

© 2006-2007 Carl Alphonce & Adrienne Decker 1

;

Chapter 6
Polymorphism
;

Pedagogic Goals
 Introduce the notion that polymorphism allows us to model inherent differences in the

implementation of identical capabilities.

 Introduce the notion that polymorphism is a form of selection, based on the type of an

object.

 Present design patterns as structuring mechanisms for code which allow us to build

software systems possessing certain desirable characteristics.

Introduction
In the real world we often come across systems with the same capabilities which

nonetheless differ quite a bit in the realization of those capabilities.

Example 1

Four-legged mammals have two different forms of walk. Some four-

legged mammals, like dogs, walk by moving their left-rear and right-front legs

together, and right-rear and left-front legs together. Others, like giraffes, walk

by moving both legs on one side together. Both dogs and giraffes have the

capability to walk, but they do so in quite different ways.

http://www.earthlife.net/mammals/locomotion.html

Because dogs and giraffes both walk but they walk differently, we say that dogs and

giraffes are polymorphic in their walking capability. In this chapter we will explore many

different systems which exhibit polymorphic behavior naturally. We will also learn how to

build object oriented models which exploit the natural polymorphism of systems to yield

flexible and easily extensible software.

Polymorphism is natural
Polymorphism refers the ability of different types of things to react differently to the

same stimuli. In our object oriented systems, this means that different types of objects can

respond differently to the same method call.

Polymorphism is a very natural, everyday phenomenon. We unconsciously make use of

polymorphism several times a day. Before we look more closely at what polymorphism looks

like in an executable model, let us consider several more examples of polymorphic behavior.

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Polymorphism

2 9/29/2008

Example 2

One of the authors is a bit of an old-timer. He has a cassette deck hooked

up to his stereo. He also has a CD player hooked up. The other author, who is

far more hip, has an MP3 player. All of these devices can play music. They

all have a “play” functionality. However, how they play their music is quite

different. Playing is polymorphic!

The tape deck uses a magnetic head, called the read head, to read

information from a magnetic tape which is passing below the head. The tape is

pulled along from one reel of the cassette tape to another reel in the cassette by

a little motor.

The CD player uses an optical read head to read digitally encoded

information from the pitted surface of a CD as a stream of bits. The CD is

rotated about its center by a motor. When the surface of the CD passes under

the read head, laser light is reflected off the surface of the CD – depending on

how the light reflects off the surface the CD player is able to distinguish 0’s

from 1’s and thereby read each bit of information from the CD.

The MP3 player has no moving parts. It reads similar kinds of digital

information from its memory as the CD player extracts from the surface of a

CD.

Even though tape decks, CD players and MP3 players interpret a “play”

instruction very differently, they can all play the same music. This is

polymorphism at work.

Example 3

Once upon a time printing terminals with dot matrix print heads were the

latest thing. Nowadays inkjet printers and laser printers are common. A

document can be printed on any of these kinds of printers, but the means of

forming an image on a piece of paper is quite different.

The Digital Equipment Corporation DEC-Writer was a printing terminal

with a single dot-matrix print head. A dot-matrix print head has several pins

which can be pushed out against an inked ribbon, which is pressed against a

piece of paper, thereby making an impression on the paper. Characters were

made by different patterns of pin impressions, usually on a 5 by 7 grid.

The inkjet printer and the laser printer use two very different printing

technologies. Printing with an inkjet printer works by spraying a small amount

of ink from a nozzle onto the page. Printing with a laser printer works by

charging points on a rotating drum; charged regions pick up toner as the drum

rotates, which is then melted onto the paper by a high-temperature fuser.

In all cases the printer “prints” a page of information, but in a decidedly

different way. The software which is sending information to the printer need

not know what printer the information is being sent to – the printer knows how

to print in its own polymorphic way.

 Polymorphism is natural

© 2006-2007 Carl Alphonce & Adrienne Decker 3

When we model systems in object oriented terms we want to be able to capture these aspects

of systems. These are examples of polymorphic behaviors. In object oriented terms we

model polymorphic behaviors by defining methods polymorphically. One way a method can

be defined polymorphically occurs when different classes, all of which implement the same

interface, provide distinct definitions for a method specified in the interface.

Example 4

There are two basic kinds of automatic car washes: mechanical

(apparently called “cloth-friction”) and touchless. A mechanical car wash uses

brushes of some sort to scrub the outside of the car, while a touchless car wash

uses powerful water sprays and strong chemicals to clean the car. Many of

these systems are under computer control. As far as the client of the carwash

is concerned the possible operations that the carwash can perform are the same,

such as rinse, wash, wax, undercarriage spray and dry. The way the computer

controls need to implement these operations is quite different. This is yet

another example of polymorphic behavior.
1

The basic framework for implementing the car wash control could be something like the

following:

1
 For more information about car washes, see

 en.wikipedia.org/wiki/Carwash

 auto.howstuffworks.com/car-wash.htm

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Polymorphism

4 9/29/2008

Let us suppose that in a typical car wash installation there is a user interface which lets a

person select the type of wash that they want for their car. The user interface may have

buttons like the ones shown below:

The software that runs the user interface records what kind of wash a person selects, and

communicates this to the software that controls the running of the car wash. In order to

enable this sort of communication the user interface must declare an instance variable of type

CarWashController.

Notice that the UserInterface does not know (or care) what actual type of

CarWashController it is communicating with. As long as the controller object conforms

to the interface specifications, the user interface object can communicate with it just fine.

This means that the user interface manufacturer can build a single user interface that talks

just as well to a TouchlessController as to a ClothFrictionController. In

this way the UserInterface and the actual controller implementations are decoupled.

Economy wash

rinse, wash, dry

Regular wash

rinse, wash, wax, dry

Deluxe wash

rinse, wash, undercarriage

spray, wax, dry

$ 5.00

$ 7.00

$ 9.00

 Types and subtypes revisited

© 2006-2007 Carl Alphonce & Adrienne Decker 5

Imagine what the system would have to look like without the interface. In this case the

UserInterface class could not take advantage of the interface type – its constructor

would instead have to be defined to take an object of a class type rather than an interface type,

as in:

public UserInterface(ClothFrictionController controller) {...}

Of course, if the UserInterface is defined this way it can only work with a

ClothFrictionController and not any other type of controller. With this design, in

order to accommodate two types of controller we would have to define another type of user

interface class, whose constructor takes a parameter of the appropriate type.

Now follow this to its logical conclusion. Without an interface the class which provides

the functionality of the user interface needs to be replicated for each type of controller we

have in the system. Think about this: every time a new controller is added, we also have to

add a new user interface class! Not even thinking about the fact that these classes will all do

essentially the same thing, this means that instead of adding one new class, we have to add

two!

If we use an interface, it allows us to isolate (decouple) the part of the system that needs

to change when we add a new controller, making extension of the existing system much easier

and less costly.
2
 Moreover, when we use an interface we need to write the code for the

UserInterface only once. If the UserInterface code needs to be changed at some

point in the future this means that it only needs to be changed once, not once per controller

that is in the system! In other words, employing an interface allows us to structure the overall

system so that a small change in the requirements of the system results in a small change to

the system. Without using an interface a small change in the requirements of the system

results in a large change to the system.

There is an additional advantage to structuring software in this way: not only is it easy for

the user interface object to communicate with either of the existing controller

implementations, it can also communicate with any future car wash controller, as long as it

implements the CarWashController interface! The beauty of decoupling in is that no

matter what new car wash controllers are dreamt up in the future, UserInterface class

will never need to be changed, as it is insulated from any changes in the software past the

CarWashController interface.

Types and subtypes revisited
We know from discussions in previous chapters that the realization relationship between

a class and an interface introduces a subtyping relationship between the type of the class and

2
 This sort of analysis, which essentially breaks a system down into the parts that can change and the parts that

stay the same, is called “commonality-variability analysis” and also “variant-invariant decomposition”. The

basic idea is that we want to decouple variant parts of a system from invariant parts of a system, so that changing

one does not necessitate changing the other.

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Polymorphism

6 9/29/2008

the type of the interface.
3
 It is worth emphasizing again that an object of a subtype can used

whenever an object of the supertype is expected. Consider the following snippet of code.

public class UserInterface {
 private CarWashController _controller;

 public UserInterface() {
 _controller = new ClothFrictionController();
 }
}

In this code the instance variable _controller is declared to be of type

CarWashController, yet an object of type ClothFrictionController is assigned

to it. This is perfectly acceptable, but only because the type

ClothFrictionController is a subtype of the type CarWashController.

A note about terminology. We make a distinction between the type of a variable (which

is the type specified in the variable’s declaration) and the type of the object that the variable

refers to (the class from which the object is instantiated). The former we call the declared

type of the variable, while the latter is referred to as the actual type of the object. In the code

snippet above we would say that the declared type of _controller is

CarWashController, and that the actual type of the object assigned to _controller is

ClothFrictionController. We will, by slight abuse of terminology, sometimes refer

to the actual type of a variable – what we mean in this case is the actual type of the object that

the variable currently refers to.

Let us now look at what the code for the UserInterface class might look like in a bit

more detail.

package chapter5.carwash;

/**
 * @author alphonce
 */
public class UserInterface {

 private ICarWashController _carWashController;

 /**
 * @param carWashController
 */
 public UserInterface(ICarWashController carWashController) {
 _carWashController = carWashController;
 }

 /**
 * Instructs a CarWashController to

3
 This idea that subtyping should imply substitutability is due to Barbara Liskov and Jeanette Wing, “A

Behavioral Notion of Subtyping”, ACM Transactions on Progamming Languages and Systems, volume 16,

number 6. It is called the Liskov Substitution Principle.

 Types and subtypes revisited

© 2006-2007 Carl Alphonce & Adrienne Decker 7

 * 1) rinse
 * 2) wash
 * 3) dry
 */
 public void economyWash() {
 _carWashController.rinse();
 _carWashController.wash();
 _carWashController.dry();
 }

 /**
 * Instructs a CarWashController to
 * 1) rinse
 * 2) wash
 * 3) wax
 * 4) dry
 */
 public void regularWash() {
 _carWashController.rinse();
 _carWashController.wash();
 _carWashController.wax();
 _carWashController.dry();
 }

 /**
 * Instructs a CarWashController to
 * 1) rinse
 * 2) wash
 * 3) undercarriage spray
 * 4) wax
 * 5) dry
 */
 public void deluxeWash() {
 _carWashController.rinse();
 _carWashController.wash();
 _carWashController.undercarriageSpray();
 _carWashController.wax();
 _carWashController.dry();
 }
}

Consider the method economyWash. This method’s body consists of a sequence of

method calls. The method calls are made to the object referred to by the variable

_carWashController. Do we know, by looking at this code, whether this variable refers

to a ClothFrictionController object or a TouchlessController object? In

fact, we do not. Does this matter? No! Regardless of what type of object

_carWashController refers to, the method calls will work. The actual implementation

of those methods may well be different in the two classes ClothFrictionController

and TouchlessController. That is, in fact, the point of polymorphism. The interface

tells us what methods are callable, whereas it is up to the implementing classes to define how

to respond to those method calls.

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Polymorphism

8 9/29/2008

Design Patterns: A Software Design Interlude
Let us now step back a bit and consider the software construction foundation which we

have laid down. A trait of a good software developer (or more generally of a good problem

solver) is being able to use their tools in effective ways. In this section we introduce some

good ways to solve problems; they are called design patterns. Design patterns are what are

known as best-practices solutions to recurring problems. Design patterns are mined from

existing software, and are recognized as being the best solutions to common problems.

How can we measure the goodness of a software solution? Goodness is not measured in

absolute terms, but is measured relative to one’s needs in a given situation. For instance, a

“quick-and-dirty” solution may be just what is called for in a proof-of-concept situation,

where we want to show that a particular solution is feasible. Such a solution may be

completely unacceptable in a production environment where things such as correctness,

robustness and security are paramount.

We will measure goodness according to the following criteria, since these are generally

regarded as desirable characteristics of software:
4

 Correctness – The software we build must perform according to the requirements

of the customer, as expressed in the software specifications.

 Robustness – The software must be able to gracefully handle invalid input, or

when expected resources (such as memory) are unavailable.

 Scalability – The software must be able to handle large tasks as well as small

tasks.

 Flexibility – The software must be able to adapt easily to new operating

environments.

 Extensibility – The software must be easily extended to cover new, hitherto

unforeseen situations.

 Maintainability – The software must be well-documented and constructed in a

manner conducive to making adjustments to fix behavior which is not quite

right.
5

 Dynamicity – The software must be dynamic: it must be designed and structured

in such a way that choices about program behavior are not arbitrarily fixed prior

to runtime. There are cases in which program behaviors should be fixed prior to

runtime, and not be permitted to vary, but in many cases the software is more

desirable if it permits runtime variation.

In the following subsections we will explore an example system and see how design patterns

help us to achieve some of these goals.

4
 We do not mean to imply that these are the only criteria according to which software quality should be judged.

Clearly missing from this list is security. Security of software and the data it processes is very important, yet a

proper discussion of security issues is beyond the scope of this text.
5
 The cause of the problem is immaterial: whether the specifications were incorrect to start with, or the

specifications were correct but were incorrectly implemented, or the specifications were correct and were

correctly implemented, but the customer’s requirements changed, the functionality of the software must be

adjusted for it to continue working acceptably in its current operating conditions.

 Design Patterns: A Software Design Interlude

© 2006-2007 Carl Alphonce & Adrienne Decker 9

A real-world application6

At some point in time you have probably come across an interactive program guide (IPG)

on a TV. An interactive program guide (IPG) allows a user to browse television

(cable/satellite) content in various ways, such as by channel, title, timeslot, and genre. Some

systems provide access to weather forecasts. It is also possible to use the IPG to set subtitle or

closed captioning options. To control the IPG a user presses keys on a remote control. The

remote control typically has a small number of buttons used for navigation and selection.

Depending on the current state of the IPG system, different things might happen when a given

button is pressed.

For example, selecting a program to watch in the normal TV mode will switch to the

indicated channel. However, in pay-per-view (PPV) mode some additional level of

confirmation is required, so that a user does not accidentally incur a charge for a program they

do not wish to pay for.

Similar systems are used in hotels to present guests with various kinds of information.

For example, hotel systems allow guests to order things as diverse as movies and room

service. They typically also allow guests to view their hotel bill on-screen and also to check

out.

A real-world software design

Let us now explore, from a fairly high-level perspective, some of the design issues which

crop up in this application.
7
 Among the many patterns incorporated in this example are

Iterator, State, Command, Null Object, and Singleton. The roles these patterns play and the

issues they are meant to address, are discussed below. Please note that you are not expected

to completely understand the role of these patterns in the software just yet. Rather, this

section is intended to give you a sense of the breadth of patterns being used in software, why

the patterns are used, and how use of patterns supports the construction of good software

(good according to the metrics given previously).

Iterator Pattern

The IPG system keeps track of many different lists, such as lists of channels, lists of

programs, and lists of genres. One of the things that a user of the system can do is browse

from one item in a list to another, either forwards or backwards. An iterator is an object

which keeps track of a position in a list; in the case of the IPG system it keeps track of the

current list element that the user has chosen. The notion of a traversal across a list is captured

in a pattern called the iterator pattern. One of the nifty thing about the iterator pattern is that

it abstracts the notion of an iteration and separates it from the structure of the list it is

traversing. This means that the IPG system is decoupled from any specific list that is being

used to store channel, program, genre or other similar information. A significant benefit of

6
 Much of the background for the discussion in this section is drawn from a presentation at the Third “Killer

Examples” for Design Patterns and Objects First workshop, by A. Sterkin, of NDS Technologies, a

manufacturer of IPGs for many content providers worldwide. The discussion is not entirely faithful to the

workshop presentation, however – it has been tailored to meet the needs of this text.
7
 This example is especially interesting because it is a real-world example combining a large number of design

patterns, which nonetheless is understandable because the patterns address issues which are in your everyday

experience. Oftentimes patterns in real-world software systems are less concrete.

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Polymorphism

10 9/29/2008

this is that the IPG system will work with any collection of data, as long as it is

iterable.

Polymorphsim is at work in the iterator pattern because the code using an iterator, the

Client1 in the diagram above, is decoupled from any specific iterator. In this way the

actual iterator object that the Client1 is using at any given point in time may well be

different from the actual iterator object being used at a different point in time. The iterators,

while they implement the same interface, define the typical iterator capabilities in different

ways.

State Pattern

If you think about an IPG system, you will likely notice that the behavior of the system

depends on its current state. When the IPG is in normal channel-browsing mode, the up and

down buttons have one meaning (they affect which channel is selected) whereas when the

IPG is in subtitle mode these buttons control whether subtitles are on or off. In other words,

the behavior of an IPG system is governed by the particular state that it is in. We say that the

system is state-based.

It is not simply that the behavior of just one or two buttons changes as the state of the

system changes. Indeed, the behavior associated with most of the buttons on the controller

change together as the state of the IPG changes. This is wholesale change in behavior is

easily modeled using a state pattern. The pattern ensures that state-based behavior of the IPG

system is coherent and consistent, by guaranteeing that the behavior off all the relevant

buttons is changed all at once.. A class diagram of a typical state pattern implementation

might look as

 Design Patterns: A Software Design Interlude

© 2006-2007 Carl Alphonce & Adrienne Decker 11

follows:

Using the state pattern in this example helps to ensure robustness: the program guide

system itself has an IProgramGuideState, which encapsulates all the necessary behavior

for the appropriate mode of operation.

Polymorphsim is at work in the state pattern because the state-based client, Client2 in

the diagram above, is decoupled from its specific state. The client knows a state, but it does

not know which specific state it is in. As in the case of the iterator, the actual state object that

Client2 is using at any given point in time may well be different from the actual state

object it is using at a different point in time. The states, while they implement the same

interface, define the typical state capabilities in different ways.

Command Pattern

The behaviors that are triggered when various buttons on the remote control are pressed

can be “objectified”, or encapsulated as objects. The advantage of doing this is that it

becomes easy to do things like keep track of what “commands” have been carried out, undo

commands. It is also easy to attach the same behavior to buttons in different states without

having to write the behavior more than once: the command object representing the behavior

can be shared. A typical command pattern is shown in the diagram

below.

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Polymorphism

12 9/29/2008

In the IPG system an added benefit of using this pattern is that because the behaviors are

objectified as command objects, the system retains the flexibility to easily accomodate new

menus with new features. The keyboard layout can also be changed quite easily, without

having to rewrite large amounts of code – command objects can be dynamically rebound to

different keys.

Polymorphsim is at work again in the command pattern. The client code using a

command, Client3 in the diagram above, is decoupled from any specific command. The

client knows a command, but it does not know which specific command it has access to. The

actual command object that Client3 is using at any given point can vary. The commands,

while they implement the same interface, define the typical command capabilities in

potentially different ways.

In each of these three patterns polymorphism allows the client to be decoupled from the

concrete classes which realize a relevant interface. This is a recurring theme in many design

patterns.

Null Object Pattern

In some states pressing certain buttons should not trigger any particular effect. In these

cases there is an appropriate command that we can use, the so-called null command. A null

command satisfies the interface for the command, but provides a minimal implementation of

the methods required by the interface. In our example, the implementation of a null command

for the ICommand is:

package chapter5.ipg;

/**
 * @author alphonce
 *
 */
public class NullCommand implements ICommand {

 /**
 * Constructor for this class.
 */
 private NullCommand() {}

 /**
 * @see chapter5.ipg.IRightArrowButtonStrategy#buttonPressed()
 */
 public void execute() {
 // DO NOTHING - THIS IS THE NULL COMMAND.
 }

}

The null command pattern is a specific example of a more general pattern, called the null

object pattern. The null object pattern is useful whenever there is a need to model the

absence of specific behavior. Null objects show up in many different situations, and simplify

the design of systems because the null object case is handled just like any other case: with an

object of the appropriate type injected into the system. This helps maintain the robustness of

 Design Patterns: A Software Design Interlude

© 2006-2007 Carl Alphonce & Adrienne Decker 13

the system: the same mechanisms are used to handle the typical and the exceptional cases,

rather than special-purpose code.

This pattern can be used in conjunction with many other patterns, to indicate a do-nothing

case. For example, in a state pattern a null state may well be defined as the initial state of a

system. A null command is useful in the context of the IPG system in case there is no

particular behavior associated with a given key on the remote control in some IPG mode: the

correct behavior if the user presses this key is to do nothing!

Singleton Pattern

Since a null object (typically) has no internal state, there is no point in having more than

one instance of a null object class existing at runtime. A null object class is therefore a

perfect candidate for the application of another useful pattern, the singleton pattern. In the

singleton pattern, the class to which it is applied takes responsibility for instantiating itself,

making available a reference to the single instance this exists. This pattern can be

implemented in a number of different ways; we have enough machinery in Java built up to

show one implementation, using a static and final variable. Unlike an instance variable, a

static variable is associated with the class, not any particular instance of the class. A static

variable is accessed via the name of the class, as is shown in the example below. A final

variable can be initialized, but cannot be assigned to once initialized. Lastly, in this

implementation of the singleton pattern the constructor for the class is declared private, so that

it may be invoked only within the body of the class definition. This allows the class to

guarantee that exactly one instance of the class is created.

package chapter5.ipg;

/**
 * @author alphonce
 *
 */
public class SingletonNullCommand implements ICommand {

 /**
 * This is a public class variable which holds a reference to the
 * sole instance of this class (its singleton instance).
 */
 public static final SingletonNullCommand SINGLETON = new
SingletonNullCommand();

 /**
 * Private constructor for this class, in support of the SINGLETON
 * pattern.
 */
 private SingletonNullCommand() {}

 /**
 * @see chapter5.ipg.ICommand#execute()
 */
 public void execute() {
 // DO NOTHING - THIS IS THE NULL COMMAND
 }
}

Using the singleton pattern helps to support robustness because unnecessary memory

resources are not expended on storing multiple instances of a class when only one is needed.

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Polymorphism

14 9/29/2008

This example has demonstrated the potential application of a handful of design patterns

in a real-world software system, and we briefly discussed some of the benefits that derive

from their use.

Summary
This chapter introduced the notion of polymorphism. Polymorphism is a mechanism for

dealing with alterative choices in a software system. As we have seen, polymorphism to this

point it has involved the use of an interface as a mechanism which decouples an invariant

component from a set of variant components. We also learned that design patterns can be

useful tools in building software systems which exhibit desirable characterstics, such as

robustness, flexibility and extensibility. Design patterns help because they allow us to

decouple the invariant parts of our systems from their variant parts. The separation of

concerns makes it easy to extend the code in controllable ways (by adding new variants to a

pattern, for example). Interfaces and polymorphism play an important role in realizing this

decoupling.

Case Study
Stay tuned…

Chapter Wrap-Up

Learning Objectives
At the end of this chapter students should be able to:

 Describe what polymorphism is.

 Identify polymorphism when used in code.

 List desirable properties of high quality software.

 Explain how judicious use of polymorphism can lead to high quality software.

Relationships Covered

Realization

Informal Name: realizes, implements

First introduced in: Chapter 4 – page Error! Bookmark not defined.

 Chapter Wrap-Up

© 2006-2007 Carl Alphonce & Adrienne Decker 15

UML representation:

In code: (from above diagram)
package chapter4;

public class ImplementingClass implements DefinedInterface {

}

Note: There is no code inside the class DefinedInterface to indicate the relationship

Composition

Informal Name: has-a

First introduced in: Chapter 4 – page Error! Bookmark not defined.

UML representation:

In code: (from above diagram)
package chapter4;

public class SourceForComposition {
 private TargetForComposition _targetForComposition;
 public SourceForComposition() {
 _targetForComposition = new TargetForComposition();
 }
}

Note: There is no code inside the class TargetForComposition to indicate the

relationship

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Polymorphism

16 9/29/2008

Association

Informal Name: knows-a

First introduced in: Chapter 4 – page Error! Bookmark not defined.

UML representation:

In code: (from above diagram)
package chapter4;

public class SourceForAssociation {
 private TargetForAssociation _targetForAssociation;

 public SourceForAssociation(TargetForAssociation tfa) {
 _targetForAssociation = tfa;
 }
}

Note: There is no code inside the class TargetForAssocation to indicate the

relationship

Local Variable Dependency

Informal Name: uses-a

First introduced in: Chapter 3 – page Error! Bookmark not defined.

UML representation:

In code: (from above diagram)
package chapter3;

public class EcoSystem {
 public EcoSystem() {
 chapter1.Terrarium _terrarium = new chapter1.Terrarium();
 }
}

Note: There is no code inside the class chapter1.Terrarium to indicate the

relationship.

 Chapter Wrap-Up

© 2006-2007 Carl Alphonce & Adrienne Decker 17

Instantiation Dependency

Informal Name: uses-a

First introduced in: Chapter 2 – page Error! Bookmark not defined.

In UML representation:

In code: (from above diagram)

package chapter2;

public class User {
 public User() {
 new ItemToBeUsed();
 }
}

Note: There is no code inside the class ItemToBeUsed to indicate the relationship.

Keywords Covered

final (page 13)

static (page 13)

Previously:

class (page Error! Bookmark not defined.)

implements (page Error! Bookmark not defined.)

interface (page Error! Bookmark not defined.)

new (page Error! Bookmark not defined.)

null (Error! Bookmark not defined.)

package (page Error! Bookmark not defined.)

private (page Error! Bookmark not defined.)

public (page Error! Bookmark not defined.)

return (page Error! Bookmark not defined.)

void (page Error! Bookmark not defined.)

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Polymorphism

18 9/29/2008

Naming Conventions Covered

Classes – Begin with an upper case letter. The first letter of each subsequent word in class

name is capitalized.

Instance variables – Begin with an underscore character. First letter of each subsequent

word in instance variable name is capitalized.

Interfaces – Begin with an upper case letter. The first letter of each subsequent word in

interface name is capitalized. Interface names are usually preceded by the capital letter I.

Local variables – Begin with a lower case letter. First letter of each subsequent word in

variable name is capitalized.

Methods – Begin with a lower case letter. The first letter of each subsequent word in method

name is capitalized.

Packages – Are written entirely in lowercase. Package names in nested packages are

separated by dots.

Vocabulary & Programming Terms Covered

New this Chapter:

correctness (8)

design patterns (8)

dynamicity (8)

extensibility (8)

flexibility (8)

maintainability (8)

polymorphic (1)

polymorphism (1)

robustness (8)

scalability (8)

Previously Covered:

abstraction (Error! Bookmark not

defined.)

access control modifier (Error!

Bookmark not defined.)

accessor (Error! Bookmark not defined.)

assignment operator (Error! Bookmark

not defined.)

bytecode (Error! Bookmark not

defined.)

calling [a constructor] (Error! Bookmark

not defined.)

calling [a method] (Error! Bookmark not

defined.)

capability (Error! Bookmark not

defined.)

Church-Turing thesis (Error! Bookmark

not defined.)

class (Error! Bookmark not defined.)

class body (Error! Bookmark not

defined.)

class diagram (Error! Bookmark not

defined.)

class header (Error! Bookmark not

defined.)

class type(Error! Bookmark not

defined.)

 Chapter Wrap-Up

© 2006-2007 Carl Alphonce & Adrienne Decker 19

comment (Error! Bookmark not

defined.)

compiler (Error! Bookmark not

defined.)

conceptual model (Error! Bookmark not

defined.)

constructor (Error! Bookmark not

defined.)

constructor body (Error! Bookmark not

defined.)

constructor definition (Error! Bookmark

not defined.)

constructor header (Error! Bookmark not

defined.)

domain (Error! Bookmark not defined.)

edit-compile-run cycle (Error! Bookmark

not defined.)

editor (Error! Bookmark not defined.)

empty method (Error! Bookmark not

defined.)

executable model (Error! Bookmark not

defined.)

expression (Error! Bookmark not

defined., Error! Bookmark not defined.)

IDE (Error! Bookmark not defined.)

identifier (Error! Bookmark not

defined.)

implement an interface (Error!

Bookmark not defined.)

instantiate [a class] (Error! Bookmark

not defined.)

instance variable (Error! Bookmark not

defined.)

interactions pane (Error! Bookmark not

defined.)

interface (Error! Bookmark not defined.)

interface type (Error! Bookmark not

defined.)

iterative process (Error! Bookmark not

defined.)

invoking [a constructor] (Error!

Bookmark not defined.)

invoking [a method] (Error! Bookmark

not defined.)

Java Virtual Machine (JVM) (Error!

Bookmark not defined.)

javac (Error! Bookmark not defined.)

keyword (Error! Bookmark not defined.)

lifetime (Error! Bookmark not defined.)

local variable (Error! Bookmark not

defined.)

method (Error! Bookmark not defined.)

method definition (Error! Bookmark not

defined.)

method stub (Error! Bookmark not

defined.)

model (Error! Bookmark not defined.)

mutator (Error! Bookmark not defined.)

naming conventions (Error! Bookmark

not defined.)

naming rules (Error! Bookmark not

defined.)

object (Error! Bookmark not defined.)

package (Error! Bookmark not defined.)

package declaration (Error! Bookmark

not defined.)

parameter list (Error! Bookmark not

defined.)

problem domain (Error! Bookmark not

defined.)

process (Error! Bookmark not defined.)

property (Error! Bookmark not defined.)

Chapter 6: Polymorphism

20 9/29/2008

property value (Error! Bookmark not

defined.)

reference (Error! Bookmark not

defined.)

relationship (Error! Bookmark not

defined., Error! Bookmark not defined.)

return type specification (Error!

Bookmark not defined.)

scope (Error! Bookmark not defined.)

semantics (Error! Bookmark not

defined.)

service (Error! Bookmark not defined.)

source code (Error! Bookmark not

defined.)

state (of an object) (Error! Bookmark not

defined.)

statement (Error! Bookmark not

defined.)

subtype (Error! Bookmark not defined.)

supertype (Error! Bookmark not

defined.)

syntax (Error! Bookmark not defined.)

top-level object (Error! Bookmark not

defined.)

type(Error! Bookmark not defined.)

UML [Unified Modeling Language]

(Error! Bookmark not defined.)

uncomputability (Error! Bookmark not

defined.)

variable (Error! Bookmark not defined.)

void (Error! Bookmark not defined.)

Design Patterns Covered

Iterator

First introduced in: Chapter 5 page 9

Usage: Used to traverse some list of objects. This pattern is natively implemented in Java

with the use of the java.util.Iterator interface.

Simplified UML:

 Chapter Wrap-Up

© 2006-2007 Carl Alphonce & Adrienne Decker 21

State

First introduced in: Chapter 5 page 10

Usage: Used to objectify the internal state of an object (the context) so the behavior of that

object can be specific to the particular state it is in.

Simplified UML:

Command

22 9/29/2008

First introduced in: Chapter 5 page 11

Usage: Used to objectify behaviors to keep track of what has happened in a system or what

should happen in a system.

Simplified UML:

Null Object

First introduced in: Chapter 5 page 12

Usage: Used to represent a null value or the absence of behavior. This is an object that does

nothing – a placeholder in the system.

Simplified UML:

Singleton

 Chapter Wrap-Up

© 2006-2007 Carl Alphonce & Adrienne Decker 23

First introduced in: Chapter 5 page 13

Usage: Used when we will only ever need one instance of a particular object at runtime.

Simplified UML:

