

© 2006-2007 Carl Alphonce & Adrienne Decker 1

;

Chapter 7
Inheritance: Modeling subtype relationships
;

Pedagogic Goals
 Show how a system can be made flexible and resilient through the use of abstract

specifications over concrete implementations.

 Demonstrate how different subtyping relationships identified in a model can be

implemented using different forms of inheritance.

Introduction
A key part of building a model of a system is to identify the types from the system’s

domain which are relevant to the operation of the system, as well as the ways in which parts

of the system communicate with each other. We now know the two ways to introduce new

types into Java’s type system: defining an interface and defining a class. We have also

learned that implementation of an interface by a class is called the realization relationship.

When a class realizes an interface the class’ type becomes a subtype of the interface’s type.

The importance of this is that we can use an instance of a subtype whenever the supertype is

called for.

The ability to use a subtype object to satisfy a supertype constraint allows us to write

generic code – code that will work with many different (sub)types of objects. It all comes

down to decoupling of components. If we couple components closely by making a client

component dependent on a specific class we end up with a very rigid and brittle system. On

the other hand, if we decouple components by making a client dependent only on an interface,

then that client can work with any implementor of the interface. We end up with a flexible

and resilient system.

In the last chapter we explored how the multiple roles that an object may play in a system

can be modeled by having the roles cast as interfaces and by having the object’s class defined

to implement each of those interfaces. We saw how polymorphism came about by having a

capability specified in a supertype and having different subtypes implement that capability in

different ways.

In this chapter we will learn that not only interfaces can play the role of supertype, but

also classes. Defining a class as a subclass of another class involves yet another relationship.

This relationship goes by many different names, including inheritance, generalization, and

extension.
1
 Like realization, generalization is a form of subtyping relationship. Unlike

1
 It is not uncommon to see the relationship referred to as an “is a” relationship, because a subtype object is also

of the supertype. The Liskov substitution principle requires that subtype objects must be substitutible for

supertype objects; some cases of “is a type of” do not fit this mold because the “subtype” is a restriction of the

supertype, not an extension of it. “Uncle Bob” Martin discussed a marvelous example of this at the 2006

OOPSLA Educators’ Symposium, showing that while we think of squares as a special type of rectangle, it is

entirely inappropriate to model the relationship between these types using inheritance because while a square is a

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Inheritance: Modeling subtype relationships

2 9/29/2008

realization, which is a relationship holding only between a class (as the subtype) and an

interface (as the supertype), generalization can occur between two classes or between two

interfaces. This chapter explores what this relationship, in its many forms, models.

The generalization relationship in UML
The generalization relationship, because it can occur between two interfaces or between

two classes, will show up in UML class diagrams in one of two ways, as demonstrated in the

diagrams below. What is common to both diagrams is that the relationship is represented by a

solid line with a triangle at the target end of the relationship. Generalization between

interfaces is shown in the left diagram, and generalization between classes in the right

diagram.

The generalization relationship in code
The generalization relationship is expressed using the extends keyword in the interface

or class header, as shown in the code snippets below, corresponding to the diagram above.

First we see the code for interface extension:

package chapter6.generalizationInUML;

/**
 * @author Carl G. Alphonce
 *
 * Created on: Oct 24, 2006
 *
 */
public interface ISource extends ITarget {

}

This expresses that the type introduced by the interface ISource is a subtype of the type

introduced by the interface ITarget. The details of what this means is discussed in the next

section.

Next, we see the code for class extension. The class header uses the extends keyword

to identify the target class of the extension:

rectangle, it is a restriction, not an extension, of a rectangle. Because of this, we avoid using the name “is a” for

this relationship.

 Interface extension

© 2006-2007 Carl Alphonce & Adrienne Decker 3

package chapter6.generalizationInUML;

/**
 * @author Carl G. Alphonce
 *
 * Created on: Oct 24, 2006
 *
 */
public class Source extends Target {

 /**
 * Creates a new instance of Source
 */
 public Source() {
 }

}

This expresses that the type introduced by the class Source is a subtype of the type

introduced by the class Target. The details of what class extension implies is discussed

later in the chapter.

Interface extension

To understand why subtyping is important, let us explore some examples. First, suppose we

have a system in which multiple roles occur, and we wish to model that some roles sometimes

must co-occur (occur simultaneously).

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Inheritance: Modeling subtype relationships

4 9/29/2008

Example 1

Students at university follow a particular course of study, called their

major. Different programs of study are often grouped together according to the

“general education” requirements they impose. Arts, Science and Engineering

programs often have different general education requirements. For example, a

student might major in Linguistics (an Arts program), Computer Science (a

Science program), or Biomedical Engineering (an Engineering program).

Most students have just one major. Some students decide to pursue two

majors at the same time. This requires that students satisfy the general

education requirements of both majors.

The general education requirements of different type of majors can be

specified using interfaces, with specific requirements encoded in implementing

classes. For example, a science degree might require a “full year science

course sequence”, but a specific major may require something more specific,

such as a chemistry or physics sequence.

A student doing a double major, such as Linguistics and Computer

Science, must satisfy the requirements of both majors. In order to differentiate

students who are doing one or the other major from those doing both, it may be

helpful to define a Linguistics-Computer Science interface, which extends the

two interfaces Linguistics and Computer Science:

Let us push this a little bit further. There are many different ways to power passenger

cars. Most cars use gasoline as a fuel, but some use alternatives. One alternative is to use

diesel fuel. Another is to use liquefied natural gas (LNG). You may not have heard of or

seen cars powered by LNG, but they are quite popular in some cities, especially amongst taxis

because of the cost savings over gasoline or diesel. These cities have invested in building up

a LNG infrastructure, so that LNG vehicles can refuel conveniently. Yet another alternative

is to use a hybrid gas-electric system.

 Interface extension

© 2006-2007 Carl Alphonce & Adrienne Decker 5

Suppose now that, in order to encourage more drivers to adopt multi-fuel vehicles, the

highway department wants to charge differential tolls for multi-fuel vehicle on toll highways.

All vehicles using toll roads must be equipped with a transponder (e.g. many states use the E-

ZPass system for electronic moving toll collection). This transponder will transmit a signal

indicating the type of fuel combination the vehicle’s engine can use. The appropriate toll is

charged based on the fuel combination the vehicle supports. In the UML class diagram below

we show four different types of fuel: gasoline, liquefied natural gas, biodiesel, and electricity.

Each of these types is modeled using an interface (IGas, ILNG, IBioDiesel, and

IElectric). Classes are used to model vehicles which can use the different types of fuels.

If a vehicle type can use more than one different sort of fuel it implements all of the relevant

interfaces. For example, the GasElectricHybrid class implements both the IGas and

IElectric interfaces.

The problem here is that we do not have a type for a vehicle that runs on gas and

biodiesel, and possibly other fuels as well. There are several classes which implement both

the IGas and IBioDiesel interfaces, but there is no type which names this combination.

But suppose that the thruway authority wants to charge vehicles with this particular

combination of fuel capabilities lower rates than everybody else. In this case there needs to

be a single type which can represent those vehicles in our system. What we would like is a

diagram which looks more like the following:

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Inheritance: Modeling subtype relationships

6 9/29/2008

The IGasBioDiesel interface type can now exists as a real type in our system!
2
 The

toll collection system can now make use of this type to charge the correct (lower) toll to all

vehicles which are of this type. It is worth pointing out here the syntax to have an interface

extend more than one interface. If an interface is to extend multiple interfaces, the interfaces

are listed in the source interface’s header, after the extends keyword, separated by commas:

public interface ISource extends ITarget1, ITarget2, ITarget3

What we have done is introduce new interfaces which are subinterfaces of existing

interfaces. In other words, they extend existing interfaces.

The inheritance relationship between interfaces has the same effect on typing

relationships as did the realization relationship: the extending interface becomes a subtype of

the extended interface. Thus, the IGasBioDiesel type is a subtype of both the IGas type

and of the IBioDiesel type.

It is worth noting at this juncture that subtyping is a transitive relationship. This means

that if X is a subtype of Y and Y is a subtype of Z, then X is a subtype of Z too. More

concretely, since GasBioDiesel is a subtype of IGasBioDiesel, and

IGasBioDiesel is a subtype of both IGas and IBioDiesel, it follows that

GasBioDiesel is a subtype of both IGas and IBioDiesel. Why is this interesting? It

tells us that not only can we use a GasBioDiesel object whenever we specifically need an

2
 Notice the arc and arrow used to represent this relationship: it employs same arrowhead as does the realization

relationship, but its line is solid rather than dashed.

 Interface extension

© 2006-2007 Carl Alphonce & Adrienne Decker 7

object of type GasBioDiesel, we can use a GasBioDiesel object whenever we need an

object of any of its supertypes: IGasBioDiesel, IGas, and IBioDiesel.

But more importantly, when we need something of type IGasBioDiesel, we can use

any of its implementations: GasBioDiesel, MultiFuelHybrid, or MultiFuel. In

fact, we could even add a new class which implements the IGasBioDiesel interface and

have it work with out system.

This means that all of Java’s types are arranged into a type hierarchy, and whenever a

class or an interface is defined Java’s type system is extended to include this new type. Part

of the task of a software developer is to decide, for a particular problem, what the appropriate

types are, and to define and situate them appropriately in Java’s type hierarchy.

Declared and Actual Type, revisited

Earlier on in the book we introduced the notions of declared type (of a variable) and

actual type (of an object). It is now time to revisit these notions and examine in more detail

what the significance of the declared type of a variable versus the actual type of the object it

refers to really is.

Why do we declare a variable to be of a particular type? In part we do this to restrict the

types of objects that the variable can refer to. A better answer is that the type of the variable

determines what methods that can be called on the object which the variable refers to. It will

be important for us to remember this as we progress through the chapter.

Inheritance between Interfaces

When an interface inherits from another interface, there are implications beyond

subtyping. When one interface extends another interface, it inherits all the method

specifications of the interface it extends. For example, consider the two interfaces shown

below, IAudioDevice and ITuner. The fact that ITuner extends IAudioDevice is

indicated by the extends clause which is part of the interface header.

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Inheritance: Modeling subtype relationships

8 9/29/2008

package chapter6;

/**
 * @author alphonce
 */
public interface IAudioDevice {
 /**
 * When invoked, this method causes the device
 * to power down to standby mode.
 */
 public void turnOff();
 /**
 * When invoked, this method causes the device
 * to power up from standby mode.
 */
 public void turnOn();
 /**
 * When invoked, this method causes the device's volume to increase
 * by five dB, up to the maximum volume level.
 */
 public void volumeUp();
 /**
 * When invoked, this method causes the device's volume to decrease
 * by five dB, down to a minimum level of 0 dB.
 */
 public void volumeDown();
}

package chapter6;

/**
 * @author alphonce
 */
public interface ITuner extends IAudioDevice {
 /**
 * When invoked, causes the tuner to scan at higher frequencies for
 * a strong signal, stopping if it finds one. If none is found,
 * stops scanning at the highest frequency of the tuner.
 */
 public void scanUp();
 /**
 * When invoked, causes the tuner to scan at lower frequencies for
 * a strong signal, stopping if it finds one. If none is found,
 * stops scanning at the lowest frequency of the tuner.
 */
 public void scanDown();
}

The ITuner interface extends the IAudioDevice interface: this means that not only

does the ITuner interface require that the two methods scanUp and scanDown be defined

in an implementing class, but also all of the methods specified in the parent interface,

IAudioDevice. Thus, a class which implements the ITuner interface must define not

only the two methods scanUp and scanDown, but also turnOff, turnOn,

volumeDown, and volumeUp.

 Interface extension

© 2006-2007 Carl Alphonce & Adrienne Decker 9

When an interface inherits from more than one interface several questions come to mind:

Q: What happens if two methods with different names are inherited from different parent

interfaces?

public interface ParentOne {
 public void methodA();
}

public interface ParentTwo {
 public void methodB();
}

public interface Child extends ParentOne, ParentTwo {
 public void methodC();
}

A: The Child interface inherits both methodA and methodB.

Q: What happens if two methods with the same name and with the same parameter lists

are inherited?

public interface ParentOne {
 public void methodA();
}

public interface ParentTwo {
 public void methodA();
}

public interface Child extends ParentOne, ParentTwo {
 public void methodC();
}

A: The Child interface inherits the same specification from both of its parents. Since

the method specification is the same from both parent interfaces, the Child interface ends

with just two method specifications in total: one for methodA and one for methodC.
3

Q: What happens if two methods with the same name but with different parameter lists

are inherited?

public interface ParentOne {
 public void methodA();
}

3
 If this seems odd to you, perhaps the following analogy might help. The methods specified in interfaces are

requirements imposed on classes which implement those interfaces. They are similar to expections that parents

put on their children. Generally children must satisfy the expectations of both parents. If mom says you must

clean your room and dad says you have to cut the grass, then you must do both things. However, if mom says

you must clean your room and dad also says you must clean your room, then you only have to clean your room

once (because once you’ve satisfied the requirement for one parent you’ve automatically satisfied it for the other

parent).

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Inheritance: Modeling subtype relationships

10 9/29/2008

public interface ParentTwo {
 public void methodA(IHostess h);
}

public interface Child extends ParentOne, ParentTwo {
 public void methodC();
}

A: In this case the two methods, even though they share the same name, are treated by

Java as different methods. In this case the Child interface is left with three method

specifications, one for methodA taking no arguments, one for methodA taking one

argument of type IHostess, and one for methodC taking no arguments.

To summarize what we have learned about inheritance between interfaces: an interface

can extend zero or more interfaces, an interface inherits all the method specifications from all

of its parents, with identical method specifications inherited from multiple parents treated as

the same method specification.

Abstract classes and partial realization
Up to this point we have assumed that when a class implements an interface it must

define all the methods specified in the interface. It turns that that this is not quite true.

Classes can leave some methods undefined (i.e. they remain as method specifications); a class

which does not define all of its methods is known as an abstract class. In contrast, a class

which is not abstract (and which therefore defines all of its methods) is called a concrete

class.

An abstract class, because it does not define all of its methods (and is therefore not

providing a way to respond to method calls) cannot be instantiated.
4
 In other words, there can

be no object whose actual type is that of an abstract class. There is no problem in having a

variable whose declared type is that of an abstract class, just as there is no problem in having

a variable whose declared type is that of an interface: the declared type simply specifies that

only the methods specified by the type can be invoked on the object referred to by the

variable.

Inside the code for an abstract class, we would see the keyword abstract in the class

header as well as in the method headers for any methods that we will declare abstract (i.e.

leave without implementation). For example, the header for an abstract class named Mammal
would look like this:

public abstract class Mammal

or it could look like this (Java will accept either):

abstract public class Mammal

4
 This is not quite accurate. A class can be labelled “abstract” even if it defines all of its methods, simply to

prevent instantiation of the class. We will not discuss this sort of abstract class further.

 Class extension

© 2006-2007 Carl Alphonce & Adrienne Decker 11

A method declaration for an abstract method named doSomething could look like this:

public abstract void doSomething();

or this:

abstract public void doSomething();

What might be the motivation for defining an abstract class? An abstract class allows us

to model that two or more subclasses should share a method definition, without committing to

the idea that there should be objects of this actual type in the model.

Example 2

Consider modeling aircraft for use in an air traffic control application. An

air traffic control system manages aircraft of different types. Examples of

different type of aircraft include Boeing 747, Airbus A320, and the Saab-

Fairchild SF340. Each of these aircraft has very different properties and

requirements: the Boeing 747 is a very large jumbo jet which requires quite a

long runway to take off and land. The SF340 is a small turboprop commuter

aircraft. In this application it is important that the category “aircraft” have

some reality (aircraft are shown on the controller’s radar screen), yet the actual

types of aircraft objects in the system should be specific types of aircraft (like

747, A320 or SF340). There is no real-world counterpart to a generic aircraft

object, so no such object should exist in our model either.

Should the type aircraft be modeled using an interface or an abstract class?

If there is no shared behavior then an interface is likely most appropriate. If

there is some capability for which all these aircraft types share a common

definition, then an abstract class is the correct way to model this.

An example of a common, or shared, capability is to respond to an Air

Traffic Control interrogation signal. If it is important that this be faithfully

represented in the computational model then this should be modeled as a

method in the abstract aircraft class. Note, however, that there is no single

correct answer: how to model a domain depends on many factors, and the

decision may well be left to the judgement of the software architects.

Class extension
Now we study the extension relationship as it holds between two classes. In this case the

extended class is often called the superclass, the base class, or the parent class. The extending

class is often called the subclass, the derived class, or the child class.

The Java class hierarchy

When dealing with class extension in Java it is important to note that Java supports only

single inheritance for classes. This means that a class in Java can extend at most one class.

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Inheritance: Modeling subtype relationships

12 9/29/2008

As we saw earlier in the chapter, to indicate that one class extends another an (optional)

extends clause is added to the class header, analogously to how the (optional) extends clause

is added to an interface header. Note that the extends clause comes before the inherits clause

in those cases where a class both extends another class and implements one or more

interfaces.

Although the extends clause is optional in the Java class header, in fact every user-

defined class in Java extends exactly one class. There is only one class which is not user-

defined: the class whose name is Object. The class Object is the default parent class

when a parent class is not explicitly given.

Java’s classes are organized into a hierarchy. Unlike Java’s type hierarchy, Java’s class

hierarchy forms a special structure called a tree. This is due to Java being a single-inheritance

language (as far as its classes is concerned) and that there is a common superclass for all Java

classes: Object.

Consequences of Class to Class Generalization

What are the consequences of class to class generalization? It turns out that the same

consequences of interface to interface generalization apply to class to class generalization,

but there are some added consequences. Recall that the consequences of generalization for

interfaces have to do with subtyping relationships and inheritance of method specifications.

Because classes contain more than just method specifications, we have to address what

inheritance means for the things that classes have that interfaces do not: method definitions

and instance variables.

Object representation and construction

In order to understand some of these new aspects of inheritance, we must first refine our

understanding of the representation of an object in the memory of a machine. One new aspect

of object structure which is a consequence of inheritance is that an object instantiated from a

subclass as a two-part structure: the object has both a superclass part and a subclass part.

Recall that the state of an object consists of its instance variables and their values, at a given

point in time. With our revised notion of the structure of an object, we must recognize that

the variables which define the state of an object are not only of the instance variables declared

in the class from which the object instantiated, but also the instance variables declared in its

superclasses.

When the constructor of a subclass is run, its job is to initialize the state of the newly

created object. How can it do this, when part of the state is contained in superclasses? The

constructor of the subclass does not have access to any private instance variables declared in

the superclass. Yet we cannot simply ignore the superclass-defined instance variables,

because the superclass-defined methods of the object can access those variables. To

overcome this dilemma let us remember that it is the job of the constructor of a class to

initialize the state of an instance of the class. This observation leads us to wonder whether we

cannot simply let the superclass’ constructor handle the initialization of the superclass part of

the object. It turns out that this is exactly what we want to do. In the constructor of the

subclass we want to invoke the superclass’ constructor. Java provides a special keyword to

let us do this, super. This keyword can be used to invoke the superclass’ constructor, by

placing an actual parameter list after super.

 Class extension

© 2006-2007 Carl Alphonce & Adrienne Decker 13

The following code example demonstrates the basic idea. This example is purposely

engineered to demonstrate the use of superclass constructor invocation without unnecessary

distractions, so you should not read too much into the code itself. The example consists of

three classes, Shape, Circle, and Rectangle. The idea is that these classes represent

shapes which have both a location and a size. While each shape has a location, represented

using a java.awt.Point object, the sizes of Circle and Rectangle objects are

represented quite differently. The size of a Circle is determined by its radius, which is a

Scalar quantity. The size of a Rectangle is determined by its length and width, each of

which is a Scalar quantity. Because the location property is shared between both Circle

and Rectangle objects but their size representation is not shared, Shape is an abstract

class which both Circle and Rectangle extend. The location property is part of the

Shape class, but each subclass has its own property or properties for representing its size.

Here is a drawing which shows the different parts of the representations of Circle and

Rectangle objects:

With this picture in mind, let us take a look at some code for these three classes:

_location

_radius

_location

_length
_width

Shape–defined part of object

Circle–defined part of object

Rectangle–defined part of object

Parts of a Circle object: Parts of a Rectangle object:

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Inheritance: Modeling subtype relationships

14 9/29/2008

package chapter6.constructors;

/**
 * @author Carl G. Alphonce
 *
 * Created on: Oct 26, 2006
 *
 */
public abstract class Shape {
 /**
 * The location of this shape on the screen.
 */
 private java.awt.Point _location;

 /**
 * Creates a new instance of Shape
 * @param initialLocation is the initial _location.
 */
 public Shape(java.awt.Point initialLocation) {
 _location = initialLocation;
 }
}

package chapter6.constructors;

/**
 * @author Carl G. Alphonce
 *
 * Created on: Oct 26, 2006
 *
 */
public class Circle extends Shape {
 /**
 * The radius of this Circle.
 */
 private Scalar _radius;

 /**
 * Creates a new instance of Circle.
 * @param radius
 * @param location
 */
 public Circle(Scalar radius, java.awt.Point location) {
 super(location);
 _radius = radius;
 }
}

 Class extension

© 2006-2007 Carl Alphonce & Adrienne Decker 15

package chapter6.constructors;

/**
 * @author Carl G. Alphonce
 *
 * Created on: Oct 26, 2006
 *
 */
public class Rectangle extends Shape {
 /**
 * The length of this Rectangle.
 */
 private Scalar _length;

 /**
 * The width of this Rectangle.
 */
 private Scalar _width;

 /**
 * Creates a new instance of Rectangle.
 * @param length
 * @param width
 * @param location
 */
 public Rectangle(Scalar length, Scalar width, java.awt.Point
location) {
 super(location);
 _length = length;
 _width = width;
 }
}

Notice that the Shape class, even though it is abstract, has a constructor. This is because

each class must take responsibility for setting up the initial state of its instances. Although the

Shape class is abstract, and therefore cannot be directly instantiated, the Shape class is

indirectly instantiated whenever an instance of one of its subclasses in created. Notice now

that in each of the two subclasses the constructor relies on the superclass constructor to

initialize the instance variable declared in the Shape superclass.

You might notice that an explicit invocation of the superclass constructor is not required:

we said above that every user-defined class extends exactly one class, and although we have

seen many class definitions up to this point, we have only just learned about super. How is

it possible that the examples we have seen to this point compiled without errors? It turns out

that the Java compiler inserts an invocation of the superclass constructor in any constructor

where it is not explicit. The default invocation is of the superclass’ no-argument constructor.
5

The invocation of a superclass’ constructor must be the first thing done in a constructor.

5
 The Java compiler allows constructors to be omitted from class definitions as well. If a class is defined with no

explicit contstuctor, then the Java compiler inserts a no-argument constructor whose sole line of code is a call to

super(). So, for example, in the definition of a class named Foo, if no explicit constructor is given the

compiler inserts the following constructor:

public Foo() {

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Inheritance: Modeling subtype relationships

16 9/29/2008

Overriding of method definitions

Recall that when an interface extends another interface, it inherits its superinterface’s

method specifications. When a class extends another class, it inherits its superclass’ method

definitions.
6
 This means that when a class inherits from another class, all non-private methods

of the superclass are available in the subclass as well.

It is not uncommon for the correct implementation of a capability in a subclass object to

be different than the implementation of that capability in the superclass. In this case the

subclass implementor has two choices: total or partial overriding. When a subclass totally

overrides a method definition inherited from its superclass, it simply provides a completely

new definition for the method in question. More interesting is the case where a subclass

method should augment the superclass capability in some way. In order to access the

superclass definition of an overridden method, we must reference the superclass definition

using super, which is a reference to the superclass object.

Example 3

Consider a simulation environment in which we can place models of

animals. It is common in such environments that the simulation proceeds in

timesteps, driven by a timer of some sort. When the timer determines that a

pre-set amount of time has passed, it notifies all the objects in the simulation

environment to update.

 super(); }

It is important to note that if any constructor is explicitly defined in a class, the no-argument constructor

(sometimes called the “default” constructor) is not provided automagically.

A common beginner’s error is to define an explicit constructor with an argument in a superclass, but to not

define any constructor in a subclass, as in the following code sketch:

public class Bar {
 // Explicit constructor: no no-argument constructor.
 public Bar(String s) {
 ...
 }
 ...
 }

public class Foo extends Bar {

// No explicit constructor: compiler generates default constructor.
...

}

This results in the following, potenially mysterious, error:
Implicit super constructor Bar() is undefined for default constructor. Must define
an explicit constructor.

6
 In this chapter we assume that the two levels of access control are public and private. The complete story of

access control in Java is a bit more involved, however. Java has four levels of access control; from least

restrictive to most restrictive they are public, protected, package-private and private. Members which are

marked with private access are visible only in that class. Members which are marked package-private are

accessible to all classes in the same package, but nowhere else. Members which are marked protected, they are

accessible within the package and also within subclasses of the class, regardless of what package the subclasses

are in. Members which are marked public are accessible everywhere.

 Special references

© 2006-2007 Carl Alphonce & Adrienne Decker 17

One common property of animals is that they move. The default moving

behavior might be to move in a straight line at a fixed velocity. Different

subtypes of animals might augment this basic moving behavior in different

circumstances. For example, a predatory animal may speed up and track a

prey animal, assuming it is hungry and close enough to the prey. A prey

animal may speed up and take some evasive action, changing direction

suddenly, to avoid becoming a nice, light snack.

If a class Animal defines an update method that causes an animal to move

in a straight line (whichever way it is currectly facing), then the two subclasses

Predator and Prey could be defined to (partially) override the update method in

different ways. Assuming that the method header of update in Animal is
public void update()

then an overriding definition would look something like this:
public void update() {
 ...
 super.update();
 ...
}

Special references
Java provides two special object references, super and this. The super reference

we encountered above, when discussing class to class extension. The super reference gives

us access to members defined in a class’ superclass.

The this reference is a self-reference. It refers to the instance of a class on which a

method has been invoked. It can be used to explicitly call an instance method defined for an

object from another method within that same object. For example:

this.someMethod()

invokes the method someMethod() on the current object.

More commonly, this is used to pass a reference to the current object along to a method

on some other object. For example, consider the following UML class diagram:

How can this be implemented? Consider, in particular, the constructor for the Engine class.

This constructor creates an instance of EngineManagementComputer, whose constructor

needs a reference to an Engine object. We don’t want to write,

new EngineManagementComputer(new Engine())

for a variety of reasons. From a modeling perspecitve, this would mean that when we create a

new Engine, it has a new EngineManagementComputer, which controls some other Engine!

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Inheritance: Modeling subtype relationships

18 9/29/2008

This is clearly a pretty bad idea. What we want is for the EngineManagementComputer to

control the Engine in which it is installed! Using this, we write the code as follows:

new EngineManagementComputer(this)

Putting everything together, we have:

package chapter6.selfReference;

/**
 * @author Carl G. Alphonce
 *
 * Created on: Oct 29, 2006
 *
 */
public class Engine {

 /**
 * _emc is this engine's Engine Management Computer.
 */
 private EngineManagementComputer _emc;

 /**
 * Creates a new instance of Engine. Takes responsibility for
 * creating a new EngineManagementComputer for this engine. Passes
 * 'this' along to the EMC.
 */
 public Engine() {
 _emc = new EngineManagementComputer(this);
 }

}

 Summary

© 2006-2007 Carl Alphonce & Adrienne Decker 19

package chapter6.selfReference;

/**
 * @author Carl G. Alphonce
 *
 * Created on: Oct 29, 2006
 *
 */
public class EngineManagementComputer {

 /**
 * The engine that this EMC controls.
 */
 private Engine _engine;

 /**
 * Creates a new instance of EngineManagementComputer,
 * hooked up to the engine it controls.
 * @param engine
 */
 public EngineManagementComputer(Engine engine) {
 super();
 _engine = engine;
 }

}

Summary
In this chapter we have learned about the generalization relationship. In particular we

have learned that an interface can extend multiple other interfaces, thereby inheriting the

method specifications of its parent interfaces. We have also learned that every user-defined

class extends exactly one class; if no class is explicitly mentioned as a parent class, the parent

class defaults to the class Object. When a class extends another class it inherits its public

methods. A subclass can choose to inherit methods unchanged, to alter them completely

(total overriding), or alter them somewhat (partial overriding).

Case Study
Stay tuned…

Chapter Wrap-Up

Learning Objectives
At the end of this chapter students should be able to:

 Describe what an abstract class is and what differentiates it from a concrete class.

 Describe the effects of inheritance between two interfaces, two concrete classes, and

an abstract class and a concrete class.

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Inheritance: Modeling subtype relationships

20 9/29/2008

 Identify when it would appropriate to use inheritance while building a piece of

software.

 Recognize when a class is calling methods or constructors from its superclass.

Relationships Covered

Generalization

Informal Name: extends

First introduced in: Chapter 6 – page 2

UML representation:

In code: (from above diagram)
public interface ISource extends ITarget {
}

public class Source extends Target {
}

Note: There is no code inside either of the classes Target or ITarget to indicate the

relationship

Association

Informal Name: knows-a

First introduced in: Chapter 4 – page Error! Bookmark not defined.

UML representation:

In code: (from above diagram)
package chapter4;

public class SourceForAssociation {
 private TargetForAssociation _targetForAssociation;

 public SourceForAssociation(TargetForAssociation tfa) {
 _targetForAssociation = tfa;

 Chapter Wrap-Up

© 2006-2007 Carl Alphonce & Adrienne Decker 21

 }
}

Note: There is no code inside the class TargetForAssocation to indicate the

relationship

Composition

Informal Name: has-a

First introduced in: Chapter 4 – page Error! Bookmark not defined.

UML representation:

In code: (from above diagram)
package chapter4;

public class SourceForComposition {
 private TargetForComposition _targetForComposition;
 public SourceForComposition() {
 _targetForComposition = new TargetForComposition();
 }
}

Note: There is no code inside the class TargetForComposition to indicate the

relationship

Local Variable Dependency

Informal Name: uses-a

First introduced in: Chapter 3 – page Error! Bookmark not defined.

UML representation:

In code: (from above diagram)
package chapter3;

public class EcoSystem {
 public EcoSystem() {

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Inheritance: Modeling subtype relationships

22 9/29/2008

 chapter1.Terrarium _terrarium = new chapter1.Terrarium();
 }
}

Note: There is no code inside the class chapter1.Terrarium to indicate the

relationship.

Instantiation Dependency

Informal Name: uses-a

First introduced in: Chapter 2 – page Error! Bookmark not defined.

In UML representation:

In code: (from above diagram)

package chapter2;

public class User {
 public User() {
 new ItemToBeUsed();
 }
}

Note: There is no code inside the class ItemToBeUsed to indicate the relationship.

Realization

Informal Name: realizes, implements

First introduced in: Chapter 4 – page Error! Bookmark not defined.

 Chapter Wrap-Up

© 2006-2007 Carl Alphonce & Adrienne Decker 23

UML representation:

In code: (from above diagram)
package chapter4;

public class ImplementingClass implements DefinedInterface {

}

Note: There is no code inside the class DefinedInterface to indicate the relationship

Keywords Covered

abstract (page 10)

extends (page 2)

super (page 12)

this (page 17)

Previously:

class (page Error! Bookmark not defined.)

final (page Error! Bookmark not defined.)

implements (page Error! Bookmark not defined.)

interface (page Error! Bookmark not defined.)

new (page Error! Bookmark not defined.)

null (Error! Bookmark not defined.)

package (page Error! Bookmark not defined.)

private (page Error! Bookmark not defined.)

public (page Error! Bookmark not defined.)

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Inheritance: Modeling subtype relationships

24 9/29/2008

return (page Error! Bookmark not defined.)

static (page Error! Bookmark not defined.)

void (page Error! Bookmark not defined.)

Naming Conventions Covered

Classes – Begin with an upper case letter. The first letter of each subsequent word in class

name is capitalized.

Instance variables – Begin with an underscore character. First letter of each subsequent

word in instance variable name is capitalized.

Interfaces – Begin with an upper case letter. The first letter of each subsequent word in

interface name is capitalized. Interface names are usually preceded by the capital letter I.

Local variables – Begin with a lower case letter. First letter of each subsequent word in

variable name is capitalized.

Methods – Begin with a lower case letter. The first letter of each subsequent word in method

name is capitalized.

Packages – Are written entirely in lowercase. Package names in nested packages are

separated by dots.

Vocabulary & Programming Terms Covered

New this Chapter:

(in next draft)

Previously Covered:

abstraction (Error! Bookmark not

defined.)

access control modifier (Error!

Bookmark not defined.)

accessor (Error! Bookmark not defined.)

assignment operator (Error! Bookmark

not defined.)

bytecode (Error! Bookmark not

defined.)

calling [a constructor] (Error! Bookmark

not defined.)

calling [a method] (Error! Bookmark not

defined.)

capability (Error! Bookmark not

defined.)

Church-Turing thesis (Error! Bookmark

not defined.)

class (Error! Bookmark not defined.)

class body (Error! Bookmark not

defined.)

class diagram (Error! Bookmark not

defined.)

class header (Error! Bookmark not

defined.)

class type(Error! Bookmark not

defined.)

 Chapter Wrap-Up

© 2006-2007 Carl Alphonce & Adrienne Decker 25

comment (Error! Bookmark not

defined.)

compiler (Error! Bookmark not

defined.)

conceptual model (Error! Bookmark not

defined.)

constructor (Error! Bookmark not

defined.)

constructor body (Error! Bookmark not

defined.)

constructor definition (Error! Bookmark

not defined.)

constructor header (Error! Bookmark not

defined.)

correctness (Error! Bookmark not

defined.)

design patterns (Error! Bookmark not

defined.)

domain (Error! Bookmark not defined.)

dynamicity (Error! Bookmark not

defined.)

edit-compile-run cycle (Error! Bookmark

not defined.)

editor (Error! Bookmark not defined.)

empty method (Error! Bookmark not

defined.)

executable model (Error! Bookmark not

defined.)

expression (Error! Bookmark not

defined., Error! Bookmark not defined.)

extensibility (Error! Bookmark not

defined.)

flexibility (Error! Bookmark not

defined.)

IDE (Error! Bookmark not defined.)

identifier (Error! Bookmark not

defined.)

implement an interface (Error!

Bookmark not defined.)

instantiate [a class] (Error! Bookmark

not defined.)

instance variable (Error! Bookmark not

defined.)

interactions pane (Error! Bookmark not

defined.)

interface (Error! Bookmark not defined.)

interface type (Error! Bookmark not

defined.)

iterative process (Error! Bookmark not

defined.)

invoking [a constructor] (Error!

Bookmark not defined.)

invoking [a method] (Error! Bookmark

not defined.)

Java Virtual Machine (JVM) (Error!

Bookmark not defined.)

javac (Error! Bookmark not defined.)

keyword (Error! Bookmark not defined.)

lifetime (Error! Bookmark not defined.)

local variable (Error! Bookmark not

defined.)

maintainability (Error! Bookmark not

defined.)

method (Error! Bookmark not defined.)

method definition (Error! Bookmark not

defined.)

method stub (Error! Bookmark not

defined.)

model (Error! Bookmark not defined.)

mutator (Error! Bookmark not defined.)

naming conventions (Error! Bookmark

not defined.)

naming rules (Error! Bookmark not

defined.)

Chapter 7: Inheritance: Modeling subtype relationships

26 9/29/2008

object (Error! Bookmark not defined.)

package (Error! Bookmark not defined.)

package declaration (Error! Bookmark

not defined.)

parameter list (Error! Bookmark not

defined.)

polymorphic (Error! Bookmark not

defined.)

polymorphism (Error! Bookmark not

defined.)

problem domain (Error! Bookmark not

defined.)

process (Error! Bookmark not defined.)

property (Error! Bookmark not defined.)

property value (Error! Bookmark not

defined.)

reference (Error! Bookmark not

defined.)

relationship (Error! Bookmark not

defined., Error! Bookmark not defined.)

return type specification (Error!

Bookmark not defined.)

robustness (Error! Bookmark not

defined.)

scalability (Error! Bookmark not

defined.)

scope (Error! Bookmark not defined.)

semantics (Error! Bookmark not

defined.)

service (Error! Bookmark not defined.)

source code (Error! Bookmark not

defined.)

state (of an object) (Error! Bookmark not

defined.)

statement (Error! Bookmark not

defined.)

subtype (Error! Bookmark not defined.)

supertype (Error! Bookmark not

defined.)

syntax (Error! Bookmark not defined.)

top-level object (Error! Bookmark not

defined.)

type(Error! Bookmark not defined.)

UML [Unified Modeling Language]

(Error! Bookmark not defined.)

uncomputability (Error! Bookmark not

defined.)

variable (Error! Bookmark not defined.)

void (Error! Bookmark not defined.)

Design Patterns Covered

Iterator

First introduced in: Chapter 5 page Error! Bookmark not defined.

Usage: Used to traverse some list of objects. This pattern is natively implemented in Java

with the use of the java.util.Iterator interface.

Simplified UML:

 Chapter Wrap-Up

© 2006-2007 Carl Alphonce & Adrienne Decker 27

State

First introduced in: Chapter 5 page Error! Bookmark not defined.

Usage: Used to objectify the internal state of an object (the context) so the behavior of that

object can be specific to the particular state it is in.

Simplified UML:

Error! Use the Home tab to apply Chapter Title to the text that you want to appear

here. Inheritance: Modeling subtype relationships

28 9/29/2008

Command

First introduced in: Chapter 5 page Error! Bookmark not defined.

Usage: Used to objectify behaviors to keep track of what has happened in a system or what

should happen in a system.

Simplified UML:

Null Object

First introduced in: Chapter 5 page Error! Bookmark not defined.

Usage: Used to represent a null value or the absence of behavior. This is an object that does

nothing – a placeholder in the system.

Simplified UML:

 Chapter Wrap-Up

© 2006-2007 Carl Alphonce & Adrienne Decker 29

Singleton

First introduced in: Chapter 5 page Error! Bookmark not defined.

Usage: Used when we will only ever need one instance of a particular object at runtime.

Simplified UML:

9/29/2008 30

