
;
Chapter 3
Naming Objects: Variables and References
;

Pedagogic Motivations
• Naming objects so that we can refer to them more than once is a very important

concept. This chapter studies naming in detail, explaining the difference between an
object and a reference to an object, and the difference between anonymous and named
references.

• The local variable dependency is introduced.

Introduction
One of the first things two people exchange when they meet is names. People do this in

order to have a way of referring to each other. In fact, naming is so useful that people give
names to many things in their environment, not only people. Pets are given names, as are
cars, houses, even pieces of furniture. Once an object has been named it can be referred to
and talked about.

Objects and references
Building a model involves more than just identifying objects. We said early on in our

study of object oriented modeling that object oriented models consist of collections of
interacting objects. Remember that objects interact with each other by sending messages to
each other. In order for one object to send a message to another object, the object sending the
message must be able to refer to the object that the message is destined for. Our ability to
build an object oriented system is severely limited by our inability to refer to an object after
it’s been created.

Let us say, quite informally for the time being, that if one object can refer to another
object then the former has a reference to the latter. Having a reference to an object is a
central aspect of object communication. A goal of this chapter is to explain how we can
associate names with objects in programming languages. There are many different ways in
which one object can come to have a reference to another object. The different ways in which
the reference is established correspond to different relationships. In this chapter we introduce
one new relationship that can occur between objects in a model, local variable dependency.

Referring to Objects
We have seen how to create an object and invoke one of its capabilities. An example we

showed in an earlier chapter was the following:

new chapter1.Terrarium().add(new chapter1.Ant())

© 2006 Carl Alphonce & Adrienne Decker 1

Chapter 3: Naming Objects: Variables and References

We know that evaluating this expression results in two new objects being created: a

Terrarium object and an Ant object. The add capability of the Terrarium adds the object it is
given in its argument list to the Terrarium environment, so that the Ant appears within the
graphical representation of the Terrarium.

Suppose we wanted to have more than one Ant in the Terrarium at a given time. With
what we know so far about programming languages, we cannot do this! We can certainly
create more Ant objects – each time we evaluate the expression new chapter1.Ant() a
new Ant object is created, so that’s not the problem. The problem is that we cannot keep
adding Ant objects to the Terrarium object we already have, because we have no way of
referring to that Terrarium object more than once. In particular, we cannot repeat the same
expression, as in,

new chapter1.Terrarium().add(new chapter1.Ant())

because then yet another Terrarium is created to hold the new Ant, rather than putting the Ant
into the Terrarium we already have (try it)! In effect this expression says “create a new Ant
object and put it into a new Terrarium object”. What we want to the able to say is “create a
new Ant object and put it into the Terrarium object we created before”. To express “the
Terrarium object we created before” we need a name.

Let us suppose we were able to name the Terrarium object we created in the first
expression ourFirstTerrarium. In this case we could achieve what we want by writing

ourFirstTerrarium.add(new chapter1.Ant())

So what can we do? In order to be able to refer to one and the same object across several

method invocations, we need to name that object. In Java we use a variable to associate a
name with an object reference.

Declaring variables
Java requires that, before we use a variable, we say what type of object the variable will

refer to. What is a type? For now, we can equate “type” with “class”, since classes are the
only sort of type we have seen so far. Later on we will learn that there are different sorts of
types, and at that point we will need to make a distinction between the broader concept of
type and the narrower concept of class.

We express the type of a variable in a variable declaration. We will come across
variable declarations in a variety of situations in Java. At its most basic, a variable
declaration consists of a type and an identifier (the name of the variable):1

1 Languages differ in whether they require programmers to declare variables. Statically typed languages require
that the types of all variables be known at compile time, whereas dynamically types languages only require that
types be known at runtime. There are advantages and disadvantages to both static typing and dynamic typing,
but a discussion of the pros and cons are best left for a programming languages course to tackle.

2 © 2006 Carl Alphonce & Adrienne Decker

 Objects and References

type identifier

Where in a class definition does a variable declaration belong? The answer to this

question really depends on what role we want the variable to play in the class. To start with
we will discuss variables which are declared inside a constructor for a class.

Declaring local variables
A declaration of the variable ourFirstTerrarium to be of type

chapter1.Terrarium takes the following basic form:

chapter1.Terrarium ourFirstTerrarium

The exact form of the declaration depends on where it appears. The first place we will

explore variable declarations is within a constructor for the class. In this case the variable is
known as a local variable. The simplest form of a local variable declaration is,

type identifier;

The convention for a local variable name is that it should begin with a lower case letter, and
the first letter of each subsequent word in method name is capitalized.

 The ‘;’ indicates the end of the variable declaration, in the same way that a period
indicates the end of a sentence. Continuing our earlier example, the complete declaration of
the variable ourFirstTerrarium to be of type chapter1.Terrarium as a local
variable is:

chapter1.Terrarium ourFirstTerrarium;

Objects and References
Now we have a variable! A variable is used to create a name-value association. We gave

the variable a name in its declaration, but what about a value? In other words, how to we

© 2006 Carl Alphonce & Adrienne Decker 3

Chapter 3: Naming Objects: Variables and References

make ourFirstTerrarium refer to a specific chapter1.Terrarium object? To
answer this question, let us review a little.

We have learned that we can create a new object by instantiating a class. We do this by
using the new operator together with a constructor for the class we wish to instantiate, as in:

new chapter1.Terrarium()

This is an example of something called an expression. An expression can be evaluated. You
are probably used to seeing expressions like 3+4 and 7*2. These are arithmetic expressions.
They can be evaluated to produce the values 7 and 14 respectively.

What is the value of an expression like new chapter1.Terrarium()? The
obvious answer is that it is an object, and this is almost correct. When evaluated, it does
result in the creation of an object, but the value of this expression is something called a
reference to an object.

What is the difference between an object and a reference to an object? Consider the
difference between a house and the address of a house. We can draw an analogy between an
object and house on the one hand, and a reference to an object and the address of a house on
the other. The address of a house can be used to refer to a house without having to go to the
house. For example, I can tell you that when I was young I lived at 9 West View Road.
Having the address makes it easier to refer to the house from lots of different places – it
enables me to refer to the house without actually being at the house. Similarly a reference to
an object allows one to refer to an object without having to be “at the object” (in a sense to be
made more precise later on).

To set up the name-value association of a variable, we assign a reference to the variable
(the reference is to the object we wish to name). Assignment of a value to a variable is
accomplished using an assignment statement, whose general form is:

idenfifier = expression;

“=” is called the assignment operator. The assignment operator evaluates the expression

on its right (called the RHS, short for Right Hand Side) and assigns the resulting value to the
variable on its left (called the LHS, short for Left Hand Side). The identifier must therefore
be the name of a variable, and the value of the expression must be of the type as the declared
type of the variable being assigned to.

To associate a chapter1.Terrarium object with the variable
ourFirstTerrarium, we write:

chapter1.Terrarium ourFirstTerrarium;
ourFirstTerrarium = new chapter1.Terrarium();

4 © 2006 Carl Alphonce & Adrienne Decker

 Objects and References

What is an expression?
We had said that something like new chapter1.Terrarium() is an expression, whose value

is a reference to an object. But is every expression of this form? No – there are many ways to
form expressions in Java. In fact, a variable can be an expression! The value of a variable is
the reference assigned to it.2 This is why we can write things like:

ourFirstTerrarium.add(new chapter1.Ant())

Combining declarations and assignments
Like many programming languages, Java allows us to combine the declaration of a

variable with the assignment of an initial value to it. An initializing declaration has the
following form:

type identifier = expression;

A concrete example would be,

chapter1.Terrarium ourFirstTerrarium = new chapter1.Terrarium();

The null reference
Once we have the notion of a reference to a particular object we can talk about a

reference which does not refer to any object. This is the address equivalent of an address
which does not correspond to any real house. For example, there was no 0 West View Road
on the road where I grew up. In terms of object references there is only one reference which
does not refer to an object; it is called null. The Java compiler gives the default value of
null to any variable not explicitly assigned a value.3,4

2 Things are not quite as simple as this. In fact, when the variable appears to the left of the assignment operator,
‘=’, the value of the variable is its location in the memory of the computer. This value is known as the variable’s
“l-value” (the value we are referring to when the variable occurs to the left of the assignment operator. In other
situations the value of the variable is its “r-value” (the value we are referring to when the variable occurs to the
right of the assignment operator).
3 We will learn later one that this is not the default value for all variables; it is, however, the default value for all
variables we will use for most of this text.

© 2006 Carl Alphonce & Adrienne Decker 5

Chapter 3: Naming Objects: Variables and References

Anonymous variables (advanced)
Although we did not explicitly declare a variable for the reference that we created when

we first wrote,

new chapter1.Terrarium()

the reference had to be stored somewhere. And indeed the reference is stored in a variable,
but one which is automagically created by the compiler and which does not have a name!
Because the variable does not have a name, we cannot use the variable to refer to the object.
A variable without a name is called an anonymous variable.

The Local Variable Dependency Relationship
The local variable dependency is very similar to the instantiation dependency, which we

first saw at the end of chapter 2. There we said that the instantiation dependency exists
between two classes when one of them (the “source” class) creates an instance of the other
(the “target” class). In the local variable dependency relationship the source class still creates
an instance of the target class, but it stores a reference to the newly created object in a local
variable.

Local Variable Dependency Relationship in UML
Inside a UML diagram, two classes that are in the local variable dependency relationship

have a dashed arc with an arrow head between them. The arrow points from the source class
to the target class. Since both instantiation dependency and local variable dependency are
variations on the same basic “dependency” relationship, the arc is the same in both cases.
Green labels the arcs of these two relationships to help distinguish them in the UML diagram.
The local variable dependency arc is labeled “<<Local Assignment>>”:

Local Variable Dependency Relationship in Code
The relationship shown in the diagram above, if drawn in Green, will result in the

following code being generated:

package chapter3;

4 Not all languages require compilers to provide default values for uninitialized variables (variables declared but
not assigned a value). The Java programming language does require this.

6 © 2006 Carl Alphonce & Adrienne Decker

 The Local Variable Dependency Relationship

public class EcoSystem {
 public EcoSystem() {
 chapter1.Terrarium _terrarium = new chapter1.Terrarium();
 }
}

Notice that Green automatically generates a variable name, and combines the declaration

of the variable with its initialization.

Relationship cardinality
Recall how far we had gotten at the end of chapter 2 with our EcoSystem example:

package chapter2;

public class EcoSystem {
 public EcoSystem() {
 new chapter1.Terrarium().add(new chapter1.Ant().start());
 }
}

With what we now have learned about local variables we can create an EcoSystem (in a

chapter3 package) that has one chapter1.Terrarium containing two chapter1.Ants. In this
example we keep the declaration of the ourFirstTerrrarium variable separate from the
initialization of the variable, which occurs in a separate statement.

© 2006 Carl Alphonce & Adrienne Decker 7

Chapter 3: Naming Objects: Variables and References

8 © 2006 Carl Alphonce & Adrienne Decker

package chapter3;

public class EcoSystem {
 public EcoSystem() {
 chapter1.Terrarium ourFirstTerrarium;
 ourFirstTerrarium = new chapter1.Terrarium();
 ourFirstTerrarium.add(new chapter1.Ant().start());
 ourFirstTerrarium.add(new chapter1.Ant().start());
 }
}

The UML diagram above only showns the two classes chapter3.EcoSystem and

chapter1.Terrarium. If we add chapter1.Ant into the diagram, this is what we get:

Here you can see the different labels on the two arcs. Notice also that the instantiation

dependency arc is labeled with a “2” in addition to “<<Instantiation>>”. This “2” appears
because the chapter3.EcoSystem class creates two instance of chapter1.Ant, and is called a
cardinality annotation. When no cardinality annotation is given on a relationship line, the
cardinality of the relationship is assumed to be 1.

	Introduction
	Objects and references
	Referring to Objects
	Declaring variables
	Declaring local variables

	Objects and References
	What is an expression?
	Combining declarations and assignments
	The null reference
	Anonymous variables (advanced)

	The Local Variable Dependency Relationship
	Local Variable Dependency Relationship in UML
	Local Variable Dependency Relationship in Code
	Relationship cardinality

