inequalities in (3) have to be applied. This bounded

76

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 24, 2008 at 14:45 from IEEE Xplore. Restrictions apply.

space gives information on the cross-iteration dependences. Tzen
and Ni [6] proposed an elegant method to analyze these cross-
iteration dependences. They formed a DCH from the solution
space r and the set of inequalities (3). We extend their algorithm
to compute more precise dependence information by forming an
Integer Dependence Convex Hull as explained in the following
paragraphs.

3.1 Preliminaries

Definition 1 The set of points specified by means of a linear in-
equality is called a half space or solution space of the inequality.
For example LI I SI (2, y) is one such inequality and a set s =
((z ,y) l s l (z ,y) 2 L I } is its half space. From (3) we have eight
half spaces. The intersection of these half spaces forms a convex
set.
Definition 2 A convex set X can be defined as a set of points Xi
which satisfy the convexity constraint that for any two points XI
and X2, XXI + (1 - X)X2 E X , where X E [0,1].
Geometrically. a set is convex if, given any two points in the set,
the straight line segment joining the points lies entirely within the
set. The comer points of this convex set are called extreme points.
Definition 3 A point in a convex set which does not lie on a line
segment joining two other points in the set is called an extreme
point.
Every point in the convex set can be represented as a convex com-
bination of its extreme points. Clearly any convex set can be
generated from its extreme points.
Definition 4 A convex hull of any set X is defined as the set of all
convex combinations of the points of X .
The convex hull formed by the intersection of the half spaces
defined by the inequalities (3) is called a Dependence Convex Hull.
This DCH can be mathematically represented as

This DCH is a convex polyhedron and is a subspace of the solu-
tion spacer. IftheDCHisemptythentherearenointeger solutions
(21 , j ~ , 22, j 2) satisfying (2). That means there is no dependence
between satements Sd and S, in the program model. Otherwise,
every integer point in this DCH represents a dependence vector in
the iteration space.

3.2 Integer Dependence Convex Hull

We use the algorithm given by T z n and Ni [6] to form the
DCH. Their algorithm forms the convex hull as a ring connecting
the extreme points (nodes of the convex hull). The algorithm starts
with a large solution space and applies each half space from the set
defined by (3) and cuts the solution space to form a bounded de-
pendence convex hull. The extreme points of this convex hull can
have real coordinates, because these points are just intersections
of a set of hyperplanes. We propose an algorithm to convert these
extreme points with real coordinates to extreme points with integer

coordinates. The main reason for doing this is that we use the de-
pendence vectors of these extreme points to compute the minimum
and m a x i " dependence distances. Also. it can be easily proved
that the dependence vectors of these extreme points form a set of
extreme vectors for the dependence vector set [SI. This informa-
tion is otherwise not available for non-uniform dependence vector
sets. We refer to the convex hull with all integer extreme points as
Integer Dependence Convex Hull (IDCH). Our algorithm IDCH is
given in Figure 3.

Algorithm IDCH:
input: The Dependence Convex Hull (DCH);
output: An Integer Dependence Convex Hull (IDCH);
begin

Initialize IDCH = DCH;
Scan the IDCH ring

if(coordinates of the node or node+next are real)
1. Form a line equation nextline connecting node (r)
and node-mext (U);
2. Find an integer point i closest to r in
the direction towards n:

insert i in the ring between r and n
if i lies on the nextline

if n is an integer point
goto next node in the ring;

3. Compute all the integer points along the boundary
of the next-line but within the IDCH.

endif

remove any redundant and collinear nodes, maintaining
the convex shape of the IDCH;

Rescan the IDCH ring:

end
Figure 3: Algorithm to compute a two dimensional Integer
Dependence Convex Hull

The IDCH contains more accurate dependence information as
explained later. After constructing the initial DCH, our algorithm
checks if there are any real extreme points for the DCH. If there
are none, then IDCH is itself the DCH. Otherwise we construct
an IDCH by computing integer extreme points. As the DCH is
formed as a ring, for every node (realnode) there is a prevous node
(prevaode) and a next node (nextmode). Our algorithm traverses
the IDCH once, converting all the real extreme points to integer
form. A line (nextline) joining the realnode and nextslode is
formed. Now a nearest integer point in the direction of this line but
within the convex hull is computed. This node is inserted into the
ring. Similarly, all the integer points that arealong the boundary of
the line next-line and within the convex hull are computed. Once
all the extreme points are converted to integer points, our algorithm
traverses the IDCH again to remove any redundant, collinear nodes
from thering. Whiledoing this. our algorithm preserves the convex
shape of the IDCH. We have a simple algorithm to compute the
integer points [SI. The worst case complexity of this algorithm
is bounded by O(N) where N is the number of integer points
along the perimeter of the DCH. It should be emphasized here that
considering the nature of the DCH, in most of the cases the integer
extreme points arecomputed without much computation. The kind
of speedup we get with our partitioning techniques based on this

77

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 24, 2008 at 14:45 from IEEE Xplore. Restrictions apply.

conversion, make it affordable.
We can demonstrate the construction of the DCH and IDCH

with an example. Consider example l(b) whose iteration space is
shown in Figure l(b). ’ItKo diophantine equations can be formed
from the subscripts of array A.

2 + j + 3 = 2 u i + j + l
(5) i + l = i + j + 3

By applying the algorithm given by Banerjee [3], we can
solve these equations. We can obtain the general solution
(s1(~,y),sz(z,y),s3(az,y),s4(z,y)) to be ~ , Y , - - Z + 2~ +
4,22 - 2y - 6) . So the dependence vector function can be given
as D(x,y) = (-22 + 2y + 4,22 - 3y - 6) . Now. the set of
inequalities can be given as

15 2 5 10
5 10 15 Y

15 - ~ + 2 y + 4 510
15 2 2 - 2 y - 6 510

(6)

Figure4(a) shows thedependenceconvex hull DCH constructed
from (6). This DCH is bounded by four nodes r1=(10,6.5),
r~=(10,3.5), r3=(5,1). r4=(4.5,1). Because there are three real
extreme points (rl, 1-2, r4), our Algorithm IDCH converts these
real extreme points to integer extreme points by scanning the DCH
ring. For a real extreme point, as explained previously, it forms
a line nextline. For example, consider the node r4=(4.5,1). The
node rl is r4’s nextnode. So, a next line joining r 4 and rl is
formed. As shown in Figure 4(a) the integer point closest to r 4 and
alongthenextlineis h. ~isnodeisinsertedintotheringbetween
the realnode and the nextnode. Similarly points iz, is, i4 and is
are computed. Same steps are repeated for the real node rl whose
nextnode is rz. Once all the real extreme points are converted
to integer points, we can eliminate redundant or collinear nodes
from the IDCH ring. For example, nodes h, i2, i3, and id can be
removed from the ring. The resulting IDCH with four extreme
points (el, ez, e3, e 4) is shown in Figure4(b). While joining these
extreme points our algorithm takes care to preserve the convex
shape of the IDCH.

Figure 4 (a) IDCH Computation
Example l(b)

(b) DCH and IDCHfor

As can be seen from Figure 4(b) the IDCH is a subspace of

DCH. So it gives more precise dependence information. We are
interested only in the integer points inside the DCH. No useful
dependence information is lost while changing the DCH to IDCH
[8]. In the following section we demonstrate how these extreme
points are helpful in obtaining the minimum dependence distance
information.

4 TILING with MINIMUM DEPENDENCE
DISTANCE

4.1 Minimum Dependence Distance Computation

The dependence distance vector function D(z ,y) gives the
dependence distances di and d j in dimensions i and j , respec-
tively. For uniform dependence vector sets these distances are
constant. But for the non-uniform dependence sets, these dis-
tances are linear functions of the loop indices. So we can
write these dependence distance functions in a general form as
di(z,y) = alx+bly+ci; d j (z ,y) = a2z+hy+c2wherea,.
b;, and ci are integers and z, y are integer variables of the diophan-
tine solution space. These distance functions generate non-uniform
dependence distances. Because there are unknown number of de-
pendences at compile time, it is very difficult to how exactly what
are the minimum and maximum dependence distances. For this
we have to study the behavior of the dependence distance func-
tions. The dependence convex hull contains integer points which
correspond to dependence vectors of the iteration space. We can
compute these minimum and maximum dependence distances by
observing the behavior of these distance functions in the depen-
dence convex hull. In this subsection, we present conditions and
theorems through which we can find the minimum and maximum
dependence distances.

We use a theorem from linear programming that states “For any
linear function which is valid over a bounded and closed convex
space, its maximum and minimum values occur at the extreme
pointsofthe convexspace” [7,11]. Theorem 1 is basedontheabove
principle. Since both di (2, y) and d j (2, y) are linear functions
and are valid over the IDCH, we use this theorem to compute the
minimum and maximum dependence distances in both i and j
dimensions.

Theorem 1 : The minimum and maximum values of the depen-
dence distance function d(z, y) occur at the extreme points of the
IDCH.

Proof: The extreme points of the IDCH are nothing but it’s
corner points. The general expression for dependence distance
function can be given as d(z, y) = az + by + c. If this function is
valid over the IDCH. then the line az +by + c = k passes through
it. Now, suppose the minimum and maximum values of d(z , y)
are dmin and d,,, respectively. The lines az + by + c = dmin
and az + by + c = d,,, are parallel to the line ax + by + c =
k . Since the function d(z,y) is linear, it is monotonic Over the
IDCH. Therefore, we have dmin 5 k 5 d,,, for any value
of k, the function d(z, y) assumes in the IDCH. Thus, the lines
a z + by + c = dmin and az + by + c = d,,, are tangential
to the IDCH and hence pass through the extreme points as shown
in Figure 5. So, the function d(z , y) assumes its maximum and
minimum values at the extreme points. 0

78

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 24, 2008 at 14:45 from IEEE Xplore. Restrictions apply.

Figure 5 : Minimum and maximum values of d(x, y)

Hence, we can find the minimum dependence distance from the
extreme vector list. But as these minimum distances can be nega-
tive (for anti dependences) we have to find the absolute minimum
dependence distance. For this we use Theorem 2.

Theorem 2 : I f d (z , y) = 0 does not puss through the IDCH then
the absolute minimum and absolute maximum values of d(x, y)
appear on the extreme points.

Proof If d (z , y) = 0 does not pass through the IDCH, then
the IDCH is either in the d(z, y) > 0 or d(z, y) < 0 side. Let
us consider the case where IDCH lies on the d(z , y) > 0 side as
shown in Figure 6(a). By Theorem 1. the minimum and maximum
values of d(z , y) occur at the extreme points. The lines d(z, y) =
dmin and d(z, y) = d,,, are tangential to the IDCH. Since both
dmin and d,,, are positive, the absolute minimum and absolute
maximumvaluesaretheminimum andmaximumvaluesofd(z, y).
ForthecasewhereIDCHlieson thed(z, y) < Oside(Figure6(b)),
theminimum andmaximum values of d (z , y) arenegative. So, the
absoluteminimum andabsolutemaximum values arethemaximum
and minimum values, respectively. 0

Figure 6: Computation of abs(min) and abs(max1 values of
d(x ,y) when(a)IDCHE d (z , y) > O(b)IDCHE d (z , y) <
0

For cases which do not satisfy theorem 2, we assume an ab-
solute minimum dependence distance of 1. Using the minimum
dependence distances computed above, we can tile the iteration
space.

4.2 Tiling and Tile Synchronization
In this subsection, we show how to identify partitions (tiles)

of the iteration space. We also present synchronization schemes
to order the execution of these tiles satisfying the inter-tile depen-
dences.

The tiles are rectangular shaped, uniform partitions. Each tile
consists of a set of iterations which can be executed in parallel.
The minimum dependence distances dimin and dimin can be used

to determine the tile size. We first determine whether di (2, y)=O
passes through the IDCH. Ifit does not, then dimin can be obtained
by selecting the minimum dependence distance in dimension a of
the set of extreme vectors. Otherwise. if d j (z, y)=O does not pass
through the IDCH we can determine dim,,. We consider these
cases separately and propose suitable partitioning methods. With
the help of examples we demonstrate the tiling and synchronization
schemes.
Case I: d;(z, y)=O does not pass through the IDCH

In this case, as the di (2, y)=O does not pass through the IDCH,
the IDCH is either on the d,(z, y) > 0 side or d;(z, y) < 0 side.
From theorem 2, the absolute minimum of d; occurs at one of the
extreme points. Suppose this minimum value of d;(z, y) is given
by dimin. Then, we can group the iterations along the dimension
i into tiles of width dimin. All the iterations in this tile can be
executed in parallel as there are no dependences between these
iterations (no dependence vector exists with di < &in) . The
height of these tiles can be as large as N where N = UJ - LJ + 1.
Inter-iteration dependences can be preserved by executing these
tiles sequentially. No other synchronization is necarsary here. If
the tiles are too large, they can be divided into subtiles without loss
of any parallelism.

We can now apply this method to the nested loop program
segment given in example l(b). It’s IDCH is shown in Fig. 4(b).
Here, di (2, y)=O does not pass through the convex hull. So from
theorem 2, the absolute value of the minimum dependence distance
can be found to be di,i,=abs(-4)=4. This occurs at the extreme
points (5.1) and (lo,@. So, we can tile the iteration space of size
M * N with dimzn=4 as shown in Fig. 7. The number of tiles in
the iteration space can be given as T, = except near the
boundaries of the iteration space, where the tiles are of uniform
size M * diman. Parallel code for example l(b) can be given as
in Figure 8. This parallel code applies to any nested loop segment
that satisfies case 1 and of the form as given in 2 with LI = 1,
Ur = N , LJ = 1, UJ = M .

1 1 1 . 1 1 , . . 1 0 I

Figure 7 : Tiling with minimum dependence distance di

Theoretical speedup for this case can be computed as follows.
Ignoring the synchronization and scheduling overheads, each tile
can be executed in one time step. So, the total time of execution
equals the number of tiles T,. Speedup can be calculated as the
ratio of total sequential execution time to the parallel execution
time.

M * N
Speedup= -

T,
Minimum speedup with our technique for this case is M , when
T, = N (i.e., dimin=l).

79

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 24, 2008 at 14:45 from IEEE Xplore. Restrictions apply.

DOserial K = 1, T,
Doparallel I = (K-l)*dim,,+1, min(K*di,i,, N)

Doparallel J = 1, M
A(2*J+3,1+1) = ;
...... = A(Z*I+J+l,I+J+3);

E NDDOparalle I
E NDDOparalle I

END Dose rial
Figure 8: Parallel code for scheme 1

Case II: d j (z, y) = 0 does not pass through the IDCH
Here, since dj (2, y)=O does not pass through the IDCH, we

have djmin at one of the extreme points. As di(z,y)=O goes
through the E H , we take the absolute value of &,in to be 1. So,
wetiletheiteration spaceinto tiles with width=l and height=dj,i,.
This means, the iteration space of s u e M * N can be divided into
N groups with T, = [el tiles in each group. Iterations in a
tile can be executed in parallel. Tiles in a group can be executed
in sequence and the dependence slope information of Tzen and Ni
[6] can be used to synchronize the execution of inter-group tiles.

Tzen and Ni [6] presented a number of lemmas and theorems to
find the maximum and minimum values of the Dependence Slope
Function d&ed as DSF = ~ j ~ ; : ~ . These minimum or maxi-
mum dependence slopes can be used to enforce the dependence
constraints among the iterations. The execution of the inter-group
tiles can be ordered by applying a basic dependence vector with
min(max) slope. Consider the nested loop given in Example 2.
Figure 9(a) shows its IDCH. Note that d,(z, y)=O passes through
the IDCH while d j (2, y)=O does not pass through the IDCH. The
djmin can be computed to be 4 and the iteration space can be tiled
as shown in Figure 9(b).

Example 2:
for I = 1, 10

for J = 1.10
A(2*1+3J+1) =
...... = A(Z*J+I+l,I+.J+3)

endfor
endfor

For this example, we can find the minimum dependence slope
to be -min(M - l , P) , where P=10 and M=ll. Therefore,
DSFmi,=-lO. Applying this to the iteration space, we find that
an iteration i of any group (except the first one) can be executed
as soon as the previous group finishes the (i + iteration.
As we tile these iterations, we can compute the inter-group tile
dependence slope as T, = 1- 1. So, we can synchronize
the tile execution with a inter-group tile dependence vector (l,Ts).
If T, is negative, then this dependence vector forces a tile i of
j t h group to be executed after the tile i + ITs[of group j - 1.
Otherwise, if T, is positive then a tile i of group j can be executed
as soon as (i - Ts)th tile in group j - 1 is executed. Figure
9(b) shows the tile space graph for this example. In this figure Gi

denotes a group and T,j denotes j t h tile of group a. Parallel code
for this example is given in Figure 10. Speedup for this case can
be computed as follows. The total serial execution time is M * N .
Since the parallel execution time is T, + (N - 1) * T,. Hence,
the speedup is given as

M * N
Speedup =

Tn + (N - 1)Ts

Figure 9: (a) IDCH of Example 2 (b) Tiling with minimum
dependence distance d3

CaseIII: d,(z,y)=Oandd,(z,y)=OpassthroughtheIDCH
For thecase wherebothd, (2, y)=O andd, (z, y)=Opass through

the IDCH. we assume both d,,,, and d,,,, to be 1. So, each tile
corresponds to a single iteration. The synchronization scheme
given in Figure 10 is also valid for this case. For this case our tech-
nique performs as good as the dependence uniformization tech-
nique.

In the next section, we compare the performance of our tech-
nique with existing techniques and analyze the improvement in
speedup.

Tilenum T, =
Tile slope T, = *d'F)m," ~1

DOacross I = 1, N
Shared integer JlNI
DOserial J[II = 1, T,

if (I > 1) then
while (J(1-1) < (JO+T,))

wait;
DOparalle I K = (J[a -1)*dj ,in + 1, JDI *dj

A(21+3, K+1) = ;
...... = A(I+ZK+l,I+K+3);

ENDDOparallel
END Dose rial

ENDDOacross
Figure 10 Parallel code for scheme 2

5 PERFORMANCE ANALYSIS
Many existing techniques cannot parallelize the type of nested

loops considered in this paper because of the irregularity of the de-

80

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 24, 2008 at 14:45 from IEEE Xplore. Restrictions apply.

pendences. Though some advances have been made to solve this
problem, the amount of parallelism that the existing techniques
extract is very low compared to the available parallelism. In the
previous sections we have presented simple schemes to campute
minimum dependence distance and used it to partition the nested
loop iteration spaces with irregular dependences. Now, we can-
pare our algorithms with some existing methods.

The dependence unifarmization method presented by Tzen and
Ni [a] computes dependence slope ranges in the DCH and forms
a Basic Dependence Vector (BDV) set which is applied to every
iteration in the iteration space. The iteration space is divided into
groups of one column each. Index synchronization is then ap-
plied to order the execution of the iterations in different graups.
Our argument is that this method imposes too many dependences
on the iteration space, thereby limiting the amount of extractable
parallelism. Consider example l(b). If we apply the dependence
unifarmization technique, a BDV set can be formed as {(OJ),
(1,-l)}. The iteration space is uniformized and with index syn-
chronization, the maximum speedup that can be achieved by this
technique is Speedup,,if = 9, where r) = 1-t is the delay and t =
[DSFmin J or rDSF,,,]. This speedup is significantly affected
by the range of dependence slopes. If the dependence slopes vary
over a wide range, in the worst case this method would result in
serial execution. For the example undef cansideration (Example
l(b)) the speedup with unifarmization technique is 5 . Figure 7
shows the tiled itexation space obtained by applying our minimum
dependence distance tiling method. From the analysis given in the
previous section the speedup with our method is 9, which is
more than 30. So, our method gives a significant speedup cam-
pared to the dependence uniformization technique. Even for the
case diminzl OUT technique gives a speedup of 10 (M) which is
much higher compared to the speedup with their technique. An im-
portant feature of our method is that the speedup does not depend
on the range of dependence slopes.

For Example 2, d;(z , 9) = 0 passes thraugh its IDCH and
d j (z , y) = Odoesnot. So, wefollowour secondapproachtotileits
iteration space. For this example, the dependence unifarmization
technique forms the BDV set as {(OJ), (1.-lo)} and the speedup
can becalculatedas 7 = N 1. Our method gives a speedup of
T,+f;tl-nll lTa N 3. So, we have a significant speedup improve-

speedup is as good as the speedup with their technique. Moreover
the IDCH formed by our method gives more precise dependence
slope information.

Though the minimum dependence vector set of Tseng &.al.,
[lo] can be used to farm somewhat similar rectangular partitions,
their grouping techniques do not consider all the cases. Also, the
method they used to compute the minimum dependence vector set
may not always give minimum dependence distances. Moreover,
they use integer programming techniques to compute the minimum
dependence vector set which definitely is time consuming. Their
method does not work for certain cases [81.

ment in this too. For the case where dimin = djmin=l OUT

6 CONCLUSION
In this paper we have presented simple and computationally

efficient tiling techniques to extract maximum parallelism from

nested loops with irregular dependences. The cross-iteration de-
pendences of nested loops with non-unifctrm dependences are ana-
lyzed by forming an Integer Dependence Convex Hull. Minimum
dependence distances are computed from the dependence vectors
of the IDCH extreme points. n e s e minimum dependence dis-
tancm are used to partition the iteration space into tiles of uniform
size and shape. Dependence slope information is used to enforce
the inter-iteration dependences. Pseudo code for parallel execution
of the tiles is given. We have shown that our method gives much
better speedup than the existing techniques and exploits the inher-
ent parallelism in the nested loops with non-uniform dependences.

ACKNOWLEDGEMENTS
We would like to thank members of our Parallel m d Distributed

Computing Laboratory for their useful suggestions.

References

Z. Shen, Z. Li and P.-C. Yew, “An empirical study on array
subscripts and data dependencies,” in Proceedings of the In-
ternafional Coqerence on Parallel Processing, pp. II-145 to

M. Wolfe. Optimizing Supercompilers for Supercomputers.
The ha press Cambridge: Pitman Publishing, 1989.
U. Banerjee. Dependence Analysis for Supercomputing.
Kluwer Academic Publishers, 1988.
J. Ramanujam and P. Sadayappan, “Tiling of multidimen-
sional iteration spaces for multicomputers,” Journal of Par-
allel and Distributed Computing, vol. 16, p. 108 to 120, Oct
1992.
P. Jrigoin and R. ?tiole$. “Supernode partitioning,” in Con-
ference Record of the 15th ACM Symposium on Principles of
Programming Languages, (San Deigo, CA), p. 319 to 329,
1988.
T. H. T m and L. M. N i “Dependence unifarmization: A
loop parallelhation technique,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 4, p. 547 to 558, May
1993.
M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Pro-
gramming and Network Flows. John Wiley & sons, 1990.
S. Punyamurtula and V. Chaudhary, “On tiling nested loop
iteration spaces with irregualr dependence vectors,” Tech.
Rep. TR-94-02-22, Parallel and Distributed Computing Lab-
oratory, Wayne State University, Detroit, Mar 1994.
A. Schrijver. Theory of Linear and Integer Programming.
John Wiley & sons, 1986.
S.-Y. Tseng, C.-T. King, and C.-Y. k g . “Minimum depen-
dence vector set: A new compiler technique for enhancing
loop parallelism,” in Proceedings of I992 Internaiional Con-
ference on Parallel and Distributed Systems, (Hsinchu. Tai-
wan, R.O.C.). p. 340 to 346. Dec 1992.

II-152,1989.

[ll] W. A. Spivey, Linear Programming, An Introduction. The
Macmillan company, 1%7.

81

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 24, 2008 at 14:45 from IEEE Xplore. Restrictions apply.

