
Essential Coding Theory

Venkatesan Guruswami Atri Rudra1 Madhu Sudan

July 27, 2018

1Department of Computer Science and Engineering, University at Buffalo, SUNY. Work supported by
NSF CAREER grant CCF-0844796.

2

Foreword

This chapter is based on lecture notes from coding theory courses taught by Venkatesan Gu-
ruswami at University at Washington and CMU; by Atri Rudra at University at Buffalo, SUNY
and by Madhu Sudan at Harvard and MIT.

This version is dated July 27, 2018. For the latest version, please go to

http://www.cse.buffalo.edu/faculty/atri/courses/coding-theory/book/

The material in this chapter is supported in part by the National Science Foundation under
CAREER grant CCF-0844796. Any opinions, findings and conclusions or recomendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation (NSF).

©Venkatesan Guruswami, Atri Rudra, Madhu Sudan, 2018.
This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444
Castro Street, Suite 900, Mountain View, California, 94041, USA.

3

http://www.cse.buffalo.edu/faculty/atri/courses/coding-theory/book/
http://creativecommons.org/licenses/by-nc-nd/3.0/

4

Contents

I The Basics 15

1 The Fundamental Question 17

1.1 Overview . 17
1.2 Some definitions and codes . 19
1.3 Error correction . 21
1.4 Distance of a code . 24
1.5 Hamming Code . 28
1.6 Hamming Bound . 30
1.7 Generalized Hamming Bound . 32
1.8 Exercises . 33
1.9 Bibliographic Notes . 36

2 A Look at Some Nicely Behaved Codes: Linear Codes 37

2.1 Finite Fields . 37
2.2 Linear Subspaces . 39
2.3 Properties of Linear Codes . 42
2.4 Hamming Codes . 44
2.5 Family of codes . 45
2.6 Efficient Decoding of Hamming codes . 46
2.7 Dual of a Linear Code . 48
2.8 Exercises . 49
2.9 Bibliographic Notes . 56

3 Probability as Fancy Counting and the q-ary Entropy Function 57

3.1 A Crash Course on Probability . 57
3.2 The Probabilistic Method . 63
3.3 The q-ary Entropy Function . 63
3.4 Exercises . 70
3.5 Bibliographic Notes . 70

II The Combinatorics 71

4 What Can and Cannot Be Done-I 73

5

4.1 Asymptotic Version of the Hamming Bound . 73
4.2 Gilbert-Varshamov Bound . 74
4.3 Singleton Bound . 78
4.4 Plotkin Bound . 79
4.5 Exercises . 85
4.6 Bibliographic Notes . 89

5 The Greatest Code of Them All: Reed-Solomon Codes 91

5.1 Polynomials and Finite Fields . 91
5.2 Reed-Solomon Codes . 94
5.3 A Property of MDS Codes . 97
5.4 Exercises . 98
5.5 Bibliographic Notes . 106

6 What Happens When the Noise is Stochastic: Shannon’s Theorem 107

6.1 Overview of Shannon’s Result . 107
6.2 Shannon’s Noise Model . 108
6.3 Shannon’s Result for BSCp . 111
6.4 Hamming vs. Shannon . 119
6.5 Exercises . 120
6.6 Bibliographic Notes . 124

7 Bridging the Gap Between Shannon and Hamming: List Decoding 125

7.1 Hamming versus Shannon: part II . 125
7.2 List Decoding . 127
7.3 Johnson Bound . 129
7.4 List-Decoding Capacity . 132
7.5 List Decoding from Random Errors . 136
7.6 Exercises . 139
7.7 Bibliographic Notes . 144

8 What Cannot be Done-II 145

8.1 Elias-Bassalygo bound . 145
8.2 The MRRW bound: A better upper bound . 147
8.3 A Breather . 147
8.4 Bibliographic Notes . 148

III The Codes 149

9 When Polynomials Save the Day: Polynomial Based Codes 151

9.1 The generic construction . 152
9.2 The low degree case . 153
9.3 The case of the binary field . 155

6

9.4 The general case . 156
9.5 Exercises . 163
9.6 Bibliographic Notes . 163

10 From Large to Small Alphabets: Code Concatenation 165

10.1 Code Concatenation . 166
10.2 Zyablov Bound . 167
10.3 Strongly Explicit Construction . 169
10.4 Exercises . 171
10.5 Bibliographic Notes . 172

IV The Algorithms 173

11 Decoding Concatenated Codes 175

11.1 A Natural Decoding Algorithm . 175
11.2 Decoding From Errors and Erasures . 178
11.3 Generalized Minimum Distance Decoding . 179
11.4 Bibliographic Notes . 183

12 Efficiently Achieving the Capacity of the BSCp 185

12.1 Achieving capacity of BSCp . 185
12.2 Decoding Error Probability . 188
12.3 The Inner Code . 188
12.4 The Outer Code . 189
12.5 Discussion and Bibliographic Notes . 191

13 Efficient Decoding of Reed-Solomon Codes 193

13.1 Unique decoding of Reed-Solomon codes . 193
13.2 List Decoding Reed-Solomon Codes . 198
13.3 Extensions . 213
13.4 Bibliographic Notes . 215

14 Efficiently Achieving List Decoding Capacity 217

14.1 Folded Reed-Solomon Codes . 217
14.2 List Decoding Folded Reed-Solomon Codes: I . 221
14.3 List Decoding Folded Reed-Solomon Codes: II . 224
14.4 Bibliographic Notes and Discussion . 234

V The Applications 239

15 Cutting Data Down to Size: Hashing 241

15.1 Why Should You Care About Hashing? . 241
15.2 Avoiding Hash Collisions . 243

7

15.3 Almost Universal Hash Function Families and Codes 246
15.4 Data Possession Problem . 247
15.5 Bibliographic Notes . 251

16 Securing Your Fingerprints: Fuzzy Vaults 253

16.1 Some quick background on fingerprints . 253
16.2 The Fuzzy Vault Problem . 255
16.3 The Final Fuzzy Vault . 258
16.4 Bibliographic Notes . 260

17 Finding Defectives: Group Testing 261

17.1 Formalization of the problem . 261
17.2 Bounds on t a(d , N) . 263
17.3 Bounds on t (d , N) . 264
17.4 Coding Theory and Disjunct Matrices . 268
17.5 An Application in Data Stream Algorithms . 271
17.6 Summary of best known bounds . 276
17.7 Exercises . 276
17.8 Bibliographic Notes . 278

A Notation Table 285

B Some Useful Facts 287

B.1 Some Useful Inequalities . 287
B.2 Some Useful Identities and Bounds . 288

C Background on Asymptotic notation, Algorithms and Complexity 291

C.1 Asymptotic Notation . 291
C.2 Bounding Algorithm run time . 293
C.3 Randomized Algorithms . 297
C.4 Efficient Algorithms . 300
C.5 Exercises . 304
C.6 Bibliographic Notes . 306

8

List of Figures

1.1 Decoding in Akash English, one gets “I need little little (trail)mix." 17
1.2 Coding process . 22
1.3 Bad example for unique decoding. 27
1.4 Illustration for proof of Hamming Bound . 31

3.1 The q-ary Entropy Function . 64

4.1 The Hamming and GV bounds for binary codes . 74
4.2 An illustration of Gilbert’s greedy algorithm (Algorithm 5) for the first five iterations. 75
4.3 Construction of a new code in the proof of the Singleton bound. 78
4.4 The Hamming, GV and Singleton bound for binary codes. 79
4.5 R vs δ tradeoffs for binary codes . 81

6.1 The communication process . 108
6.2 Binary Symmetric Channel BSCp . 109
6.3 Binary Erasure Channel BECα . 110
6.4 The sets Dm partition the ambient space {0,1}n . 112
6.5 The shell Sm of inner radius (1−γ)pn and outer radius (1+γ)pn. 113
6.6 Illustration of Proof of Shannon’s Theorem . 116

7.1 Bad example of unique decoding revisited . 126
7.2 Comparing the Johnson Bound with Unique decoding and Singleton bounds . . . 132
7.3 An error pattern . 136
7.4 Illustration of notation used in the proof of Theorem 7.5.1 138
7.5 An error pattern in the middle of the proof . 139

8.1 Bounds on R vs δ for binary codes . 146

10.1 Concatenated code Cout ◦Cin. 166
10.2 The Zyablov bound for binary codes . 168

11.1 Encoding and Decoding of Concatenated Codes . 176
11.2 All values of θ ∈ [qi , qi+1) lead to the same outcome 183

12.1 Efficiently achieving capacity of BSCp . 186
12.2 Error Correction cannot decrease during “folding" 189

9

13.1 A received word in 2-D space . 194
13.2 The closest polynomial to a received word . 195
13.3 Error locator polynomial for a received word . 196
13.4 The tradeoff between rate R and the fraction of errors that can be corrected by Algorithm 14.202
13.5 A received word in 2-D space for the second Reed-Solomon 203
13.6 An interpolating polynomial Q(X ,Y) for the received word in Figure 13.5. 204
13.7 The two polynomials that need to be output are shown in blue. 204
13.8 The tradeoff between rate R and the fraction of errors that can be corrected by Algorithm 14 and Algor
13.9 Multiplicity of 1 . 207
13.10Multiplicity of 2 . 208
13.11Multiplicity of 3 . 208
13.12A received word in 2-D space for the third Reed-Solomon 209
13.13An interpolating polynomial Q(X ,Y) for the received word in Figure 13.12. 209
13.14The five polynomials that need to be output are shown in blue. 210

14.1 Encoding for Reed-Solomon Codes . 218
14.2 Folded Reed-Solomon code for m = 2 . 218
14.3 Folded Reed-Solomon code for general m ≥ 1 . 218
14.4 Error pattern under unfolding . 219
14.5 Error pattern under folding . 220
14.6 Performance of Algorithm 18 . 224
14.7 An agreement in position i . 225
14.8 More agreement with a sliding window of size 2. 225
14.9 Performance of Algorithm 19 . 228
14.10An upper triangular system of linear equations . 229

16.1 The minutia are unordered and form a set, not a vector. 254

17.1 Pick a subset S (not necessarily contiguous). Then pick a column j that is not present in S. There will always
17.2 Construction of the final matrix MC∗ from MCout and MCin from Example 17.4.3. The rows in MC∗ that corr

10

List of Tables

3.1 Uniform distribution over F2×2
2 along with values of four random variables. 58

8.1 High level summary of results seen so far. 147

10.1 Strongly explicit binary codes that we have seen so far. 165

12.1 An overview of the results seen so far . 185
12.2 Summary of properties of Cout and Cin . 187

11

12

List of Algorithms

1 Naive Maximum Likelihood Decoder . 26
2 Naive Decoder for Hamming Code . 47
3 Decoder for Any Linear Code . 47
4 Efficient Decoder for Hamming Code . 48
5 Gilbert’s Greedy Code Construction . 75
6 qO(k) time algorithm to compute a code on the GV bound 87
7 Generating Irreducible Polynomial . 94
8 Natural Decoder for Cout ◦Cin . 176
9 Generalized Minimum Decoder (ver 1) . 180
10 Generalized Minimum Decoder (ver 2) . 182
11 Deterministic Generalized Minimum Decoder‘ . 183
12 Decoder for efficiently achieving BSCp capacity . 187
13 Welch-Berlekamp Algorithm . 197
14 The First List Decoding Algorithm for Reed-Solomon Codes 201
15 The Second List Decoding Algorithm for Reed-Solomon Codes 205
16 The Third List Decoding Algorithm for Reed-Solomon Codes 210
17 Decoding Folded Reed-Solomon Codes by Unfolding 219
18 The First List Decoding Algorithm for Folded Reed-Solomon Codes 222
19 The Second List Decoding Algorithm for Folded Reed-Solomon Codes 226
20 The Root Finding Algorithm for Algorithm 19 . 233
21 Pre-Processing for Data Possession Verification . 247
22 Verification for Data Possession Verification . 248
23 Decompression Algorithm . 248
24 Decompression Algorithm Using List Decoding . 250
25 UNLOCK2 . 257
26 LOCK3 . 258
27 UNLOCK2 . 259
28 Decoder for Separable Matrices . 265
29 Naive Decoder for Disjunct Matrices . 267
30 Initialization . 273
31 Update . 273
32 Report Heavy Items . 274
33 Simple Search . 295

13

34 Sampling algorithm for GAPHAMMING . 299
35 An average-case algorithm for GAPHAMMING . 300
36 Exponential time algorithm for MAXLINEAREQ . 301
37 Reduction from MAXCUT to MAXLINEAREQ . 304

14

Part I

The Basics

15

Chapter 1

The Fundamental Question

1.1 Overview

Communication is a fundamental need of our modern lives. In fact, communication is some-
thing that humans have been doing for a long time. For simplicity, let us restrict ourselves to
English. It is quite remarkable that different people speaking English can be understood pretty
well: even if e.g. the speaker has an accent. This is because English has some built-in redun-
dancy, which allows for “errors" to be tolerated. This came to fore for one of the authors when
his two and a half year old son, Akash, started to speak his own version of English, which we will
dub “Akash English." As an example,

Figure 1.1: Decoding in Akash English, one gets “I need little little (trail)mix."

With some practice Akash’s parents were able to “decode" what Akash really meant. In fact,

17

Akash could communicate even if he did not say an entire word properly and gobbled up part(s)
of word(s).

The above example shows that having redundancy in a language allows for communication
even in the presence of (small amounts of) differences and errors. Of course in our modern
digital world, all kinds of entities communicate (and most of the entities do not communicate
in English or any natural language for that matter.) Errors are also present in the digital world,
so these digital communications also use redundancy.

Error-correcting codes (henceforth, just codes) are clever ways of representing data so that
one can recover the original information even if parts of it are corrupted. The basic idea is to
judiciously introduce redundancy so that the original information can be recovered even when
parts of the (redundant) data have been corrupted.

For example, when packets are transmitted over the Internet, some of the packets get cor-
rupted or dropped. Packet drops are resolved by the TCP layer by a combination of sequence
numbers and ACKs. To deal with data corruption, multiple layers of the TCP/IP stack use a form
of error correction called CRC Checksum [59]. From a theoretical point of view, the checksum
is a terrible code (for that matter so is English). However, on the Internet, the current dominant
mode of operation is to detect errors and if errors have occurred, then ask for retransmission.
This is the reason why the use of checksum has been hugely successful in the Internet. However,
there are other communication applications, where re-transmission is not an option. Codes are
used when transmitting data over the telephone line or via cell phones. They are also used in
deep space communication and in satellite broadcast (for example, TV signals are transmitted
via satellite). Indeed, asking the Mars Rover to re-send an image just because it got corrupted
during transmission is not an option– this is the reason that for such applications, the codes
used have always been very sophisticated.

Codes also have applications in areas not directly related to communication. In particular,
in the applications above, we want to communicate over space. Codes can also be used to com-
municate over time. For example, codes are used heavily in data storage. CDs and DVDs work
fine even in presence of scratches precisely because they use codes. Codes are used in Redun-
dant Array of Inexpensive Disks (RAID) [9] and error correcting memory [8]. (Sometimes in the
Blue Screen of Death displayed by Microsoft Windows family of operating systems, you might
see a line saying something along the lines of “parity check failed"– this happens when the code
used in the error-correcting memory cannot recover from error(s). Also for certain consumers
of memory, e.g. banks, do not want to suffer from even one bit flipping (this e.g. could mean
someone’s bank balance either got halved or doubled– neither of which are welcome.1) Codes
are also deployed in other applications such as paper bar codes, for example, the bar code used
by UPS called MaxiCode [7]. Unlike the Internet example, in all of these applications, there is
no scope for “re-transmission."

In this book, we will mainly think of codes in the communication scenario. In this frame-
work, there is a sender who wants to send (say) k message symbols over a noisy channel. The
sender first encodes the k message symbols into n symbols (called a codeword) and then sends

1This is a bit tongue-in-cheek: in real life banks have more mechanisms to prevent one bit flip from wreaking
havoc.

18

it over the channel. The receiver gets a received word consisting of n symbols. The receiver then
tries to decode and recover the original k message symbols. Thus, encoding is the process of
adding redundancy and decoding is the process of removing errors.

Unless mentioned otherwise, in this book we will make the following assumption

The sender and the receiver only communicate via the channel.a In other words, other then
some setup information about the code, the sender and the receiver do not have any other
information exchange (other than of course what was transmitted over the channel). In
particular, no message is more likely to be transmitted over another.

aThe scenario where the sender and receiver have a “side-channel" is an interesting topic that has been
studied but it outside the scope of this book.

The fundamental question that will occupy our attention for almost the entire book is the
tradeoff between the amount of redundancy used and the number of errors that can be cor-
rected by a code. In particular, we would like to understand

Question 1.1.1. How much redundancy do we need to correct a given amount of errors? (We

would like to correct as many errors as possible with as little redundancy as possible.)

Intuitively, maximizing error correction and minimizing redundancy are contradictory goals:
a code with higher redundancy should be able to tolerate more number of errors. By the end of
this chapter, we will see a formalization of this question.

Once we determine the optimal tradeoff, we will be interested in achieving the optimal
tradeoff with codes with efficient encoding and decoding. (A DVD player that tells its consumer
that it will recover from a scratch on a DVD by tomorrow is not going to be exactly a best-seller.)
In this book, we will primarily define efficient algorithms to be ones that run in polynomial
time.2

1.2 Some definitions and codes

To formalize Question 1.1.1, we begin with the definition of a code.

Definition 1.2.1 (Code). A code of block length n over an alphabet Σ is a subset of Σn . Typically,
we will use q to denote |Σ|.3

Remark 1.2.1. We note that the ambient space Σ
n , viewed as a set of sequences, vectors or func-

tions. In other words, we can think of a vector (v1, . . . , vn) ∈Σ
n as just the sequence v1, . . . , vn (in

order) or a vector tuple (v1, . . . , vn) or as the function f : [n] →Σ such that f (i) = vi . Sequences

2We are not claiming that this is the correct notion of efficiency in practice. However, we believe that it is a good
definition as the “first cut"– quadratic or cubic time algorithms are definitely more desirable than exponential time
algorithms: see Section C.4 for more on this.

3Note that q need not be a constant and can depend on n: we’ll see codes in this book where this is true.

19

assume least structure on Σ and hence, are most generic. Vectors work well when Σ has some
structure (and in particular is what is known as a field, which we will see next chapter). Func-
tions work when the set of coordinates has structure (e.g., [n] may come from a finite field of
size n). In such cases functional representation will be convenient. For now however the exact
representation does not matter and the reader can work with representation as sequences.

We will also frequently use the following alternate way of looking at a code. Given a code
C ⊆Σ

n , with |C | = M , we will think of C as a mapping of the following form:

C : [M] →Σ
n ,

where [x] for any integer x ≥ 1 denotes the set {1,2, , . . . , x}.
We will also need the notion of dimension of a code.

Definition 1.2.2 (Dimension of a code). Given a code C ⊆Σ
n , its dimension is given by

k
def= logq |C |.

Let us begin by looking at two specific codes. Both codes are defined over Σ = {0,1} (also
known as binary codes). In both cases |C | = 24 and we will think of each of the 16 messages as a
4 bit vector.

We first look at the so called parity code, which we will denote by C⊕. Given a message
(x1, x2, x3, x4) ∈ {0,1}4, its corresponding codeword is given by

C⊕(x1, x2, x3, x4) = (x1, x2, x3, x4, x1 ⊕x2 ⊕x3 ⊕x4),

where the ⊕ denotes the EXOR (also known as the XOR or Exclusive-OR) operator. In other
words, the parity code appends the parity of the message bits (or taking the remainder of the
sum of the message bits when divided by 2) at the end of the message. Note that such a code
uses the minimum amount of non-zero redundancy.

The second code we will look at is the so called repetition code. This is a very natural code
(and perhaps the first code one might think of). The idea is to repeat every message bit a fixed
number of times. For example, we repeat each of the 4 message bits 3 times and we use C3,r ep

to denote this code.
Let us now try to look at the tradeoff between the amount of redundancy and the number of

errors each of these codes can correct. Even before we begin to answer the question, we need
to define how we are going to measure the amount of redundancy. One natural way to define
redundancy for a code with dimension k and block length n is by their difference n −k. By this
definition, the parity code uses the least amount of redundancy. However, one “pitfall" of such
a definition is that it does not distinguish between a code with k = 100 and n = 102 and another
code with dimension and block length 2 and 4 respectively. Intuitively the latter code is using
more redundancy. This motivates the following notion of measuring redundancy.

Definition 1.2.3 (Rate of a code). The rate of a code with dimension k and block length n is
given by

R
def=

k

n
.

20

Note that higher the rate, lesser the amount of redundancy in the code. Also note that as
k ≤ n, R ≤ 1.4 Intuitively, the rate of a code is the average amount of real information in each of
the n symbols transmitted over the channel. So in some sense rate captures the complement
of redundancy. However, for historical reasons we will deal with the rate R (instead of the more
obvious 1−R) as our notion of redundancy. Given the above definition, C⊕ and C3,r ep have rates
of 4

5 and 1
3 . As was to be expected, the parity code has a higher rate than the repetition code.

We have formalized the notion of redundancy as the rate of a code. To formalize Ques-
tion 1.1.1, we need to formally define what it means to correct errors. We do so next.

1.3 Error correction

Before we formally define error correction, we will first formally define the notion of encoding.

Definition 1.3.1 (Encoding function). Let C ⊆Σ
n . An equivalent description of the code C is by

an injective mapping E : [|C |] →Σ
n called the encoding function.

Next we move to error correction. Intuitively, we can correct a received word if we can re-
cover the transmitted codeword (or equivalently the corresponding message). This “reverse"
process is called decoding.

Definition 1.3.2 (Decoding function). Let C ⊆ Σ
n be a code. A mapping D : Σn → [|C |] is called

a decoding function for C .

The definition of a decoding function by itself does not give anything interesting. What we
really need from a decoding function is that it recovers the transmitted message. This notion is
captured next.

Definition 1.3.3 (Error Correction). Let C ⊆Σ
n and let t ≥ 1 be an integer. C is said to be t-error-

correcting if there exists a decoding function D such that for every message m ∈ [|C |] and error
pattern e with at most t errors, D (C (m)+e)) = m.

Figure 1.3 illustrates how the definitions we have examined so far interact.
We will also very briefly look at a weaker form of error recovery called error detection.

Definition 1.3.4 (Error detection). Let C ⊆Σ
n and let t ≥ 1 be an integer. C is said to be t-error-

detecting if there exists a detecting procedure D such that for every message m and every error
pattern e with at most t errors, D outputs a 1 if (C (m)+e) ∈C and 0 otherwise.

Note that a t-error correcting code is also a t-error detecting code (but not necessarily the
other way round): see Exercise 1.1. Although error detection might seem like a weak error recov-
ery model, it is useful in settings where the receiver can ask the sender to re-send the message.
For example, error detection is used quite heavily in the Internet.

With the above definitions in place, we are now ready to look at the error correcting capa-
bilities of the codes we looked at in the previous section.

4Further, in this book, we will always consider the case k > 0 and n < ∞ and hence, we can also assume that
R > 0.

21

m C(m)

encoding function

channel

e

y = C(m) + e m

decoding function

Figure 1.2: Coding process

1.3.1 Error-Correcting Capabilities of Parity and Repetition codes

In Section 1.2, we looked at examples of parity code and repetition code with the following
properties:

C⊕ : q = 2,k = 4,n = 5,R = 4/5.

C3,r ep : q = 2,k = 4,n = 12,R = 1/3.

We will start with the repetition code. To study its error-correcting capabilities, we will con-
sider the following natural decoding function. Given a received word y ∈ {0,1}12, divide it up
into four consecutive blocks (y1, y2, y3, y4) where every block consists of three bits. Then, for
every block yi (1 ≤ i ≤ 4), output the majority bit as the message bit. We claim this decoding
function can correct any error pattern with at most 1 error. (See Exercise 1.2.) For example, if a
block of 010 is received, since there are two 0’s we know the original message bit was 0. In other
words, we have argued that

Proposition 1.3.1. C3,r ep is a 1-error correcting code.

However, it is not too hard to see that C3,r ep cannot correct two errors. For example, if both
of the errors happen in the same block and a block in the received word is 010, then the original
block in the codeword could have been either 111 or 000. Therefore in this case, no decoder can
successfully recover the transmitted message.5

Thus, we have pin-pointed the error-correcting capabilities of the C3,r ep code: it can cor-
rect one error, but not two or more. However, note that the argument assumed that the error
positions can be located arbitrarily. In other words, we are assuming that the channel noise
behaves arbitrarily (subject to a bound on the total number of errors). Obviously, we can model
the noise differently. We now briefly digress to look at this issue in slightly more detail.

Digression: Channel Noise. As was mentioned above, until now we have been assuming the
following noise model, which was first studied by Hamming:

5Recall we are assuming that the decoder has no side information about the transmitted message.

22

Any error pattern can occur during transmission as long as the total number of er-
rors is bounded. Note that this means that the location as well as the nature6 of the
errors is arbitrary.

We will frequently refer to Hamming’s model as the Adversarial Noise Model. It is important
to note that the atomic unit of error is a symbol from the alphabet. So for example, if the error
pattern is (1,0,1,0,0,0) and we consider the alphabet to be {0,1}, then the pattern has two errors.
However, if our alphabet is {0,1}3 (i.e. we think of the vector above as ((1,0,1), (0,0,0)), with
(0,0,0) corresponding to the zero element in {0,1}3), then the pattern has only one error. Thus,
by increasing the alphabet size we can also change the adversarial noise model. As the book
progresses, we will see how error correction over a larger alphabet is easier than error correction
over a smaller alphabet.

However, the above is not the only way to model noise. For example, we could also have
following error model:

No more than 1 error can happen in any contiguous three-bit block.

First note that, for the channel model above, no more than four errors can occur when a code-
word in C3,r ep is transmitted. (Recall that in C3,r ep , each of the four bits is repeated three times.)
Second, note that the decoding function that takes the majority vote of each block can suc-
cessfully recover the transmitted codeword for any error pattern, while in the worst-case noise
model it could only correct at most one error. This channel model is admittedly contrived, but
it illustrates the point that the error-correcting capabilities of a code (and a decoding function)
are crucially dependent on the noise model.

A popular alternate noise model is to model the channel as a stochastic process. As a con-
crete example, let us briefly mention the binary symmetric channel with crossover probability

0 ≤ p ≤ 1, denoted by BSCp , which was first studied by Shannon. In this model, when a (binary)
codeword is transferred through the channel, every bit flips independently with probability p.

Note that the two noise models proposed by Hamming and Shannon are in some sense two
extremes: Hamming’s model assumes no knowledge about the channel (except that a bound
on the total number of errors is known7 while Shannon’s noise model assumes complete knowl-
edge about how noise is produced. In this book, we will consider only these two extreme noise
models. In real life, the situation often is somewhere in between.

For real life applications, modeling the noise model correctly is an extremely important
task, as we can tailor our codes to the noise model at hand. However, in this book we will
not study this aspect of designing codes at all, and will instead mostly consider the worst-case
noise model. Intuitively, if one can communicate over the worst-case noise model, then one
could use the same code to communicate over pretty much every other noise model with the
same amount of noise.

6For binary codes, there is only one kind of error: a bit flip. However, for codes over a larger alphabet, say {0,1,2},
0 being converted to a 1 and 0 being converted into a 2 are both errors, but are different kinds of errors.

7A bound on the total number of errors is necessary; otherwise, error correction would be impossible: see
Exercise 1.3.

23

We now return to C⊕ and examine its error-correcting capabilities in the worst-case noise
model. We claim that C⊕ cannot correct even one error. Suppose 01000 is the received word.
Then we know that an error has occurred, but we do not know which bit was flipped. This is
because the two codewords 00000 and 01001 differ from the received word 01000 in exactly
one bit. As we are assuming that the receiver has no side information about the transmitted
codeword, no decoder can know what the transmitted codeword was.

Thus, since it cannot correct even one error, from an error-correction point of view, C⊕ is
a terrible code (as it cannot correct even 1 error). However, we will now see that C⊕ can detect

one error. Consider the following algorithm. Let y = (y1, y2, y3, y4, y5) be the received word.
Compute b = y1 ⊕ y2 ⊕ y3 ⊕ y4 ⊕ y5 and declare an error if b = 1. Note that when no error has
occurred during transmission, yi = xi for 1 ≤ i ≤ 4 and y5 = x1 ⊕ x2 ⊕ x3 ⊕ x4, in which case
b = 0 as required. If there is a single error then either yi = xi ⊕1 (for exactly one 1 ≤ i ≤ 4) or
y5 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕1. It is easy to check that in this case b = 1. In fact, one can extend this
argument to obtain the following result (see Exercise 1.4).

Proposition 1.3.2. The parity code C⊕ can detect an odd number of errors.

Let us now revisit the example that showed that one cannot correct one error using C⊕.
Consider two codewords in C⊕, u = 00000 and v = 10001 (which are codewords corresponding
to messages 0000 and 1000, respectively). Now consider the scenarios in which u and v are
each transmitted and a single error occurs resulting in the received word r = 10000. Thus, given
the received word r and the fact that at most one error can occur, the decoder has no way of
knowing whether the original transmitted codeword was u or v. Looking back at the example, it
is clear that the decoder is “confused" because the two codewords u and v do not differ in many
positions. This notion is formalized in the next section.

1.4 Distance of a code

We now define a notion of distance that captures the concept that the two vectors u and v are
“close-by."

Definition 1.4.1 (Hamming distance). Given u,v ∈ Σ
n (i.e. two vectors of length n) the Ham-

ming distance between u and v, denoted by ∆(u,v), is defined to be the number of positions in
which u and v differ.

The Hamming distance is a distance in a very formal mathematical sense: see Exercise 1.5.
Note that the definition of Hamming distance just depends on the number of differences and
not the nature of the difference. For example, for the vectors u and v from the previous section,
∆(u,v) = 2, which is equal to the Hamming distance ∆(u,w), where w = 01010, even though the
vectors v and w are not equal.

Armed with the notion of Hamming distance, we now define another important parameter
of a code.

24

Definition 1.4.2 (Minimum distance). Let C ⊆ Σ
n . The minimum distance (or just distance) of

C is defined to be
d = min

c1 6=c2∈C
∆(c1,c2)

It is easy to check that the repetition code C3,r ep has distance 3. (Indeed, any two distinct
messages will differ in at least one of the message bits. After encoding, the difference in one
message bit will translate into a difference of three bits in the corresponding codewords.) We
now claim that the distance of C⊕ is 2. This is a consequence of the following observations.
If two messages m1 and m2 differ in at least two places then ∆(C⊕(m1),C⊕(m2)) ≥ 2 (by only
looking at the first four bits of the codewords). If two messages differ in exactly one place then
the parity bits in the corresponding codewords are different which implies a Hamming dis-
tance of 2 between the codewords. Thus, C⊕ has smaller distance than C3,r ep and can correct
less number of errors than C3,r ep , which seems to suggest that a larger distance implies greater
error-correcting capabilities. The next result formalizes this intuition.

Proposition 1.4.1. The following statements are equivalent for a code C :

1. C has minimum distance d ≥ 2,

2. If d is odd, C can correct (d −1)/2 errors.

3. C can detect d −1 errors.

4. C can correct d −1 erasures.8

Remark 1.4.1. Property (2) above for even d is slightly different. In this case, one can correct up
to d

2 −1 errors but cannot correct d
2 errors. (See Exercise 1.6.)

Before we prove Proposition 1.4.1, let us apply it to the codes C⊕ and C3,r ep which have
distances of 2 and 3 respectively. Proposition 1.4.1 implies the following facts that we have
already proved:

• C3,r ep can correct 1 errors (Proposition 1.3.1).

• C⊕ can detect 1 error but cannot correct 1 error (Proposition 1.3.2).

The proof of Proposition 1.4.1 will need the following decoding function. Maximum like-

lihood decoding (MLD) is a well-studied decoding method for error correcting codes, which
outputs the codeword closest to the received word in Hamming distance (with ties broken arbi-
trarily). More formally, the MLD function denoted by DMLD : Σn →C is defined as follows. For
every y ∈Σ

n ,
DMLD (y) = argmin

c∈C
∆(c,y).

Algorithm 1 is a naive implementation of the MLD.

8In the erasure noise model, the receiver knows where the errors have occurred. In this model, an erroneous
symbol is denoted by “?", with the convention that any non-? symbol is a correct symbol.

25

Algorithm 1 Naive Maximum Likelihood Decoder
INPUT: Received word y ∈Σ

n

OUTPUT: DMLD (y)

1: Pick an arbitrary c ∈C and assign z ← c

2: FOR every c′ ∈C such that c 6= c′ DO

3: IF ∆(c′,y) <∆(z,y) THEN

4: z ← c′

5: RETURN z

Proof of Proposition 1.4.1 We will complete the proof in two steps. First, we will show that if
property 1 is satisfied then so are properties 2,3 and 4. Then we show that if property 1 is not
satisfied then none of properties 2,3 or 4 hold.

1. implies 2. Assume C has distance d . We first prove 2 (for this case assume that d = 2t +1).
We now need to show that there exists a decoding function such that for all error patterns with
at most t errors it always outputs the transmitted message. We claim that the MLD function
has this property. Assume this is not so and let c1 be the transmitted codeword and let y be the
received word. Note that

∆(y,c1) ≤ t . (1.1)

As we have assumed that MLD does not work, DMLD (y) = c2 6= c1. Note that by the definition of
MLD,

∆(y,c2) ≤∆(y,c1). (1.2)

Consider the following set of inequalities:

∆(c1,c2) ≤∆(c2,y)+∆(c1,y) (1.3)

≤ 2∆(c1,y) (1.4)

≤ 2t (1.5)

= d −1, (1.6)

where (1.3) follows from the triangle inequality (see Exercise 1.5), (1.4) follows from (1.2) and
(1.5) follows from (1.1). (1.6) implies that the distance of C is at most d −1, which is a contra-
diction.

1. implies 3. We now show that property 3 holds, that is, we need to describe an algorithm
that can successfully detect whether errors have occurred during transmission (as long as the
total number of errors is bounded by d −1). Consider the following error detection algorithm:
check if the received word y = c for some c ∈ C (this can be done via an exhaustive check). If
no errors occurred during transmission, y = c1, where c1 was the transmitted codeword and the
algorithm above will accept (as it should). On the other hand if 1 ≤∆(y,c1) ≤ d −1, then by the
fact that the distance of C is d , y 6∈C and hence the algorithm rejects, as required.

26

1. implies 4. Finally, we prove that property 4 holds. Let y ∈ (Σ∪ {?})n be the received word.
First we claim that there is a unique c = (c1, . . . ,cn) ∈ C that agrees with y (i.e. yi = ci for ev-
ery i such that yi 6=?). (For the sake of contradiction, assume that this is not true, i.e. there
exists two distinct codewords c1,c2 ∈ C such that both c1 and c2 agree with y in the unerased
positions. Note that this implies that c1 and c2 agree in the positions i such that yi 6=?. Thus,
∆(c1,c2) ≤ |{i |yi =?}| ≤ d −1, which contradicts the assumption that C has distance d .) Given
the uniqueness of the codeword c ∈ C that agrees with y in the unerased position, here is an
algorithm to find it: go through all the codewords in C and output the desired codeword.

¬1. implies¬2. For the other direction of the proof, assume that property 1 does not hold, that
is, C has distance d −1. We now show that property 2 cannot hold, that is, for every decoding
function there exists a transmitted codeword c1 and a received word y (where∆(y,c1) ≤ (d−1)/2)
such that the decoding function cannot output c1. Let c1 6= c2 ∈ C be codewords such that
∆(c1,c2) = d −1 (such a pair exists as C has distance d −1). Now consider a vector y such that
∆(y,c1) =∆(y,c2) = (d −1)/2. Such a y exists as d is odd and by the choice of c1 and c2. Below is
an illustration of such a y (same color implies that the vectors agree on those positions):

d−1
2n −d +1

c1

c2

y

d−1
2

Figure 1.3: Bad example for unique decoding.

Now, since y could have been generated if either of c1 or c2 were the transmitted codeword,
no decoding function can work in this case.9

¬1. implies ¬3. For the remainder of the proof, assume that the transmitted word is c1 and
there exists another codeword c2 such that ∆(c2,c1) = d −1. To see why property 3 is not true,
let y = c2. In this case, either the error detecting algorithm detects no error or it declares an
error when c2 is the transmitted codeword and no error takes place during transmission.

9Note that this argument is just a generalization of the argument that C⊕ cannot correct 1 error.

27

¬1. implies ¬4. We finally argue that property 4 does not hold. Let y be the received word in
which the positions that are erased are exactly those where c1 and c2 differ. Thus, given y both
c1 and c2 could have been the transmitted codeword and no algorithm for correcting (at most
d −1) erasures can work in this case. ■

Proposition 1.4.1 implies that Question 1.1.1 can be reframed as

Question 1.4.1. What is the largest rate R that a code with distance d can have?

We have seen that the repetition code C3,r ep has distance 3 and rate 1/3. A natural follow-up
question (which is a special case of Question 1.4.1) is to ask

Question 1.4.2. Can we have a code with distance 3 and rate R > 1
3 ?

1.5 Hamming Code

With the above question in mind, let us consider the so called Hamming code, which we will
denote by CH . Given a message (x1, x2, x3, x4) ∈ {0,1}4, its corresponding codeword is given by

CH (x1, x2, x3, x4) = (x1, x2, x3, x4, x2 ⊕x3 ⊕x4, x1 ⊕x3 ⊕x4, x1 ⊕x2 ⊕x4).

It is easy to check that this code has the following parameters:

CH : q = 2,k = 4,n = 7,R = 4/7.

We will show shortly that CH has a distance of 3. We would like to point out that we could
have picked the three parities differently. The reason we mention the three particular parities
above is due to historical reasons. We leave it as an exercise to define alternate set of parities
such that the resulting code still has a distance of 3: see Exercise 1.9.

Before we move on to determining the distance of CH , we will need another definition.

Definition 1.5.1 (Hamming Weight). Let q ≥ 2. Given any vector v ∈ {0,1,2, . . . , q −1}n , its Ham-
ming weight, denoted by w t (v) is the number of non-zero symbols in v.

We now look at the distance of CH .

Proposition 1.5.1. CH has distance 3.

Proof. We will prove the claimed property by using two properties of CH :

min
c∈CH ,c 6=0

w t (c) = 3, (1.7)

28

and
min

c∈CH ,c 6=0
w t (c) = min

c1 6=c2∈CH

∆(c1,c2) (1.8)

The proof of (1.7) follows from a case analysis on the Hamming weight of the message bits. Let
us use x = (x1, x2, x3, x4) to denote the message vector.

• Case 0: If w t (x) = 0, then CH (x) = 0, which means we do not have to consider this code-
word.

• Case 1: If w t (x) = 1 then at least two parity check bits in (x2⊕x3⊕x4, x1⊕x2⊕x4, x1⊕x3⊕x4)
are 1. So in this case, w t (CH (x)) ≥ 3.

• Case 2: If w t (x) = 2 then at least one parity check bit in (x2⊕x3⊕x4, x1⊕x2⊕x4, x1⊕x3⊕x4)
is 1. So in this case, w t (CH (x)) ≥ 3.

• Case 3: If w t (x) ≥ 3 then obviously w t (CH (x)) ≥ 3.

Thus, we can conclude that min
c∈CH ,c 6=0

w t (c) ≥ 3. Further, note that w t (CH (1,0,0,0)) = 3, which

along with the lower bound that we just obtained proves (1.7).
We now turn to the proof of (1.8). For the rest of the proof, let x = (x1, x2, x3, x4) and y =

(y1, y2, y3, y4) denote the two distinct messages. Using associativity and commutativity of the ⊕
operator, we obtain that

CH (x)+CH (y) =CH (x+y),

where the “+" operator is just the bit-wise ⊕ of the operand vectors. Further, it is easy to verify
that for two vectors u,v ∈ {0,1}n , ∆(u,v) = w t (u+v) (see Exercise 1.10). Thus, we have

min
x6=y∈{0,1}4

∆(CH (x),CH (y)) = min
x6=y∈{0,1}4

w t (CH (x+y))

= min
x6=0∈{0,1}4

w t (CH (x)),

where the second equality follows from the observation that {x+y|x 6= y ∈ {0,1}n} = {x ∈ {0,1}n |x 6=
0}. Recall that w t (CH (x)) = 0 if and only if x = 0 and This completes the proof of (1.8). Combin-
ing (1.7) and (1.8), we conclude that CH has a distance 3.

The second part of the proof could also have been shown in the following manner. It can
be verified easily that the Hamming code is the set {x ·GH |x ∈ {0,1}4}, where GH is the following
matrix (where we think x as a row vector).10

GH =

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

10Indeed (x1, x2, x3, x4) ·GH = (x1, x2, x3, x4, x2 ⊕x3 ⊕x4, x1 ⊕x3 ⊕x4, x1 ⊕x2 ⊕x4), as desired.

29

In fact, any binary code (of dimension k and block length n) that is generated11 by a k ×n

matrix is called a binary linear code. (Both C⊕ and C3,r ep are binary linear codes: see Exer-
cise 1.11.) This implies the following simple fact.

Lemma 1.5.2. For any binary linear code C and any two messages x and y, C (x)+C (y) =C (x+y).

Proof. For any binary linear code, we have a generator matrix G . The following sequence of
equalities (which follow from the distributivity and associativity properties of the boolean EXOR
and AND operators) proves the lemma.

C (x)+C (y) = x ·G +y ·G
= (x+y) ·G
=C (x+y)

We stress that in the lemma above, x and y need not be distinct. Note that due to the fact that
b⊕b = 0 for every b ∈ {0,1}, x+x = 0, which along with the lemma above implies that C (0) = 0.12

We can infer the following result from the above lemma and the arguments used to prove (1.8)
in the proof of Proposition 1.5.1.

Proposition 1.5.3. For any binary linear code, minimum distance is equal to minimum Ham-

ming weight of any non-zero codeword.

Thus, we have seen that CH has distance d = 3 and rate R = 4
7 while C3,r ep has distance d = 3

and rate R = 1
3 . Thus, the Hamming code is provably better than the repetition code (in terms

of the tradeoff between rate and distance) and thus, answers Question 1.4.2 in the affirmative.
The next natural question is

Question 1.5.1. Can we have a distance 3 code with a rate higher than that of CH ?

We will address this question in the next section.

1.6 Hamming Bound

Now we switch gears to present our first tradeoff between redundancy (in the form of dimension
of a code) and its error-correction capability (in form of its distance). In particular, we will first
prove a special case of the so called Hamming bound for a distance of 3.

We begin with another definition.

11That is, C = {x ·G|x ∈ {0,1}k }, where addition is the ⊕ operation and multiplication is the AND operation.
12This of course should not be surprising as for any matrix G , we have 0 ·G = 0.

30

Definition 1.6.1 (Hamming Ball). For any vector x ∈ [q]n ,

B(x,e) = {y ∈ [q]n |∆(x,y) ≤ e}.

Next we prove an upper bound on the dimension of every code with distance 3.

Theorem 1.6.1 (Hamming bound for d = 3). Every binary code with block length n, dimension

k, distance d = 3 satisfies

k ≤ n − log2(n +1).

Proof. Given any two codewords, c1 6= c2 ∈C , the following is true (as C has distance13 3):

B(c1,1)∩B(c2,1) =;. (1.9)

See Figure 1.4 for an illustration. Note that for all x ∈ {0,1}n (see Exercise 1.14),

1

1

c1

{0,1}n

1

c2

1

11

Figure 1.4: Hamming balls of radius 1 are disjoint. The figure is technically not correct: the balls
above are actually balls in the Euclidean space, which is easier to visualize than the Hamming
space.

|B(x,1)| = n +1. (1.10)

Now consider the union of all Hamming balls centered around some codeword. Obviously their
union is a subset of {0,1}n . In other words,

∣
∣
∣
∣

⋃

c∈C

B(c,1)

∣
∣
∣
∣≤ 2n . (1.11)

13Assume that y ∈ B(c1,1)∩B(c2,1), that is ∆(y,c1) ≤ 1 and ∆(y,c2) ≤ 1. Thus, by the triangle inequality ∆(c1,c2) ≤
2 < 3, which is a contradiction.

31

As (1.9) holds for every pair of distinct codewords,

∣
∣
∣
∣

⋃

c∈C

B(c,1)

∣
∣
∣
∣=

∑

c∈C

|B(c,1)|

= 2k · (n +1), (1.12)

where (1.12) follows from (1.10) and the fact that C has dimension k. Combining (1.12) and
(1.11) and taking log2 of both sides we will get the desired bound:

k ≤ n − log2(n +1).

Thus, Theorem 1.6.1 shows that for n = 7, CH has the largest possible dimension for any
binary code of block length 7 and distance 3 (as for n = 7, n − log2(n + 1) = 4). In particular,
it also answers Question 1.5.1 for n = 7 in the negative. Next, will present the general form of
Hamming bound.

1.7 Generalized Hamming Bound

We start with a new notation.

Definition 1.7.1. A code C ⊆Σ
n with dimension k and distance d will be called a (n,k,d)Σ code.

We will also refer it to as a (n,k,d)|Σ| code.

We now proceed to generalize Theorem 1.6.1 to any distance d .

Theorem 1.7.1 (Hamming Bound for any d). For every (n,k,d)q code

k ≤ n − logq

⌊
(d−1)

2

⌋

∑

i=0

(

n

i

)

(q −1)i

 .

Proof. The proof is a straightforward generalization of the proof of Theorem 1.6.1. For nota-

tional convenience, let e =
⌊

(d−1)
2

⌋

. Given any two codewords, c1 6= c2 ∈C , the following is true

(as C has distance14 d):
B(c1,e)∩B(c2,e) =;. (1.13)

We claim that for all x ∈ [q]n ,

|B(x,e)| =
e∑

i=0

(

n

i

)

(q −1)i . (1.14)

14Assume that y ∈ B(c1,e)∩B(c2,e), that is ∆(y,c1) ≤ e and ∆(y,c2) ≤ e. Thus, by the triangle inequality, ∆(c1,c2) ≤
2e ≤ d −1, which is a contradiction.

32

Indeed any vector in B(x,e) must differ from x in exactly 0 ≤ i ≤ e positions. In the summation
(n

i

)

is the number of ways of choosing the differing i positions and in each such position, a
vector can differ from x in q −1 ways.

Now consider the union of all Hamming balls centered around some codeword. Obviously
their union is a subset of [q]n . In other words,

∣
∣
∣
∣

⋃

c∈C

B(c,e)

∣
∣
∣
∣≤ qn . (1.15)

As (1.13) holds for every pair of distinct codewords,
∣
∣
∣
∣

⋃

c∈C

B(c,e)

∣
∣
∣
∣=

∑

c∈C

|B(c,e)|

= qk
e∑

i=0

(

n

i

)

(q −1)i , (1.16)

where (1.16) follows from (1.14) and the fact that C has dimension k. Combining (1.16) and
(1.15) and taking logq of both sides we will get the desired bound:

k ≤ n − logq

(
e∑

i=0

(

n

i

)

(q −1)i

)

.

The Hamming bound leads to the following definition:

Definition 1.7.2. Codes that meet Hamming bound are called perfect codes.

Intuitively, a perfect code leads to the following perfect “packing": if one constructs Ham-

ming balls of radius
⌊

d−1
2

⌋

around all the codewords, then we would cover the entire ambient

space, i.e. every possible vector will lie in one of these Hamming balls.
One example of perfect code is the (7,4,3)2 Hamming code that we have seen in this chapter

(so is the family of general Hamming codes that we will see in the next chapter). A natural
question to ask is if

Question 1.7.1. Other than the Hamming codes, are there any other perfect (binary) codes?

We will see the answer shortly.

1.8 Exercises

Exercise 1.1. Show that any t-error correcting code is also t-error detecting but not necessarily
the other way around.

33

Exercise 1.2. Prove Proposition 1.3.1.

Exercise 1.3. Show that for every integer n, there is no code with block length n that can handle
arbitrary number of errors.

Exercise 1.4. Prove Proposition 1.3.2.

Exercise 1.5. A distance function on Σ
n (i.e. d : Σn ×Σ

n → R) is called a metric if the following
conditions are satisfied for every x,y,z ∈Σ

n :

1. d(x,y) ≥ 0.

2. d(x,y) = 0 if and only if x = y.

3. d(x,y) = d(y,x).

4. d(x,z) ≤ d(x,y)+d(y,z). (This property is called the triangle inequality.)

Prove that the Hamming distance is a metric.

Exercise 1.6. Let C be a code with distance d for even d . Then argue that C can correct up to
d/2−1 many errors but cannot correct d/2 errors. Using this or otherwise, argue that if a code
C is t-error correctable then it either has a distance of 2t +1 or 2t +2.

Exercise 1.7. In this exercise, we will see that one can convert arbitrary codes into code with
slightly different parameters:

1. Let C be an (n,k,d)2 code with d odd. Then it can be converted into an (n +1,k,d +1)2

code.

2. Let C be an (n,k,d)Σ code. Then it can be converted into an (n −1,k,d −1)Σ code.

Note: Other than the parameters of the code C , you should not assume anything else about the
code. Also your conversion should work for every n,k,d ≥ 1.

Exercise 1.8. In this problem we will consider a noise model that has both errors and erasures. In
particular, let C be an (n,k,d)Σ code. As usual a codeword c ∈C is transmitted over the channel
and the received word is a vector y ∈ (Σ∪ {?})n , where as before a ? denotes an erasure. We will
use s to denote the number of erasures in y and e to denote the number of (non-erasure) errors
that occurred during transmission. To decode such a vector means to output a codeword c ∈C

such that the number of positions where c disagree with y in the n − s non-erased positions is
at most e. For the rest of the problem assume that

2e + s < d . (1.17)

1. Argue that the output of the decoder for any C under (1.17) is unique.

2. Let C be a binary code (but not necessarily linear). Assume that there exists a decoder D

that can correct from < d/2 many errors in T (n) time. Then under (1.17) one can perform
decoding in time O(T (n)).

34

Exercise 1.9. Define codes other than CH with k = 4,n = 7 and d = 3.
Hint: Refer to the proof of Proposition 1.5.1 to figure out the properties needed from the three parities.

Exercise 1.10. Prove that for any u,v ∈ {0,1}n , ∆(u,v) = w t (u+v).

Exercise 1.11. Argue that C⊕ and C3,r ep are binary linear codes.

Exercise 1.12. Let G be a generator matrix of an (n,k,d)2 binary linear code. Then G has at least
kd ones in it.

Exercise 1.13. Argue that in any binary linear code, either all all codewords begin with a 0 of
exactly half of the codewords begin with a 0.

Exercise 1.14. Prove (1.10).

Exercise 1.15. Show that there is no binary code with block length 4 that achieves the Hamming
bound.

Exercise 1.16. (∗) There are n people in a room, each of whom is given a black/white hat chosen
uniformly at random (and independent of the choices of all other people). Each person can see
the hat color of all other people, but not their own. Each person is asked if (s)he wishes to guess
their own hat color. They can either guess, or abstain. Each person makes their choice without
knowledge of what the other people are doing. They either win collectively, or lose collectively.
They win if all the people who don’t abstain guess their hat color correctly and at least one
person does not abstain. They lose if all people abstain, or if some person guesses their color
incorrectly. Your goal below is to come up with a strategy that will allow the n people to win
with pretty high probability. We begin with a simple warmup:

(a) Argue that the n people can win with probability at least 1
2 .

Next we will see how one can really bump up the probability of success with some careful mod-
eling, and some knowledge of Hamming codes. (Below are assuming knowledge of the general
Hamming code (see Section 2.4). If you do not want to skip ahead, you can assume that n = 7
in the last part of this problem.

(b) Lets say that a directed graph G is a subgraph of the n-dimensional hypercube if its vertex
set is {0,1}n and if u → v is an edge in G , then u and v differ in at most one coordinate.
Let K (G) be the number of vertices of G with in-degree at least one, and out-degree zero.
Show that the probability of winning the hat problem equals the maximum, over directed
subgraphs G of the n-dimensional hypercube, of K (G)/2n .

(c) Using the fact that the out-degree of any vertex is at most n, show that K (G)/2n is at most
n

n+1 for any directed subgraph G of the n-dimensional hypercube.

(d) Show that if n = 2r −1, then there exists a directed subgraph G of the n-dimensional hy-
percube with K (G)/2n = n

n+1 .
Hint: This is where the Hamming code comes in.

35

1.9 Bibliographic Notes

Coding theory owes its original to two remarkable papers: one by Shannon and the other by
Hamming [39] both of which were published within a couple of years of each other. Shannon’s
paper defined the BSCp channel (among others) and defined codes in terms of its encoding
function. Shannon’s paper also explicitly defined the decoding function. Hamming’s work de-
fined the notion of codes as in Definition 1.2.1 as well as the notion of Hamming distance. Both
the Hamming bound and the Hamming code are (not surprisingly) due to Hamming. The spe-
cific definition of Hamming code that we used in this book was the one proposed by Ham-
ming and is also mentioned in Shannon’s paper (even though Shannon’s paper pre-dates Ham-
ming’s).

The notion of erasures was defined by Elias.
One hybrid model to account for the fact that in real life the noise channel is somewhere

in between the extremes of the channels proposed by Hamming and Shannon is the Arbitrary

Varying Channel (the reader is referred to the survey by Lapidoth and Narayan [50]).

36

Chapter 2

A Look at Some Nicely Behaved Codes:

Linear Codes

Let us now pause for a bit and think about how we can represent a code. In general, a code
C : [q]k −→ [q]n can be stored using nqk symbols from [q] (n symbols for each of the qk code-
words) or nqk log q bits. For constant rate codes, this is exponential space, which is prohibitive
even for modest values of k like k = 100. A natural question is whether we can do better. Intu-
itively, the code must have some extra structure that would facilitate a succinct representation
of the code. We will now look at a class of codes called linear codes that have more structure
than general codes which leads to some other nice properties. We have already seen binary lin-
ear codes in Section 1.5, that is, C ⊆ {0,1}n is linear code if for all c1,c2 ∈C , c1+c2 ∈C , where the
“+" denotes bit-wise EXOR.

Definition 2.0.1 (Linear Codes). Let q be a prime power (i.e. q = p s for some prime p and
integer s ≥ 1). C ⊆ {0,1, ..., q −1}n is a linear code if it is a linear subspace of {0,1, ..., q −1}n . If C

has dimension k and distance d then it will be referred to as an [n,k,d]q or just an [n,k]q code.

Of course the above definition is not complete because we have not defined a linear sub-
space yet. We do that next.

2.1 Finite Fields

To define linear subspaces, we will need to work with (finite) fields. At a high level we need
finite fields as when we talk about codes, we deal with finite symbols/numbers and we want to
endow these symbols with the same math that makes arithmetic over reals work. Finite fields
accomplish this precise task. We begin with a quick overview of fields.

Informally speaking, a field is a set of elements on which one can do addition, subtraction,
multiplication and division and still stay in the set. More formally,

Definition 2.1.1. A field F is given by a triple (S,+, ·), where S is the set of elements containing
special elements 0 and 1 and +, · are functions F×F→ F with the following properties:

37

• Closure: For every a,b ∈ S, we have both a +b ∈ S and a ·b ∈ S.

• Associativity: + and · are associative, that is, for every a,b,c ∈ S, a+(b+c) = (a+b)+c and
a · (b · c) = (a ·b) · c.

• Commutativity: + and · are commutative, that is, for every a,b ∈ S, a + b = b + a and
a ·b = b ·a.

• Distributivity: · distributes over +, that is for every a,b,c ∈ S, a · (b + c) = a ·b +a · c.

• Identities: For every a ∈ S, a +0 = a and a ·1 = a.

• Inverses: For every a ∈ S, there exists its unique additive inverse −a such that a + (−a) =
0. Also for every a ∈ S \ {0}, there exists its unique multiplicative inverse a−1 such that
a ·a−1 = 1.

With the usual semantics for + and ·, R (set of real number) is a field but Z (set of integers)
is not a field as division of two integers can give rise to a rational number (the set of rational
numbers itself is a field though– see Exercise 2.1). In this course, we will exclusively deal with
finite fields. As the name suggests these are fields with a finite size set of elements. (We will
overload notation and denote the size of a field |F| = |S|.) The following is a well known result.

Theorem 2.1.1 (Size of Finite Fields). The size of any finite field is p s for prime p and integer

s ≥ 1.

One example of finite fields that we have seen is the field of two elements {0,1}, which we
will denote by F2 (we have seen this field in the context of binary linear codes). For F2, addition
is the XOR operation, while multiplication is the AND operation. The additive inverse of an
element in F2 is the number itself while the multiplicative inverse of 1 is 1 itself.

Let p be a prime number. Then the integers modulo p form a field, denoted by Fp (and also
by Zp), where the addition and multiplication are carried out mod p. For example, consider
F7, where the elements are {0,1,2,3,4,5,6}. So we have 4+ 3 mod 7 = 0 and 4 · 4 mod 7 = 2.
Further, the additive inverse of 4 is 3 as 3+4 mod 7 = 0 and the multiplicative inverse of 4 is 2
as 4 ·2 mod 7 = 1.

More formally, we prove the following result.

Lemma 2.1.2. Let p be a prime. Then Fp = ({0,1, . . . , p −1},+p , ·p) is a field, where +p and ·p are

addition and multiplication mod p.

Proof. The properties of associativity, commutativity, distributivity and identities hold for in-
tegers and hence, they hold for Fp . The closure property follows since both the “addition" and
“multiplication" are done mod p, which implies that for any a,b ∈ {0, . . . , p −1}, a +p b, a ·p b ∈
{0, . . . , p−1}. Thus, to complete the proof, we need to prove the existence of unique additive and
multiplicative inverses.

Fix an arbitrary a ∈ {0, . . . , p −1}. Then we claim that its additive inverse is p −a mod p. It is
easy to check that a +p −a = 0 mod p. Next we argue that this is the unique additive inverse.

38

To see this note that the sequence a, a + 1, a + 2, . . . , a + p − 1 are p consecutive numbers and
thus, exactly one of them is a multiple of p, which happens for b = p −a mod p, as desired.

Now fix an a ∈ {1, . . . , p −1}. Next we argue for the existence of a unique multiplicative uni-
verse a−1. Consider the set of numbers {a ·p b}b∈{1,...,p−1}. We claim that all these numbers are
unique. To see this, note that if this is not the case, then there exist b1 6= b2 ∈ {0,1, . . . , p −1} such
that a ·b1 = a ·b2 mod p, which in turn implies that a · (b1−b2) = 0 mod p. Since a and b1−b2

are non-zero numbers, this implies that p divides a · (b1 −b2). Further, since a and |b1 −b2| are
both at most p −1, this implies that factors of a and (b1 −b2) mod p when multiplied together
results in p, which is a contradiction since p is prime. Thus, this implies that there exists a
unique element b such that a ·b = 1 mod p and thus, b is the required a−1.

One might think that there could be different fields with the same number of elements.
However, this is not the case:

Theorem 2.1.3. For every prime power q there is a unique finite field with q elements (up to

isomorphism1).

Thus, we are justified in just using Fq to denote a finite field on q elements.

2.2 Linear Subspaces

We are finally ready to define the notion of linear subspace.

Definition 2.2.1 (Linear Subspace). S ⊆ Fq
n is a linear subspace if the following properties hold:

1. For every x,y ∈ S, x+y ∈ S, where the addition is vector addition over Fq (that is, do addi-
tion component wise over Fq).

2. For every a ∈ Fq and x ∈ S, a ·x ∈ S, where the multiplication is over Fq .

Here is a (trivial) example of a linear subspace of F3
5:

S1 = {(0,0,0), (1,1,1), (2,2,2), (3,3,3), (4,4,4)}. (2.1)

Note that for example (1,1,1)+ (3,3,3) = (4,4,4) ∈ S1 and 2 · (4,4,4) = (3,3,3) ∈ S1 as required
by the definition. Here is another somewhat less trivial example of a linear subspace over F3

3:

S2 = {(0,0,0), (1,0,1), (2,0,2), (0,1,1), (0,2,2), (1,1,2), (1,2,0), (2,1,0), (2,2,1). (2.2)

Note that (1,0,1)+ (0,2,2) = (1,2,0) ∈ S2 and 2 · (2,0,2) = (1,0,1) ∈ S2 as required.

Remark 2.2.1. Note that the second property implies that 0 is contained in every linear sub-
space. Further for any subspace over F2, the second property is redundant: see Exercise 2.4.

Before we state some properties of linear subspaces, we state some relevant definitions.

1An isomorphism φ : S → S′ is a map (such that F= (S,+, ·) and F′ = (S′,⊕,◦) are fields) where for every a1, a2 ∈ S,
we have φ(a1 +a2) =φ(a1)⊕φ(a2) and φ(a1 ·a2) =φ(a1)◦φ(a2).

39

Definition 2.2.2 (Span). Given a set B = {v1, . . . ,vℓ}. The span of B is the set of vectors

{
ℓ∑

i=1
ai ·vi |ai ∈ Fq for every i ∈ [ℓ]

}

.

Definition 2.2.3 (Linear independence of vectors). We say that v1,v2, . . .vk are linearly indepen-

dent if for every 1 ≤ i ≤ k and for every k −1-tuple (a1, a2, . . . , ai−1, ai+1, . . . , ak) ∈ Fk−1
q ,

vi 6= a1v1 + . . .+ai−1vi−1 +ai+1vi+1 + . . .+ak vk .

In other words, vi is not in the span of the set {v1, . . . ,vi−1,vi+1, . . . ,vn}.

For example the vectors (1,0,1), (1,1,1) ∈ S2 are linearly independent.

Definition 2.2.4 (Rank of a matrix). The rank of matrix in Fk×k
q is the maximum number of

linearly independent rows (or columns). A matrix in Fk×n
q with rank min(k,n) is said to have full

rank.

One can define the row (column) rank of a matrix as the maximum number of linearly in-
dependent rows (columns). However, it is a well-known theorem that the row rank of a matrix
is the same as its column rank. For example, the matrix below over F3 has full rank (see Exer-
cise 2.5):

G2 =
(

1 0 1
0 1 1

)

. (2.3)

Any linear subspace satisfies the following properties (the full proof can be found in any
standard linear algebra textbook).

Theorem 2.2.1. If S ⊆ Fq
n is a linear subspace then

1. |S| = qk for some k ≥ 0. The parameter k is called the dimension of S.

2. There exists v1, ...,vk ∈ S called basis elements (which need not be unique) such that every

x ∈ S can be expressed as x = a1v1 + a2v2 + ...+ anvn where ai ∈ Fq for 1 ≤ i ≤ k. In other

words, there exists a full rank k×n matrix G (also known as a generator matrix) with entries

from Fq such that every x ∈ S, x = (a1, a2, ...ak) ·G where

G =

←− v1 −→
←− v2 −→

...

←− vk −→

.

3. There exists a full rank (n − k)×n matrix H (called a parity check matrix) such that for

every x ∈ S, HxT = 0.

4. G and H are orthogonal, that is, G ·H T = 0.

40

Proof Sketch.

Property 1. We begin with the proof of the first property. For the sake of contradiction, let
us assume that qk < |S| < qk+1, for some k ≥ 0. Iteratively, we will construct a set of linearly
independent vectors B ⊆ S such that |B | ≥ k +1. Note that by the definition of a linear subspace
the span of B should be contained in S. However, this is a contradiction as the size of the span
of B is at least2 qk+1 > |S|.

To complete the proof, we show how to construct the set B in a greedy fashion. In the first
step pick v1 to be any non-zero vector in S and set B ← {v1} (we can find such a vector as |S| >
qk ≥ 1). Now say after the step t (for some t ≤ k), |B | = t . Now the size of the span of the current
B is q t ≤ qk < |S|. Thus there exists a vector vt+1 ∈ S \ B that is linearly independent of vectors
in B . Set B ← B ∪ {vt+1}. Thus, we can continue building B till |B | = k +1, as desired.

Property 2. We first note that we can pick B = {v1, . . . ,vk } to be any set of k linearly indepen-
dent vectors– this just follows from the argument above for Property 1.1. This is because the
span of B is contained in S. However, since |S| = qk and the span of B has qk vectors, the two
have to be the same.

Property 3. Property 3 above follows from another fact that every linear subspace S has a null
space N ⊆ Fn

q such that for every x ∈ S and y ∈ N , 〈x,y〉 = 0. Further, it is known that N itself is
a linear subspace of dimension n −k. (The claim that N is also a linear subspace follows from
the following two facts: for every x,y,z ∈ Fn

q , (i) 〈x,y+ z〉 = 〈x,y〉+ 〈x,z〉 and (ii) for any a ∈ Fq ,
〈x, ay〉 = a ·〈x,y〉.) In other words, there exists a generator matrix H for it. This matrix H is called
the parity check matrix of S.

Property 4. See Exercise 2.8.

As examples, the linear subspace S1 in (2.1) has as one of its generator matrices

G1 =
(

1 1 1
)

and as one of its parity check matrices

H1 =
(

1 2 2
2 2 1

)

.

Further, the linear subspace S2 in (2.2) has G2 as one of its generator matrices and has the fol-
lowing as one of its parity check matrices

H2 =
(

1 1 2
)

.

Finally, we state another property of linear subspaces that is useful.

2See Exercise 2.7.

41

Lemma 2.2.2. Given matrix G of dimension k ×n that is a generator matrix of subspace S1 and

matrix H of dimension (n−k)×n that is a parity check matrix of subspace S2 such that G H T = 0,

then S1 = S2.

Proof. We first prove that S1 ⊆ S2. Given any c ∈ S1, there exists x ∈ Fk
q such that c = xG . Then,

cH T = xG H T = 0,

which implies that c ∈ S2, as desired.
To complete the proof note that as H has full rank, its null space (or S2) has dimension

n − (n −k) = k (this follows from a well known fact from linear algebra). Now as G has full rank,
the dimension of S1 is also k. Thus, as S1 ⊆ S2, it has to be the case that S1 = S2.3

2.3 Properties of Linear Codes

The above theorem gives two alternate characterizations of an [n,k]q linear code C :

• C is generated by its k ×n generator matrix G. As an example that we have already seen,
the [7,4,3]2 Hamming code has the following generator matrix:

G =

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

• C is also characterized by an (n−k)×n parity check matrix H . We claim that the following
matrix is a parity check matrix of the [7,4,3]2 Hamming code:

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

Indeed, it can be easily verified that G ·H T = 0. Then Lemma 2.2.2 proves that H is indeed
a parity check matrix of the [7,4,3]2 Hamming code.

We now look at some consequences of the above characterizations of an [n,k]q linear code
C . We started this chapter with a quest for succinct representation of a code. Note that both the
generator matrix and the parity check matrix can be represented using O(n2) symbols from Fq

(which is much smaller than the exponential representation of a general code). More precisely
(see Exercise 2.10),

Proposition 2.3.1. Any [n,k]q linear code can be represented with min(nk,n(n − k)) symbols

from Fq .

3If not, S1 ⊂ S2 which implies that that |S2| ≥ |S1|+1. The latter is not possible if both S1 and S2 have the same
dimension.

42

There is an encoding algorithm for C that runs in O(n2) (in particular O(kn)) time– given a
message m ∈ Fk

q , the corresponding codeword C (m) = m ·G , where G is the generator matrix of
C . (See Exercise 2.11.)

Proposition 2.3.2. For any [n,k]q linear code, given its generator matrix, encoding can be done

with O(nk) operations over Fq .

There is an error-detecting algorithm for C that runs in O(n2). This is a big improvement
over the naive brute force exponential time algorithm (that goes through all possible codewords
c ∈C and checks if y = c). (See Exercise 2.12.)

Proposition 2.3.3. For any [n,k]q linear code, given its parity check matrix, error detection can

be performed in O(n(n −k)) operations over Fq .

Next, we look at some alternate characterizations of the distance of a linear code.

2.3.1 On the Distance of a Linear Code

We start with the following property, which we have seen for the special case of binary linear
codes (Proposition 1.5.3).

Proposition 2.3.4. For a [n,k,d]q code C ,

d = min
c∈C ,
c 6=0

w t (c).

Proof. To show that d is the same as the minimum weight we show that d is no more than the
minimum weight and d is no less than the minimum weight.

First, we show that d is no more than the minimum weight. We can see this by considering
∆(0,c′) where c′ is the non-zero codeword in C with minimum weight; its distance from 0 is
equal to its weight. Thus, we have d ≤ w t (c′), as desired.

Now, to show that d is no less than the minimum weight, consider c1 6= c2 ∈ C such that
∆(c1,c2) = d . Note that c1 − c2 ∈ C (this is because −c2 = −1 · c2 ∈ C , where −1 is the additive
inverse of 1 in Fq and c1 −c2 = c1 + (−c2), which by the definition of linear codes is in C). Now
note that w t (c1 −c2) = ∆(c1,c2) = d , since the non-zero symbols in c1 −c2 occur exactly in the
positions where the two codewords differ. Further, since c1 6= c2, c1 −c2 6= 0, which implies that
the minimum Hamming weight of any non-zero codeword in C is at most d .

Next, we look at another property implied by the parity check matrix of a linear code.

Proposition 2.3.5. For any [n,k,d]q code C with parity check matrix H, d is the minimum num-

ber of linearly dependent columns in H.

Proof. By Proposition 2.3.4, we need to show that the minimum weight of a non-zero codeword
in C is the minimum number of linearly dependent columns. Let t be the minimum number of
linearly dependent columns in H . To prove the claim we will show that t ≤ d and t ≥ d .

43

For the first direction, Let c 6= 0 ∈ C be a codeword with w t (c) = d . Now note that, by the
definition of the parity check matrix, H ·cT = 0. Working through the matrix multiplication, this
gives us that

∑n
i=1 ci H i , where

H =

↑ ↑ ↑ ↑
H 1 H 2 · · · H i · · · H n

↓ ↓ ↓ ↓

and c = (c1, . . . ,cn). Note that we can skip multiplication for those columns for which the corre-
sponding bit ci is zero, so for this to be zero, those H i with ci 6= 0 are linearly dependent. This
means that d ≥ t , as the columns corresponding to non-zero entries in c are one instance of
linearly dependent columns.

For the other direction, consider the minimum set of columns from H , H i1 , H i2 , . . . , H it that
are linearly dependent. This implies that there exists non-zero elements c ′

i1
, . . . ,c ′

it
∈ Fq such

that c ′
ii

H i1 + . . .+ c ′
it

H it = 0. (Note that all the c ′
i j

are non-zero as no set of less than t columns

are linearly dependent.) Now extend c ′
i1

, . . . ,c ′
it

to the vector c′ such that c ′
j
= 0 for j 6∈ {i1, . . . , it }.

Note that c′ ∈ C and thus, d ≤ w t (c′) = t (where recall t is the minimum number of linearly
independent columns in H).

2.4 Hamming Codes

We now change gears and look at the general family of linear codes, which were discovered by
Hamming. So far we have seen the [7,4,3]2 Hamming code (in Section 1.5). In fact for any r ≥ 2,
there is a [2r −1,2r − r −1,3]2 Hamming code. Thus in Section 1.5, we have seen this code for
r = 3.

Consider the r × (2r −1) matrix Hr over F2, where the i th column Hi
r , 1 ≤ i ≤ 2r −1, is the

binary representation of i (note that such a representation is a vector in {0,1}r). For example,
for the case we have seen (r = 3),

H3 =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

Note that by its definition, the code that has Hr as its parity check matrix has block length 2r −1
and dimension 2r − r −1. This leads to the formal definition of the general Hamming code.

Definition 2.4.1. The [2r −1,2r −r−1]2 Hamming code, denoted by CH ,r has parity check matrix
Hr .

In other words, the general [2r−1,2r−r−1]2 Hamming code is the code {c ∈ {0,1}2r −1|Hr ·cT =
0}.

Next we argue that the above Hamming code has distance 3 (in Proposition 1.5.1 we argued
this for r = 3).

44

Proposition 2.4.1. The Hamming code [2r −1,2r − r −1,3]2 has distance 3.

Proof. No two columns in Hr are linearly dependent. If they were, we would have Hi
r +H

j
r =

0, but this is impossible since they differ in at least one bit (being binary representations of
integers, i 6= j). Thus, by Proposition 2.3.5, the distance is at least 3. It is at most 3, since (e.g.)
H1

r +H2
r +H3

r = 0.

Now note that under the Hamming bound for d = 3 (Theorem 1.6.1), k ≤ n − log2(n +1), so
for n = 2r −1, k ≤ 2r − r −1. Hence, the Hamming code is a perfect code. (See Definition 1.7.2.)

In Question 1.7.1, we asked which codes are perfect codes. Interestingly, the only perfect
binary codes are the following:

• The Hamming codes which we just studied.

• The trivial [n,1,n]2 codes for odd n (which have 0n and 1n as the only codewords): see
Exercise 2.22.

• Two codes due to Golay [25].

2.5 Family of codes

Till now, we have mostly studied specific codes, that is, codes with fixed block lengths and di-
mension. The only exception was the “family" of [2r −1,2r −r −1,3]2 Hamming codes (for r ≥ 2)
that we studied in the last section. We will see shortly that when we do an asymptotic study of
codes (which is what we will do), it makes more sense to talk about a family of codes. First, we
define the notion of family of codes:

Definition 2.5.1 (Family of codes). C = {Ci }i≥1 is a family of codes where Ci is a (ni ,ki ,di)q code
for each i (and we assume ni+1 > ni). The rate of C is defined as

R(C) = lim
i→∞

{
ki

ni

}

.

The relative distance of C is defined as

δ(C) = lim
i→∞

{
di

ni

}

.

For example, CH the family of Hamming code is a family of codes with ni = 2i −1,ki = 2i −
i −1,di = 3 and thus,

R(CH) = lim
i→∞

1−
i

2i −1
= 1,

and

δ(CH) = lim
i→∞

3

2i −1
= 0.

45

We will mostly work with family of codes from now on. This is necessary as we will study the
asymptotic behavior of algorithms for codes, which does not make sense for a fixed code. For
example, when we say that a decoding algorithm for a code C takes O(n2) time, we would be
implicitly assuming that C is a family of codes and that the algorithm has an O(n2) running time
when the block length is large enough. From now on, unless mentioned otherwise, whenever
we talk about a code, we will be implicitly assuming that we are talking about a family of codes.

Given that we can only formally talk about asymptotic run time of algorithms, we now also
state our formal notion of efficient algorithms:

We’ll call an algorithm related to a code of block length n to be efficient, if it runs in time
polynomial in n.

For all the specific codes that we will study in this book, the corresponding family of codes
will be a “family" in a more natural sense. In other words, all the specific codes in a family of
codes will be the “same" code except with different parameters. A bit more formally, we will con-
sider families {Ci }i , where given i , one can compute a sufficient description of Ci efficiently.4

Finally, the definition of a family of code allows us to present the final version of the the
big motivating question for the book. The last formal version of the main question we consid-
ered was Question 1.4.1, where we were interested in the tradeoff of rate R and distance d . The
comparison was somewhat unfair because R was a ratio while d was an integer. A more appro-
priate comparison should be between rate R and the relative distance δ. Further, we would be
interested in tackling in the main motivating question for families of codes, which results in the
following final version:

Question 2.5.1. What is the optimal tradeoff between R(C) and δ(C) that can be achieved by

some code family C ?

2.6 Efficient Decoding of Hamming codes

We have shown that Hamming code has distance of 3 and thus, by Proposition 1.4.1, can correct
one error. However, this is a combinatorial result and does not give us an efficient algorithm.
One obvious candidate for decoding is the MLD function. Unfortunately, the only implemen-
tation of MLD that we know is the one in Algorithm 1, which will take time 2Θ(n), where n is the
block length of the Hamming code. However, we can do much better. Consider the following
simple algorithm: given the received word y, first check if it is indeed a valid codeword. If it is,
we are done. Otherwise, flip each of the n bits and check if the resulting vector is a valid code-
word. If so, we have successfully decoded from one error. (If none of the checks are successful,

4We stress that this is not always going to be the case. In particular, we will consider “random" codes where this
efficient constructibility will not be true.

46

then we declare a decoding failure.) Algorithm 2 formally presents this algorithm (where CH ,r

is the [2r −1,2r − r −1,3]2 Hamming code).5

Algorithm 2 Naive Decoder for Hamming Code
INPUT: Received word y

OUTPUT: c if ∆(y,c) ≤ 1 else Fail

1: IF y ∈CH ,r THEN

2: RETURN y

3: FOR i = 1. . .n DO

4: y′ ← y+ei ⊲ ei is the i th standard vector
5: IF y′ ∈CH ,r THEN

6: RETURN y′

7: RETURN Fail

It is easy to check that Algorithm 2 can correct up to 1 error. If each of the checks y′ ∈ CH ,r

can be done in T (n) time, then the time complexity of the proposed algorithm will be O(nT (n)).
Note that since CH ,r is a linear code (and dimension k = n −O(logn)) by Proposition 2.3.3, we
have T (n) =O(n logn). Thus, the proposed algorithm has running time O(n2 logn).

Note that Algorithm 2 can be generalized to work for any linear code C with distance 2t +
1 (and hence, can correct up to t errors): go through all possible error vectors z ∈ [q]n (with
w t (z) ≤ t) and check if y− z is in the code or not. Algorithm 3 presents the formal algorithm
(where C is an [n,k,2t +1]q code). The number of error patterns z considered by Algorithm 3

Algorithm 3 Decoder for Any Linear Code
INPUT: Received word y

OUTPUT: c ∈C if ∆(y,c) ≤ t else Fail

1: FOR i = 0. . . t DO

2: FOR S ⊆ [n] such that |S| = i DO

3: FOR z ∈ Fn
q such that w t (zS) = w t (z) = i DO

4: IF y−z ∈C THEN

5: RETURN y−z

6: RETURN Fail

is6 ∑t
i=0

(n
i

)

(q−1)i ≤O((nq)t). Further by Proposition 2.3.3, Step 4 can be performed with O(n2)
operations over Fq . Thus, Algorithm 3 runs in with O(nt+2q t) operations over Fq , which for
q being polynomial small in n, is nO(t) operations. In other words, the algorithm will have

5Formally speaking, a decoding algorithm should return the transmitted message x but Algorithm 2 actually
returns CH ,r (x). However, since CH ,r is a linear code, it is not too hard to see that one can obtain x from CH ,r (x) in
O(n3) time– see Exercise 2.23. Further, for CH ,r one can do this in O(n) time– see Exercise 2.24.

6Recall (1.14).

47

polynomial running time for codes with constant distance (though the running time would not
be practical even for moderate values of t).

However, it turns out that for Hamming codes there exists a decoding algorithm with an
O(n2) running time. To see this first note that if the received word y has no errors then Hr ·yT = 0.
If not, y = c+ei , where c ∈ C and ei which is the unit vector with the only nonzero element at
the i -th position. Thus, if H i

r stands for the i -th column of Hr ,

Hr ·yT = Hr ·cT +Hr · (ei)T = Hr · (ei)T = H i
r ,

where the second equality follows as Hr ·cT = 0, which in turn follows from the fact that c ∈C .
In other words, Hr ·yT gives the location of the error. This leads to Algorithm 4.

Algorithm 4 Efficient Decoder for Hamming Code
INPUT: Received word y

OUTPUT: c if ∆(y,c) ≤ 1 else Fail

1: b ← Hr ·yT .
2: Let i ∈ [n] be the number whose binary representation is b

3: IF y−ei ∈CH THEN

4: RETURN y−ei

5: RETURN Fail

Since Step 1 in Algorithm 4 is a matrix vector multiplication (which can be done in O(n logn)
time as the matrix is O(logn)×n) and Step 3 by Proposition 2.3.3 can be performed in O(n logn)
time, Algorithm 4 runs in O(n logn) time. Thus,

Theorem 2.6.1. The [n = 2r −1,2r − r −1,3]2 Hamming code is 1-error correctable. Further, de-

coding can be performed in time O(n logn).

2.7 Dual of a Linear Code

Till now, we have thought of parity check matrix as defining a code via its null space. However,
we are not beholden to think of the parity check matrix in this way. A natural alternative is to use
the parity check matrix as a generator matrix. The following definition addresses this question.

Definition 2.7.1 (Dual of a code). Let H be a parity check matrix of a code C , then the code
generated by H is called the dual of C . For any code C , its dual is denoted by C⊥.

It is obvious from the definition that if C is an [n,k]q code then C⊥ is an [n,n − k]q code.
The first example that might come to mind is C⊥

H ,r , which is also known as the Simplex code

(we will denote it by CSi m,r). Adding an all 0’s column to Hr and using the resulting matrix as
a generating matrix, we get the Hadamard code (we will denote it by CH ad ,r). We claim that
CSi m,r and CH ad ,r are [2r − 1,r,2r−1]2 and [2r ,r,2r−1]2 codes respectively. The claimed block
length and dimension follow from the definition of the codes, while the distance follows from
the following result.

48

Proposition 2.7.1. CSi m,r and CH ad ,r both have a distance of 2r−1.

Proof. We first show the result for CH ad ,r . In fact, we will show something stronger: every non-
zero codeword in CH ad ,r has weight exactly equal to 2r−1 (the claimed distance follows from
Proposition 2.3.4). Consider a message x 6= 0. Let its i th entry be xi = 1. x is encoded as

c = (x1, x2, . . . , xr)(H 0
r , H 1

r , . . . , H 2r −1
r),

where H
j
r is the binary representation of 0 ≤ j ≤ 2r − 1 (that is, it contains all the vectors in

{0,1}r). Further note that the j th bit of the codeword c is 〈x, H
j
r 〉. Group all the columns of the

generator matrix into pairs (u,v) such that v = u+ei (i.e. v and u are the same except in the i th
position). Notice that this partitions all the columns into 2r−1 disjoint pairs. Then,

〈x,v〉 = 〈x,u+ei 〉 = 〈x,u〉+〈x,ei 〉 = 〈x,u〉+xi = 〈x,u〉+1.

Thus we have that exactly one of 〈x,v〉 and 〈x,u〉 is 1. As the choice of the pair (u,v) was arbitrary,
we have proved that for any non-zero codeword c such that c ∈CH ad , w t (c) = 2r−1.

For the simplex code, we observe that all codewords of CH ad ,3 are obtained by padding a 0 to
the beginning of the codewords in CSi m,r , which implies that all non-zero codewords in CSi m,r

also have a weight of 2r−1, which completes the proof.

We remark that the family of Hamming code has a rate of 1 and a (relative) distance of 0
while the families of Simplex/Hadamard codes have a rate of 0 and a relative distance of 1/2.
Notice that both code families either have rate or relative distance equal to 0. Given this, the
following question is natural special case of Question 2.5.1:

Question 2.7.1. Does there exist a family of codes C such that R(C) > 0 and δ(C) > 0 hold

simultaneously?

Codes that have the above property are called asymptotically good.

2.8 Exercises

Exercise 2.1. Prove that the set of rationals (i.e. the set of reals of the form a
b

, where both a and
b 6= 0 are integers), denoted by Q, is a field.

Exercise 2.2. Let q be a prime power. Let x ∈ Fq such that x 6∈ {0,1}. Then prove that for any
n ≤ q −1:

n∑

i=0
xi =

xn+1 −1

x −1
.

Exercise 2.3. The main aim of this exercise is to prove the following identity that is true for any
α ∈ Fq :

αq =α (2.4)

49

To make progress towards the above we will prove a sequence of properties of groups. A group G

is a pair (S,◦) where the operator ◦ : G×G →G such that ◦ is commutative7 and the elements of S

are closed under ◦. Further, there is a special element ι ∈ S that is the identity element and every
element a ∈ S has an inverse element b ∈ S such that a ◦b = ι. Note that a finite field Fq consists
of an additive group with the + operator (and 0 as additive identity) and a multiplicative group
on the non-zero elements of Fq (which is also denoted by F∗q) with the · operator (and 1 as the

multiplicative identity).8

For the rest of the problem let G = (S, ·) be a multiplicative group with |G| = m. Prove the
following statements.

1. For any β ∈G , let o(β) be the smallest integer o such that βo = 1. Prove that such an o ≤ m

always exists. Further, argue that T = {1,β, . . . ,βo−1} also forms a group. (T, ·) is called a
sub-group of G and o(β) is called the order of β.

2. For any g ∈G , define the coset (w.r.t. T) as

g T = {g ·β|β ∈ T }.

Prove that if g ·h−1 ∈ T then g T = hT and g T ∩hT =; otherwise. Further argue that these
cosets partition the group G into disjoint sets.

3. Argue that for any g ∈G , we have |g T | = |T |.

4. Using the above results or otherwise, argue that for any β ∈G , we have

βm = 1.

5. Prove (2.4).

Exercise 2.4. Prove that for q = 2, the second condition in Definition 2.2.1 is implied by the first
condition.

Exercise 2.5. Prove that G2 from (2.3) has full rank.

Exercise 2.6. In this problem we will look at the problem of solving a system of linear equa-
tions over Fq . That is, one needs to solve for unknowns x1, . . . , xn given the following m linear
equations (where ai , j ,bi ∈ Fq for 1 ≤ i ≤ m and 1 ≤ j ≤ n):

a1,1x1 +a1,2x2 +·· ·+a1,n xn = b1.

a2,1x1 +a2,2x2 +·· ·+a2,n xn = b2.

...

am,1x1 +am,2x2 +·· ·+am,n xn = bm .
7Technically, G is an abelian group.
8Recall Definition 2.1.1.

50

1. (Warm-up) Convince yourself that the above problem can be stated as A ·xT = bT , where
A is an m ×n matrix over Fq , x ∈ Fn

q and b ∈ Fm
q .

2. (Upper Triangular Matrix) Assume n = m and that A is upper triangular, i.e. all diagonal
elements (ai ,i) are non-zero and all lower triangular elements (ai , j , i > j) are 0. Then
present an O(n2) time9 algorithm to compute the unknown vector x.

3. (Gaussian Elimination) Assume that A has full rank (or equivalently a rank of n.)

(a) Prove that the following algorithm due to Gauss converts A into an upper triangular
matrix. By permuting the columns if necessary make sure that a1,1 6= 0. (Why can
one assume w.l.o.g. that this can be done?) Multiply all rows 1 < i ≤ n with

a1,1
ai ,1

and

then subtract a1, j from the (i , j)th entry 1 ≤ j ≤ n. Recurse with the same algorithm
on the (n−1)×(n−1) matrix A′ obtained by removing the first row and column from
A. (Stop when n = 1.)

(b) What happens if A does not have full rank? Show how one can modify the algorithm
above to either upper triangulate a matrix or report that it does not have full rank.
(Convince yourself that your modification works.)

(c) Call a system of equations A ·xT = bT consistent if there exists a solution to x ∈ Fn
q .

Show that there exists an O(n3) algorithm that finds the solution if the system of
equations is consistent and A has full rank (and report “fail" otherwise).

4. (m < n case) Assume that A has full rank, i.e. has a rank of m. In this scenario either the
system of equations is inconsistent or there are qn−m solutions to x. Modify the algorithm
from above to design an O(m2n) time algorithm to output the solutions (or report that the
system is inconsistent).

• Note that in case the system is consistent there will be qn−m solutions, which might
be much bigger than O(m2n). Show that this is not a problem as one can represent
the solutions as system of linear equations. (I.e. one can have n −m “free" variables
and m “bound" variables.)

5. (m > n case) Assume that A has full rank, i.e. a rank of n. In this scenario either the
system of equations is inconsistent or there is a unique solution to x. Modify the algorithm
from above to design an O(m2n) time algorithm to output the solution (or report that the
system is inconsistent).

6. (Non-full rank case) Give an O(m2n) algorithm for the general case, i.e. the m×n matrix A

need not have full rank. (The algorithm should either report that the system of equations
is inconsistent or output the solution(s) to x.)

Exercise 2.7. Prove that the span of k linearly independent vectors over Fq has size exactly qk .

9For this problem, any basic operation over Fq takes unit time.

51

Exercise 2.8. Let G and H be a generator and parity check matrix of the same linear code of
dimension k and block length n. Then G ·H T = 0.

Exercise 2.9. Let C be an [n,k]q linear code with a generator matrix with no all zeros columns.
Then for every position i ∈ [n] and α ∈ Fq , the number of codewords c ∈ C such that ci = α is
exactly qk−1.

Exercise 2.10. Prove Proposition 2.3.1.

Exercise 2.11. Prove Proposition 2.3.2.

Exercise 2.12. Prove Proposition 2.3.3.

Exercise 2.13. A set of vector S ⊆ Fn
q is called t-wise independent if for every set of positions

I with |I | = t , the set S projected to I has each of the vectors in Ft
q appear the same number

of times. (In other words, if one picks a vector (s1, . . . , sn) from S at random then any of the t

random variables are uniformly and independently random over Fq).
Prove that any linear code C whose dual C⊥ has distance d⊥ is (d⊥−1)-wise independent.

Exercise 2.14. A set of vectors S ⊆ Fk
2 is called ε-biased sample space if the following property

holds. Pick a vector X = (x1, . . . , xk) uniformly at random from S. Then X has bias at most ε, that
is, for every I ⊆ [k],

∣
∣
∣
∣
∣
Pr

(

∑

i∈I

xi = 0

)

−Pr

(

∑

i∈I

xi = 1

)∣
∣
∣
∣
∣
≤ ε.

We will look at some connections of such sets to codes.

1. Let C be an [n,k]2 code such that all non-zero codewords have Hamming weight in the
range

[(1
2 −ε

)

n,
(1

2 +ε
)

n
]

. Then there exists an ε-biased space of size n.

2. Let C be an [n,k]2 code such that all non-zero codewords have Hamming weight in the
range

[(1
2 −γ

)

n,
(1

2 +γ
)

n
]

for some constant 0 < γ < 1/2. Then there exists an ε-biased

space of size nO(γ−1·log(1/ε)).

Exercise 2.15. Let C be an [n,k,d]q code. Let y = (y1, . . . , yn) ∈ (Fq ∪ {?})n be a received word10

such that yi =? for at most d − 1 values of i . Present an O(n3) time algorithm that outputs a
codeword c = (c1, . . . ,cn) ∈C that agrees with y in all un-erased positions (i.e., ci = yi if yi 6=?) or
states that no such c exists. (Recall that if such a c exists then it is unique.)

Exercise 2.16. In the chapter, we did not talk about how to obtain the parity check matrix of a
linear code from its generator matrix. In this problem, we will look at this “conversion" proce-
dure.

(a) Prove that any generator matrix G of an [n,k]q code C (recall that G is a k ×n matrix) can
be converted into another equivalent generator matrix of the form G′ = [Ik |A], where Ik is
the k ×k identity matrix and A is some k × (n −k) matrix. By “equivalent," we mean that
the code generated by G′ has a linear bijective map to C .

10A ? denotes an erasure.

52

Note that the code generated by G′ has the message symbols as its first k symbols in the
corresponding codeword. Such codes are called systematic codes. In other words, every
linear code can be converted into a systematic code. Systematic codes are popular in
practice as they allow for immediate access to the message symbols.

(b) Given an k ×n generator matrix of the form [Ik |A], give a corresponding (n −k)×n par-
ity check matrix. Briefly justify why your construction of the parity check matrix is correct.

Hint: Try to think of a parity check matrix that can be decomposed into two submatrices: one will be closely

related to A and the other will be an identity matrix, though the latter might not be a k ×k matrix).

(c) Use part (b) to present a generator matrix for the [2r −1,2r − r −1,3]2 Hamming code.

Exercise 2.17. So far in this book we have seen that one can modify one code to get another
code with interesting properties (for example, the construction of the Hadamard code from the
Simplex code from Section 2.7 and Exercise 1.7). In this problem you will need to come up with
more ways of constructing new codes from existing ones.

Prove the following statements (recall that the notation (n,k,d)q code is used for general
codes with qk codewords where k need not be an integer, whereas the notation [n,k,d]q code
stands for a linear code of dimension k):

1. If there exists an (n,k,d)2m code, then there also exists an (nm,km,d ′ ≥ d)2 code.

2. If there exists an [n,k,d]2m code, then there also exists an [nm,km,d ′ ≥ d]2 code.

3. If there exists an [n,k,d]q code, then there also exists an [n −d ,k −1,d ′ ≥ ⌈d/q⌉]q code.

4. If there exists an [n,k,δn]q code, then for every m ≥ 1, there also exists an
(

nm ,k/m,
(

1− (1−δ)m
)

·nm
)

qm

code.

5. If there exists an [n,k,δn]2 code, then for every odd m ≥ 1, there also exists an
[

nm ,k, 1
2 ·

(

1− (1−2δ)m
)

·nm

code.

Note: In all the parts, the only things that you can assume about the original code are only the
parameters given by its definition– nothing else!

Exercise 2.18. Let C1 be an [n,k1,d1]q code and C2 be an [n,k2,d2]q code. Then define a new
code as follows:

C1 ⊖C2 = {(c1,c1 +c2)|c1 ∈C1,c2 ∈C2}.

Next we will prove interesting properties of this operations on codes:

1. If Gi is the generator matrix for Ci for i ∈ [2], what is a generator matrix for C1 ⊖C2?

2. Argue that C1 ⊖C2 is an [2n,k1 +k2,d
def= min(2d1,d2)]q code.

53

3. Assume there exists algorithms Ai for code Ci for i ∈ [2] such that: (i) A1 can decode from
e errors and s erasures such that 2e+s < d1 and (ii) A2 can decode from ⌊(d2−1)/2⌋ errors.
Then argue that one can correct ⌊(d −1)/2⌋ errors for C1 ⊖C2.
Hint: Given a received word (y1,y2) ∈ Fn

q ×Fn
q , first apply A2 on y2−y1. Then create an intermediate received

word for A1.

4. We will now consider a recursive construction of a binary linear code that uses the ⊖ op-
erator. For integers 0 ≤ r ≤ m, we define the code C (r,m) as follows:

• C (r,r) = Fr
2 and C (0,r) is the code with only two codewords: the all ones and all

zeroes vector in Fr
2.

• For 1 < r < m, C (r,m) =C (r,m −1)⊖C (r −1,m −1).

Determine the parameters of the code C (r,m).

Exercise 2.19. Let C1 be an [n1,k1,d1]2 binary linear code, and C2 an [n2,k2,d2] binary linear
code. Let C ⊆ F

n1×n2
2 be the subset of n1 ×n2 matrices whose columns belong to C1 and whose

rows belong to C2. C is called the tensor of C1 and C2 and is denoted by C1 ⊗C2.
Prove that C is an [n1n2,k1k2,d1d2]2 binary linear code.

Exercise 2.20. In Section 2.4 we considered the binary Hamming code. In this problem we will
consider the more general q-ary Hamming code. In particular, let q be a prime power and r ≥ 1
be an integer. Define the following r ×n matrix Hq,r , where each column is an non-zero vector
from Fr

q such that the first non-zero entry is 1. For example,

H3,2 =
(
0 1 1 1
1 0 1 2

)

In this problem we will derive the parameters of the code. Define the generalized Hamming
code CH ,r,q to be the linear code whose parity check matrix is Hq,r . Argue that

1. The block length of CH ,r,q is n = qr −1
q−1 .

2. CH ,q,r has dimension n − r .

3. CH ,q,r has distance 3.

Exercise 2.21. Design the best 6-ary code (family) with distance 3 that you can.

Hint: Start with a 7-ary Hamming code.

Exercise 2.22. Prove that the [n,1,n]2 code for odd n (i.e. the code with the all zeros and all ones
vector as it only two codewords) attains the Hamming bound (Theorem 1.7.1).

Exercise 2.23. Let C be an [n,k]q code with generator matrix G . Then given a codeword c ∈ C

one can compute the corresponding message in time O(kn2).

Exercise 2.24. Given a c ∈CH ,r , one can compute the corresponding message in time O(n).

54

Exercise 2.25. Let C be an (n,k)q code. Prove that if C can be decoded from e errors in time
T (n), then it can be decoded from n + c errors in time O((nq)c ·T (n)).

Exercise 2.26. Show that the bound of kd of the number of ones in the generator matrix of any
binary linear code (see Exercise 1.12) cannot be improved for every code.

Exercise 2.27. Let C be a linear code. Then prove that
(

C⊥)⊥ =C .

Exercise 2.28. Note that for any linear code C , the codewords 0 is in both C and C⊥. Show that
there exists a linear code C such that it shares a non-zero codeword with C⊥.

Exercise 2.29. We go into a bit of diversion and look at how finite fields are different from infinite
fields (e.g. R). Most of the properties of linear subspaces that we have used for linear codes (e.g.
notion of dimension, the existence of generator and parity check matrices, notion of duals) also
hold for linear subspaces over R.11 One trivial property that holds for linear subspaces over
finite fields that does not hold over R is that linear subspaces over Fq with dimension k has size
qk (though this is a trivial consequence that Fq are finite field while R is an infinite field). Next,
we consider a more subtle distinction.

Let S ⊆Rn be a linear subspace over R and let S⊥ is the dual of S. Then show that

S ∩S⊥ = {0} .

By contrast, linear subspaces over finite fields can have non-trivial intersection with their duals
(see e.g. Exercise 2.28).

Exercise 2.30. A linear code C is called self-orthogonal if C ⊆C⊥. Show that

1. The binary repetition code with even number of repetitions is self-orthogonal.

2. The Hadamard code CH ad ,r is self-orthogonal.

Exercise 2.31. A linear code C is called self dual if C =C⊥. Show that for

1. Any self dual code has dimension n/2.

2. Prove that the following code is self-dual

{(x,x)|x ∈ Fk
2 }.

Exercise 2.32. Given a code C a puncturing of C is another code C ′ where the same set of po-
sitions are dropped in all codewords of C . More precisely, if C ⊆ Σ

n and the set of punctured
positions is P ⊆ [n], then the punctured code is {(ci)i 6∈P |(c1, . . . ,cn) ∈C }.

Prove that a linear code with no repetitions (i.e. there are no two positions i 6= j such that for
every codeword c ∈C , ci = ci) is a puncturing of the Hadamard code. Hence, Hadamard code is
the “longest" linear code that does not repeat.

11A linear subspace S ⊆Rn is the same as in Definition 2.2.1 where all occurrences of the finite field Fq is replaced
by R.

55

Exercise 2.33. In this problem we will consider the long code. For the definition, we will use the
functional way of looking at the ambient space as mentioned in Remark 1.2.1. A long code of
dimension k is a binary code such that the codeword corresponding to x = Fk

2 , is the function

f : {0,1}2k → {0,1} defined as follows. For any m ∈ {0,1}F
k
2 , we have f ((mα)α∈Fk

2
) = mx. Derive the

parameters of the long code.
Finally, argue that the long code is the code with the longest block length such that the

codewords do not have a repeated coordinate (i.e. there does not exists i 6= j such that for every
codeword c, ci = c j). (Contrast this with the property of Hadamard code above.)

2.9 Bibliographic Notes

Finite fields are also called Galois fields (another common notation for Fq is GF (q)), named
after Évariste Galois, whose worked laid the foundations of their theory. (Galois led an extremely
short and interesting life, which ended in death from a duel.) For a more thorough treatment
refer to any standard text on algebra or the book on finite fields by Lidl and Niederreiter [53].

The answer to Question 1.7.1 was proved by van Lint [75] and Tietavainen [74].

56

Chapter 3

Probability as Fancy Counting and the q-ary

Entropy Function

In the first half of this chapter, we will develop techniques that will allow us to answer questions
such as

Question 3.0.1. Does there exist a [2,2,1]2 code?

We note that the answer to the above question is trivially yes: just pick the generator matrix
to be the 2×2 identity matrix. However, we will use the above as a simple example to illustrate
a powerful technique called the probabilistic method.

As the name suggests, the method uses probability. Before we talk more about the proba-
bilistic method, we do a quick review of the basics of probability that we will need in this book.

3.1 A Crash Course on Probability

In this book, we will only consider probability distributions defined over finite spaces. In par-
ticular, given a finite domain D, a probability distribution is defined as a function

p : D→ [0,1] such that
∑

x∈D
p(x) = 1,

where [0,1] is shorthand for the interval of all real numbers between 0 and 1. In this book, we
will primarily deal with the following special distribution:

Definition 3.1.1 (Uniform Distribution). The uniform distribution over D, denoted by UD, is
given by

UD(x) =
1

|D|
for every x ∈D.

Typically we will drop the subscript when the domain D is clear from the context.

57

G U (G) V00 V01 V10 V11
(

0 0
0 0

)

1
16 0 0 0 0

(
0 0
0 1

)

1
16 0 1 0 1

(
0 0
1 0

)

1
16 0 1 0 1

(
0 0
1 1

)

1
16 0 2 0 2

(
0 1
0 0

)

1
16 0 0 1 1

(
0 1
0 1

)

1
16 0 1 1 0

(
0 1
1 0

)

1
16 0 1 1 2

(
0 1
1 1

)

1
16 0 2 1 1

G U (G) V00 V01 V10 V11
(

1 0
0 0

)

1
16 0 0 1 1

(
1 0
0 1

)

1
16 0 1 1 2

(
1 0
1 0

)

1
16 0 1 1 0

(
1 0
1 1

)

1
16 0 2 1 1

(
1 1
0 0

)

1
16 0 0 2 2

(
1 1
0 1

)

1
16 0 1 2 1

(
1 1
1 0

)

1
16 0 1 2 1

(
1 1
1 1

)

1
16 0 2 2 0

Table 3.1: Uniform distribution over F2×2
2 along with values of four random variables.

For example, consider the domain D = F2×2
2 , i.e. the set of all 2×2 matrices over F2. (Note

that each such matrix is a generator matrix of some [2,2]2 code.) The first two columns of Ta-
ble 3.1 list the elements of this D along with the corresponding probabilities for the uniform
distribution.

Typically, we will be interested in a real-valued function defined on D and how it behaves
under a probability distribution defined over D. This is captured by the notion of a random
variable:

Definition 3.1.2 (Random Variable). Let D be a finite domain and I ⊂ R be a finite1 subset. Let
p be a probability distribution defined over D. A random variable is a function:

V : D→ I .

The expectation of V is defined as

E[V] =
∑

x∈D
p(x) ·V (x).

For example, given (i , j) ∈ {0,1}2, let Vi j denote the random variable Vi j (G) = w t
(

(i , j) ·G
)

,
for any G ∈ F2×2

2 . The last four columns of Table 3.1 list the values of these four random variables.
In this book, we will mainly consider binary random variables, i.e., with I = {0,1}. In partic-

ular, given a predicate or event E over D, we will define its indicator variable 1E to be 1 if E is

1In general, I need not be finite. However, for this book this definition suffices.

58

true and 0 if E is false. Sometimes, we will abuse notation and use E instead of 1E . For example,
consider the expectations of the four indicator variables:

E
[

1V00=0
]

= 16 ·
1

16
= 1.

E
[

1V01=0
]

= 4 ·
1

16
=

1

4
. (3.1)

E
[

1V10=0
]

= 4 ·
1

16
=

1

4
. (3.2)

E
[

1V11=0
]

= 4 ·
1

16
=

1

4
. (3.3)

3.1.1 Some Useful Results

Before we proceed, we record a simple property of indicator variables that will be useful. (See
Exercise 3.1.)

Lemma 3.1.1. Let E be any event. Then

E [1E] = Pr[E is true] .

Next, we state a simple yet useful property of expectation of a sum of random variables:

Proposition 3.1.2 (Linearity of Expectation). Given random variables V1, . . . ,Vm defined over the

same domain D and with the same probability distribution p, we have

E

[
m∑

i=1
Vi

]

=
m∑

i=1
E [Vi] .

Proof. For notational convenience, define V =V1 +·· ·+Vm . Thus, we have

E[V] =
∑

x∈D
V (x) ·p(x) (3.4)

=
∑

x∈D

(
m∑

i=1
Vi (x)

)

·p(x) (3.5)

=
m∑

i=1

∑

x∈D
Vi (x) ·p(x) (3.6)

=
m∑

i=1
E[Vi]. (3.7)

In the equalities above, (3.4) and (3.7) follow from the definition of expectation of a random
variable. (3.5) follows from the definition of V and (3.6) follows by switching the order of the
two summations.

59

As an example, we have

E
[

1V01=0 + 1V10=0 + 1V11=0
]

=
3

4
(3.8)

Frequently, we will need to deal with the probability of the “union" of events. We will use
the following result to upper bound such probabilities:

Proposition 3.1.3 (Union Bound). Given m binary random variables A1, . . . , Am , we have

Pr

[(
m∨

i=1
Ai

)

= 1

]

≤
m∑

i=1
Pr[Ai = 1] .

Proof. For every i ∈ [m], define
Si = {x ∈D|Ai (x) = 1}.

Then we have

Pr

[(
m∨

i=1
Ai

)

= 1

]

=
∑

x∈∪m
i=1Si

p(x) (3.9)

≤
m∑

i=1

∑

x∈Si

p(x) (3.10)

=
m∑

i=1
Pr[Ai = 1]. (3.11)

In the above, (3.9) and (3.11) follow from the definition of Si . (3.10) follows from the fact that
some of the x ∈∪i Si get counted more than once.

We remark that the union bound is tight when the events are disjoint. (In other words, using
the notation in the proof above, when Si ∩S j =; for every i 6= j .)

As an example, let A1 = 1V01=0, A2 = 1V10=0 and A3 = 1V11=0. Note that in this case the event
A1∨A2∨A3 is the same as the event that there exists a non-zero m ∈ {0,1}2 such that w t (m·G) =
0. Thus, the union bound implies (that under the uniform distribution over F2×2

2)

Pr
[

There exists an m ∈ {0,1}2 \ {(0,0)}, such that w t (mG) = 0
]

≤
3

4
. (3.12)

Finally, we present two bounds on the probability of a random variable deviating signifi-
cantly from its expectation. The first bound holds for any random variable:

Lemma 3.1.4 (Markov Bound). Let V be a non-zero random variable. Then for any t > 0,

Pr[V ≥ t] ≤
E[V]

t
.

In particular, for any a ≥ 1,

Pr[V ≥ a ·E[V]] ≤
1

a
.

60

Proof. The second bound follows from the first bound by substituting t = a · E[V]. Thus, to
complete the proof, we argue the first bound. Consider the following sequence of relations:

E[V] =
∑

i∈[0,t)
i ·Pr[V = i]+

∑

i∈[t ,∞)
i ·Pr[V = i] (3.13)

≥
∑

i≥t

i ·Pr[V = i] (3.14)

≥ t ·
∑

i≥t

Pr[V = i] (3.15)

= t ·Pr[V ≥ t]. (3.16)

In the above relations, (3.13) follows from the definition of expectation of a random variable and
the fact that V is positive. (3.14) follows as we have dropped some non-negative terms. (3.15)
follows by noting that in the summands i ≥ t . (3.16) follows from the definition of Pr[V ≥ t].

The proof is complete by noting that (3.16) implies the claimed bound.

The second bound works only for sums of independent random variables. We begin by
defining independent random variables:

Definition 3.1.3 (Independence). Two random variables A and B are called independent if for
every a and b in the ranges of A and B , we have

Pr[A = a ∧B = b] = Pr[A = a] ·Pr[B = b].

For example, for the uniform distribution in Table 3.1, let A denote the bit G0,0 and B denote
the bit G0,1. It can be verified that these two random variables are independent. In fact, it can be
verified all the random variables corresponding to the four bits in G are independent random
variables. (We’ll come to a related comment shortly.)

Another related concept that we will use is that of probability of an event happening condi-
tioned on another event happening:

Definition 3.1.4 (Conditional Probability). Given two events A and B defined over the same
domain and probability distribution, we define the probability of A conditioned on B as

Pr[A|B] =
Pr[A and B]

Pr[B]
.

For example, note that

Pr[1V01=1|G0,0 = 0] =
4/16

1/2
=

1

2
.

The above definition implies that two events A and B are independent if and only if Pr[A] =
Pr[A|B]. We will also use the following result later on in the book (see Exercise 3.2):

Lemma 3.1.5. For any two events A and B defined on the same domain and the probability

distribution:

Pr[A] = Pr[A|B] ·Pr[B]+Pr[A|¬B] ·Pr[¬B].

61

Next, we state the deviation bound. (We only state it for sums of binary random variables,
which is the form that will be needed in the book.)

Theorem 3.1.6 (Chernoff Bound). Let X1, . . . , Xm be independent binary random variables and

define X =
∑

Xi . Then the multiplicative Chernoff bound sates that for 0 < ε≤ 1,

Pr[|X −E(X)| > εE(X)] < 2e−ε2E(X)/3,

and the additive Chernoff bound states that

Pr[|X −E(X)| > εm] < 2e−ε2m/2.

We omit the proof, which can be found in any standard textbook on randomized algorithms.
Finally, we present an alternate view of uniform distribution over “product spaces" and then

use that view to prove a result that we will use later in the book. Given probability distributions
p1 and p2 over domains D1 and D2 respectively, we define the product distribution p1 ×p2 over
D1 ×D2 as follows: every element (x, y) ∈ D1 ×D2 under p1 × p2 is picked by choosing x from
D1 according to p1 and y is picked independently from D2 under p2. This leads to the following
observation (see Exercise 3.3).

Lemma 3.1.7. For any m ≥ 1, the distribution UD1×D2×···×Dm is identical to the distribution UD1×
UD2 ×·· ·×UDm .

For example, the uniform distribution in Table 3.1 can be described equivalently as follows:
pick each of the four bits in G independently and uniformly at random from {0,1}.

We conclude this section by proving the following result:

Lemma 3.1.8. Given a non-zero vector m ∈ Fk
q and a uniformly random k ×n matrix G over Fq ,

the vector m ·G is uniformly distributed over Fn
q .

Proof. Let the (j , i)th entry in G (1 ≤ j ≤ k,1 ≤ i ≤ n) be denoted by g j i . Note that as G is a ran-
dom k×n matrix over Fq , by Lemma 3.1.7, each of the g j i is an independent uniformly random
element from Fq . Now, note that we would be done if we can show that for every 1 ≤ i ≤ n, the
i th entry in m ·G (call it bi) is an independent uniformly random element from Fq . To finish
the proof, we prove this latter fact. If we denote m = (m1, . . . ,mk), then bi =

∑k
j=1 m j g j i . Note

that the disjoint entries of G participate in the sums for bi and b j for i 6= j . Given our choice of
G , this implies that the random variables bi and b j are independent. Hence, to complete the
proof we need to prove that bi is a uniformly independent element of Fq . The rest of the proof
is a generalization of the argument we used in the proof of Proposition 2.7.1.

Note that to show that bi is uniformly distributed over Fq , it is sufficient to prove that bi

takes every value in Fq equally often over all the choices of values that can be assigned to
g1i , g2i , . . . , gki . Now, as m is non-zero, at least one of the its element is non-zero: without loss of
generality assume that m1 6= 0. Thus, we can write bi = m1g1i +

∑k
j=2 m j g j i . Now, for every fixed

assignment of values to g2i , g3i , . . . , gki (note that there are qk−1 such assignments), bi takes a
different value for each of the q distinct possible assignments to g1i (this is where we use the
assumption that m1 6= 0). Thus, over all the possible assignments of g1i , . . . , gki , bi takes each of
the values in Fq exactly qk−1 times, which proves our claim.

62

3.2 The Probabilistic Method

The probabilistic method is a very powerful method in combinatorics which can be used to
show the existence of objects that satisfy certain properties. In this course, we will use the prob-
abilistic method to prove existence of a code C with certain property P . Towards that end, we
define a distribution D over all possible codes and prove that when C is chosen according to D:

Pr
[

C has propertyP
]

> 0 or equivalently Pr
[

C doesn’t have propertyP
]

< 1.

Note that the above inequality proves the existence of C with property P .
As an example consider Question 3.0.1. To answer this in the affirmative, we note that the

set of all [2,2]2 linear codes is covered by the set of all 2×2 matrices over F2. Then, we let D be
the uniform distribution over F2×2

2 . Then by Proposition 2.3.4 and (3.12), we get that

Pr
U

F2×2
2

[There is no [2,2,1]2 code] ≤
3

4
< 1,

which by the probabilistic method answers the Question 3.0.1 in the affirmative.
For the more general case, when we apply the probabilistic method, the typical approach

will be to define (sub-)properties P1, . . . ,Pm such that P = P1∧P2∧P3 . . .∧Pm and show that for
every 1 ≤ i ≤ m:

Pr
[

C doesn’t have property Pi

]

= Pr
[

Pi

]

<
1

m
.

Finally, by the union bound, the above will prove that2 Pr
[

C doesn’t have propertyP
]

< 1, as
desired.

As an example, an alternate way to answer Question 3.0.1 in the affirmative is the following.
Define P1 = 1V01≥1, P2 = 1V10≥1 and P3 = 1V11≥1. (Note that we want a [2,2]2 code that satisfies
P1 ∧P2 ∧P3.) Then, by (3.1), (3.2) and (3.3), we have for i ∈ [3],

Pr
[

C doesn’t have property Pi

]

= Pr
[

Pi

]

=
1

4
<

1

3
,

as desired.
Finally, we mention a special case of the general probabilistic method that we outlined

above. In particular, let P denote the property that the randomly chosen C satisfies f (C) ≤ b.
Then we claim (see Exercise 3.4) that E[f (C)] ≤ b implies that Pr[C has property P] > 0. Note
that this implies that E[f (C)] ≤ b implies that there exists a code C such that f (C) ≤ b.

3.3 The q-ary Entropy Function

We begin with the definition of a function that will play a central role in many of our combina-
torial results.

2Note that P = P1 ∨P2 ∨·· ·∨Pm .

63

Definition 3.3.1 (q-ary Entropy Function). Let q be an integer and x be a real number such that
q ≥ 2 and 0 ≤ x ≤ 1. Then the q-ary entropy function is defined as follows:

Hq (x) = x logq (q −1)−x logq (x)− (1−x) logq (1−x).

Figure 3.1 presents a pictorial representation of the Hq function for the first few values of q .
For the special case of q = 2, we will drop the subscript from the entropy function and denote

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

H
q(

x)
 -

--
>

x --->

q=2
q=3
q=4

Figure 3.1: A plot of Hq (x) for q = 2,3 and 4. The maximum value of 1 is achieved at x = 1−1/q .

H2(x) by just H(x), that is, H(x) = −x log x − (1− x) log(1− x), where log x is defined as log2(x)
(we are going to follow this convention for the rest of the book).

Under the lens of Shannon’s entropy function, H(x) denotes the entropy of the distribution
over {0,1} that selects 1 with probability x and 0 with probability 1− x. However, there is no
similar analogue for the more general Hq (x). The reason why this quantity will turn out to be
so central in this book is that it is very closely related to the “volume" of a Hamming ball. We
make this connection precise in the next subsection.

3.3.1 Volume of Hamming Balls

It turns out that in many of our combinatorial results, we will need good upper and lower
bounds on the volume of a Hamming ball. Next we formalize the notion of the volume of a
Hamming ball:

Definition 3.3.2 (Volume of a Hamming Ball). Let q ≥ 2 and n ≥ r ≥ 1 be integers. Then the
volume of a Hamming ball of radius r is given by

V olq (r,n) = |Bq (0,r)| =
r∑

i=0

(

n

i

)

(q −1)i .

64

The choice of 0 as the center for the Hamming ball above was arbitrary: since the volume
of a Hamming ball is independent of its center (as is evident from the last equality above), we
could have picked any center.

We will prove the following result:

Proposition 3.3.1. Let q ≥ 2 be an integer and 0 ≤ p ≤ 1− 1
q

be a real. Then:

(i) V olq (pn,n) ≤ q Hq (p)n ; and

(ii) for large enough n, V olq (pn,n) ≥ q Hq (p)n−o(n).

Proof. We start with the proof of (i). Consider the following sequence of relations:

1 = (p + (1−p))n

=
n∑

i=0

(

n

i

)

p i (1−p)n−i (3.17)

=
pn∑

i=0

(

n

i

)

p i (1−p)n−i +
n∑

i=pn+1

(

n

i

)

p i (1−p)n−i

≥
pn∑

i=0

(

n

i

)

p i (1−p)n−i (3.18)

=
pn∑

i=0

(

n

i

)

(q −1)i

(
p

q −1

)i

(1−p)n−i

=
pn∑

i=0

(

n

i

)

(q −1)i (1−p)n

(
p

(q −1)(1−p)

)i

≥
pn∑

i=0

(

n

i

)

(q −1)i (1−p)n

(
p

(q −1)(1−p)

)pn

(3.19)

=
pn∑

i=0

(

n

i

)

(q −1)i

(
p

q −1

)pn

(1−p)(1−p)n (3.20)

≥ V olq (pn,n)q−Hq (p)n . (3.21)

In the above, (3.17) follows from the binomial expansion. (3.18) follows by dropping the second
sum and (3.19) follows from that facts that p

(q−1)(1−p) ≤ 1 (as3 p ≤ 1−1/q). Rest of the steps except

(3.21) follow from rearranging the terms. (3.21) follows as q−Hq (p)n =
(

p

q−1

)pn
(1−p)(1−p)n .

(3.21) implies that
1 ≥V olq (pn,n)q−Hq (p)n ,

which proves (i).

3Indeed, note that p
(q−1)(1−p) ≤ 1 is true if p

1−p
≤ q−1

1 , which in turn is true if p ≤ q−1
q

, where the last step follows
from Lemma B.2.1.

65

We now turn to the proof of part (ii). For this part, we will need Stirling’s approximation for
n! (Lemma B.1.2).

By the Stirling’s approximation, we have the following inequality:

(

n

pn

)

=
n!

(pn)!((1−p)n)!

>
(n/e)n

(pn/e)pn((1−p)n/e)(1−p)n
·

1
√

2πp(1−p)n
·eλ1(n)−λ2(pn)−λ2((1−p)n)

=
1

ppn(1−p)(1−p)n
·ℓ(n), (3.22)

where ℓ(n) = eλ1(n)−λ2(pn)−λ2((1−p)n)p
2πp(1−p)n

.

Now consider the following sequence of relations that complete the proof:

V olq (pn,n) ≥
(

n

pn

)

(q −1)pn (3.23)

>
(q −1)pn

ppn(1−p)(1−p)n
·ℓ(n) (3.24)

≥ q Hq (p)n−o(n). (3.25)

In the above (3.23) follows by only looking at one term. (3.24) follows from (3.22) while (3.25)
follows from the definition of Hq (·) and the fact that for large enough n, ℓ(n) is q−o(n).

Next, we consider how the q-ary entropy function behaves for various ranges of its parame-
ters.

3.3.2 Other Properties of the q-ary Entropy function

We begin by recording the behavior of q-ary entropy function for large q .

Proposition 3.3.2. For small enough ε, 1−Hq (ρ) ≥ 1−ρ−ε for every 0 < ρ ≤ 1−1/q if and only

if q is 2Ω(1/ε).

Proof. We first note that by definition of Hqρ) and H(ρ),

Hq (ρ) = ρ logq (q −1)−ρ logq ρ− (1−ρ) logq (1−ρ)

= ρ logq (q −1)+H(ρ)/ log2 q.

Now if q ≥ 21/ε, we get that
Hq (ρ) ≤ ρ+ε.

as logq (q − 1) ≤ 1 and H(ρ) ≤ 1. Thus, we have argued that for q ≥ 21/ε, we have 1− Hq (ρ) ≥
1−ρ−ε, as desired.

66

Next, we consider the case when q = 2o(1/ε). We begin by claiming that for small enough ε,

if q ≥ 1/ε2 then logq (q −1) ≥ 1−ε.

Indeed, logq (q −1) = 1+ (1/ln q) ln(1−1/q) = 1−O
(

1
q ln q

)

,4 which is at least 1−ε for q ≥ 1/ε2

(and small enough ε).

Finally, if q = 2o
(1
ε

)

, then for fixed ρ,

H(ρ)/ log q = ε ·ω(1).

Then for q = 2o
(1
ε

)

(but q ≥ 1/ε2) we have

ρ logq (q −1)+H(ρ)/ log q ≥ ρ−ε+ε ·ω(1) > ρ+ε,

which implies that
1−Hq (ρ) < 1−ρ−ε,

as desired. For q ≤ 1/ε2, Lemma 3.3.3 shows that 1−Hq (ρ) ≤ 1−H1/ε2 (ρ) < 1−ρ−ε, as desired.

We will also be interested in how Hq (x) behaves for fixed x and increasing q :

Lemma 3.3.3. Let q ≥ 2 be an integer and let 0 ≤ ρ ≤ 1−1/q, then for any real m ≥ 1 such that

qm−1 ≥
(

1+
1

q −1

)q−1

, (3.26)

we have

Hq (ρ) ≥ Hqm (ρ).

Proof. Note that Hq (0) = Hqm (0) = 0. Thus, for the rest of the proof we will assume that ρ ∈
(0,1−1/q].

As observed in the proof of Proposition 3.3.2, we have

Hq (ρ) = ρ ·
log(q −1)

log q
+H(ρ) ·

1

log q
.

Using this, we obtain

Hq (ρ)−Hqm (ρ) = ρ

(
log(q −1)

log q
−

log(qm −1)

m log q

)

+H(ρ)

(
1

log q
−

1

m log q

)

.

The above in turn implies that

1

ρ
·m log q · (Hq (ρ)−Hqm (ρ)) = log(q −1)m − log(qm −1)+

H(ρ)

ρ
(m −1)

4The last equality follows from the fact that by Lemma B.2.2, for 0 < x < 1, ln(1−x) =−O(x).

67

≥ log(q −1)m − log(qm −1)+
H(1−1/q)

1−1/q
(m −1) (3.27)

= log(q −1)m − log(qm −1)+ (m −1)

(

log
q

q −1
+

log q

q −1

)

= log

(
(q −1)m

qm −1
·
(

q

q −1

)m−1

·q
m−1
q−1

)

= log

(

(q −1) ·qm−1 ·q
m−1
q−1

qm −1

)

≥ 0 (3.28)

In the above (3.27) follows from the fact that H(ρ)/ρ is decreasing5 in ρ and that ρ ≤ 1−1/q .
(3.28) follows from the the claim that

(q −1) ·q
m−1
q−1 ≥ q.

Indeed the above follows from (3.26).
Finally, note that (3.28) completes the proof.

Since (1+1/x)x ≤ e (by Lemma B.2.5), we also have that (3.26) is also satisfied for m ≥ 1+
1

ln q
. Further, we note that (3.26) is satisfied for every m ≥ 2 (for any q ≥ 3), which leads to the

following (also see Exercise 3.5):

Corollary 3.3.4. Let q ≥ 3 be an integer and let 0 ≤ ρ ≤ 1−1/q, then for any m ≥ 2, we have

Hq (ρ) ≥ Hqm (ρ).

Next, we look at the entropy function when its input is very close to 1.

Proposition 3.3.5. For small enough ε> 0,

Hq

(

1−
1

q
−ε

)

≤ 1− cqε
2,

where cq is a constant that only depends on q.

Proof. The intuition behind the proof is the following. Since the derivative of Hq (x) is zero at
x = 1−1/q , in the Taylor expansion of Hq (1−1/q −ε) the ε term will vanish. We will now make
this intuition more concrete. We will think of q as fixed and 1/ε as growing. In particular, we
will assume that ε< 1/q . Consider the following equalities:

Hq (1−1/q −ε) = −
(

1−
1

q
−ε

)

logq

(
1−1/q −ε

q −1

)

−
(

1

q
+ε

)

logq

(
1

q
+ε

)

5Indeed, H(ρ)/ρ = log(1/ρ)− (1/ρ−1)log(1−ρ). Note that the first term is deceasing in ρ. We claim that the
second term is also decreasing in ρ– this e.g. follows from the observation that −(1/ρ− 1)ln(1−ρ) = (1−ρ)(1+
ρ/2!+ρ2/3!+·· ·) = 1−ρ/2−ρ2(1/2−1/3!)−·· · is also decreasing in ρ.

68

= − logq

(
1

q

(

1−
εq

q −1

))

+
(

1

q
+ε

)

logq

(
1− (εq)/(q −1)

1+εq

)

= 1−
1

ln q

[

ln

(

1−
εq

q −1

)

−
(

1

q
+ε

)

ln

(
1− (εq)/(q −1)

1+εq

)]

= 1+o(ε2)−
1

ln q

[

−
εq

q −1
−

ε2q2

2(q −1)2
−

(
1

q
+ε

)(

−
εq

q −1

−
ε2q2

2(q −1)2
−εq +

ε2q2

2

)]

(3.29)

= 1+o(ε2)−
1

ln q

[

−
εq

q −1
−

ε2q2

2(q −1)2

−
(

1

q
+ε

)(

−
εq2

q −1
+
ε2q3(q −2)

2(q −1)2

)]

= 1+o(ε2)−
1

ln q

[

−
ε2q2

2(q −1)2
+

ε2q2

q −1
−
ε2q2(q −2)

2(q −1)2

]

(3.30)

= 1−
ε2q2

2ln q(q −1)
+o(ε2)

≤ 1−
ε2q2

4ln q(q −1)

(3.31)

(3.29) follows from the fact that for |x| < 1, ln(1+ x) = x − x2/2+ x3/3− . . . (Lemma B.2.2) and
by collecting the ε3 and smaller terms in o(ε2). (3.30) follows by rearranging the terms and by
absorbing the ε3 terms in o(ε2). The last step is true assuming ε is small enough.

Next, we look at the entropy function when its input is very close to 0.

Proposition 3.3.6. For small enough ε> 0,

Hq (ε) =Θ

(
1

log q
·ε log

(
1

ε

))

.

Proof. By definition

Hq (ε) = ε logq (q −1)+ε logq (1/ε)+ (1−ε) logq (1/(1−ε)).

Since all the terms in the RHS are positive we have

Hq (ε) ≥ ε log(1/ε)/ log q. (3.32)

Further, by Lemma B.2.2, (1−ε) logq (1/(1−ε)) ≤ 2ε/ln q for small enough ε. Thus, this implies
that

Hq (ε) ≤
2+ ln(q −1)

ln q
·ε+

1

ln q
·ε ln

(
1

ε

)

. (3.33)

(3.32) and (3.33) proves the claimed bound.

69

We will also work with the inverse of the q-ary entropy function. Note that Hq (·) on the
domain [0,1−1/q] is an bijective map into [0,1]. Thus, we define H−1

q (y) = x such that Hq (x) = y

and 0 ≤ x ≤ 1−1/q . Finally, we will need the following lower bound.

Lemma 3.3.7. For every 0 ≤ y ≤ 1−1/q and for every small enough ε> 0,

H−1
q (y −ε2/c ′q) ≥ H−1

q (y)−ε,

where c ′q ≥ 1 is a constant that depends only on q.

Proof. It is easy to check that H−1
q (y) is a strictly increasing convex function in the range y ∈

[0,1]. This implies that the derivative of H−1
q (y) increases with y . In particular, (H−1

q)′(1) ≥
(H−1

q)′(y) for every 0 ≤ y ≤ 1. In other words, for every 0 < y ≤ 1, and (small enough) δ > 0,
H−1

q (y)−H−1
q (y−δ)

δ
≤ H−1

q (1)−H−1
q (1−δ)

δ
. Proposition 3.3.5 along with the facts that H−1

q (1) = 1− 1/q

and H−1
q is increasing completes the proof if one picks c ′q = max(1,1/cq) and δ= ε2/c ′q .

3.4 Exercises

Exercise 3.1. Prove Lemma 3.1.1.

Exercise 3.2. Prove Lemma 3.1.5.

Exercise 3.3. Prove Lemma 3.1.7.

Exercise 3.4. Let P denote the property that the randomly chosen C satisfies f (C) ≤ b. Then
E[f (C)] ≤ b implies that Pr[C has property P] > 0.

Exercise 3.5. Show that for any Q ≥ q ≥ 2 and ρ ≤ 1−1/q , we have HQ (ρ) ≤ Hq (ρ).

3.5 Bibliographic Notes

Shannon was one of the very early adopters of probabilistic method (and we will see one such
use in Chapter 6). Later, the probabilistic method was popularized Erdős. For more on proba-
bilistic method, see the book by Alon and Spencer [1].

Proofs of various concentration bounds can e.g. be found in [14].

70

Part II

The Combinatorics

71

Chapter 4

What Can and Cannot Be Done-I

In this chapter, we will try to tackle Question 2.5.1. We will approach this trade-off in the fol-
lowing way:

If we fix the relative distance of the code to be δ, what is the best rate R that we can
achieve?

Note that an upper bound on R is a negative result, while a lower bound on R is a positive result.
In this chapter, we will consider only one positive result, i.e. a lower bound on R called the

Gilbert-Varshamov bound in Section 4.2. In Section 4.1, we recall a negative result that we have
already seen– Hamming bound and state its asymptotic version to obtain an upper bound on
R. We will consider two other upper bounds: the Singleton bound (Section 4.3), which gives
a tight upper bound for large enough alphabets (but not binary codes) and the Plotkin bound
(Section 4.4).

4.1 Asymptotic Version of the Hamming Bound

We have already seen an upper bound in Section 1.7 due to Hamming. However, we had stated
this as an upper bound on the dimension k in terms of n, q and d . We begin by considering the
trade-off between R and δ given by the Hamming bound. Recall that Theorem 1.7.1 states the
following:

k

n
≤ 1−

logq V olq

(⌊
d−1

2

⌋

,n
)

n

Recall that Proposition 3.3.1 states following lower bound on the volume of a Hamming ball:

V olq

(⌊
d −1

2

⌋

,n

)

≥ q
Hq

(
δ
2

)

n−o(n)
,

which implies the following asymptotic version of the Hamming bound:

R ≤ 1−Hq

(
δ

2

)

+o(1).

See Figure 4.1 for a pictorial description of the Hamming bound for binary codes.

73

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

R

δ

Hamming bound
GV bound

Figure 4.1: The Hamming and GV bounds for binary codes. Note that any point below the GV
bound is achievable by some code while no point above the Hamming bound is achievable by
any code. In this part of the book we would like to push the GV bound as much up as possible
while at the same time try and push down the Hamming bound as much as possible.

4.2 Gilbert-Varshamov Bound

Next, we will switch gears by proving our first non-trivial lower bound on R in terms of δ. (In
fact, this is the only positive result on the R vs δ tradeoff question that we will see in this book.)
In particular, we will prove the following result:

Theorem 4.2.1 (Gilbert-Varshamov Bound). Let q ≥ 2. For every 0 ≤ δ < 1 − 1
q

, and 0 < ε ≤
1−Hq (δ), there exists a code with rate R ≥ 1−Hq (δ)−ε and relative distance δ.

The bound is generally referred to as the GV bound. For a pictorial description of the GV
bound for binary codes, see Figure 4.1. We will present the proofs for general codes and linear
codes in Sections 4.2.1 and 4.2.2 respectively.

4.2.1 Greedy Construction

We will prove Theorem 4.2.1 for general codes by the following greedy construction (where
d = δn): start with the empty code C and then keep on adding vectors not in C that are at Ham-
ming distance at least d from all the existing codewords in C . Algorithm 5 presents a formal
description of the algorithm and Figure 4.2 illustrates the first few executions of this algorithm.

We claim that Algorithm 5 terminates and the C that it outputs has distance d . The latter
is true by step 2, which makes sure that in Step 3 we never add a vector c that will make the
distance of C fall below d . For the former claim, note that, if we cannot add v at some point, we

74

Algorithm 5 Gilbert’s Greedy Code Construction
INPUT: n, q,d

OUTPUT: A code C ⊆ [q]n of distance d

1: C ←;
2: WHILE there exists a v ∈ [q]n such that ∆(v,c) ≥ d for every c ∈C DO

3: Add v to C

4: RETURN C

[q]n

c1

d −1

c2
c3

c4

c5

Figure 4.2: An illustration of Gilbert’s greedy algorithm (Algorithm 5) for the first five iterations.

cannot add it later. Indeed, since we only add vectors to C , if a vector v ∈ [q]n is ruled out in a
certain iteration of Step 2 because ∆(c,v) < d , then in all future iterations, we have ∆(v,c) < d

and thus, this v will never be added in Step 3 in any future iteration.
The running time of Algorithm 5 is qO(n). To see this note that Step 2 in the worst-case could

be repeated for every vector in [q]n , that is at most qn times. In a naive implementation, for
each iteration, we cycle through all vectors in [q]n and for each vector v ∈ [q]n , iterate through
all (at most qn) vectors c ∈C to check whether ∆(c,v) < d . If no such c exists, then we add v to C

otherwise, we move to the next v. However, note that we can do slightly better– since we know
that once a v is “rejected" in an iteration, it’ll keep on being rejected in the future iterations, we
can fix up an ordering of vectors in [q]n and for each vector v in this order, check whether it can
be added to C or not. If so, we add v to C , else we move to the next vector in the order. This
algorithm has time complexity O(nq2n), which is still qO(n).

Further, we claim that after termination of Algorithm 5

⋃

c∈C

B(c,d −1) = [q]n .

This is because if not, then there exists a vector v ∈ [q]n \C , such that ∆(v,c) ≥ d and hence v can

75

be added to C . However, this contradicts the fact that Algorithm 5 has terminated. Therefore,

∣
∣
∣
∣

⋃

c∈C

B(c,d −1)

∣
∣
∣
∣= qn . (4.1)

It is not too hard to see that

∑

c∈C

|B(c,d −1)| ≥
∣
∣
∣
∣

⋃

c∈C

B(c,d −1)

∣
∣
∣
∣ ,

which by (4.1) implies that
∑

c∈C

|B(c,d −1)| ≥ qn

or since the volume of a Hamming ball is translation invariant,

∑

c∈C

V olq (d −1,n) ≥ qn .

Since
∑

c∈C V olq (d −1,n) =V olq (d −1,n) · |C |, we have

|C | ≥
qn

V olq (d −1,n)

≥
qn

qnHq (δ)
(4.2)

= qn(1−Hq (δ)),

as desired. In the above, (4.2) follows from the fact that

V olq (d −1,n) ≤ V olq (δn,n)

≤ qnHq (δ), (4.3)

where the second inequality follows from the upper bound on the volume of a Hamming ball in
Proposition 3.3.1.

It is worth noting that the code from Algorithm 5 is not guaranteed to have any special struc-
ture. In particular, even storing the code can take exponential space. We have seen in Proposi-
tion 2.3.1 that linear codes have a much more succinct representation. Thus, a natural question
is:

Question 4.2.1. Do linear codes achieve the R ≥ 1−Hq (δ) tradeoff that the greedy construc-

tion achieves?

Next, we will answer the question in the affirmative.

76

4.2.2 Linear Code Construction

Now we will show that a random linear code, with high probability, lies on the GV bound. The
construction is a use of the probabilistic method (Section 3.2).

By Proposition 2.3.4, we are done if we can show that there exists a k×n matrix G of full rank
(for k = (1−Hq (δ)−ε)n) such that

For every m ∈ Fk
q \ {0}, w t (mG) ≥ d .

We will prove the existence of such a G by the probabilistic method. Pick a random linear code
by picking a random k ×n matrix G where each of kn entries is chosen uniformly and indepen-
dently at random from Fq . Fix m ∈ Fk

q \ {0}. Recall that by Lemma 3.1.8, for a random G, mG is a
uniformly random vector from Fn

q . Thus, we have

Pr [w t (mG) < d] =
V olq (d −1,n)

qn

≤
qnHq (δ)

qn
, (4.4)

where (4.4) follows from (4.3). Thus, by the union bound (Lemma 3.1.3)

Pr [There exists a non-zero m, w t (mG) < d] ≤ qk q−n(1−Hq (δ))

= q−ε·n ,

where the equality follows by choosing k = (1−Hq (δ)−ε)n. Since q−εn ≪ 1, by the probabilistic
method, there exists a linear code C with relative distance δ.

All that’s left is to argue that the code C has dimension at least k = (1−Hq (δ)−ε)n. To show
this we need to show that the chosen generator matrix G has full rank. Note that there is a non-
zero probability that a uniformly matrix G does not have full rank. There are two ways to deal
with this. First, we can show that with high probability a random G does have full rank, so that
|C | = qk . However, the proof above has already shown that, with high probability, the distance
is greater than zero, which implies that distinct messages will be mapped to distinct codewords
and thus |C | = qk . In other words, C does indeed have dimension k, as desired

Discussion. We now digress a bit to discuss some consequences of the proofs of the GV bound.
We first note the probabilistic method proof shows something stronger than Theorem 4.2.1:

most linear codes (with appropriate parameters) meet the Gilbert-Varshamov bound.
Note that we can also pick a random linear code by picking a random (n−k)×n parity check

matrix. This also leads to a proof of the GV bound: see Exercise 4.1.
Finally, we note that Theorem 4.2.1 requires δ < 1− 1

q
. An inspection of Gilbert and Var-

shamov’s proofs shows that the only reason the proof required that δ ≤ 1− 1
q

was because it is

needed for the volume bound (recall the bound in Proposition 3.3.1): V olq (δn,n) ≤ q Hq (δ)n– to
hold. It is natural to wonder if the above is just an artifact of the proof or, for example,

77

d −1

c1

c2

ci

c j

cM

c′
i

c′
i

n −d +1

Figure 4.3: Construction of a new code in the proof of the Singleton bound.

Question 4.2.2. Does there exists a code with R > 0 and δ> 1− 1
q

?

We will return to this question in Section 4.4.

4.3 Singleton Bound

We will now change gears again and prove an upper bound on R (for fixedδ). We start by proving
the Singleton bound.

Theorem 4.3.1 (Singleton Bound). For every (n,k,d)q code,

k ≤ n −d +1.

Proof. Let c1,c2, . . . ,cM be the codewords of an (n,k,d)q code C . Note that we need to show
M ≤ qn−d+1. To this end, we define c′

i
to be the prefix of the codeword ci of length n −d +1 for

every i ∈ [M]. See Figure 4.3 for a pictorial description.
We now claim that for every i 6= j , c′

i
6= c′

j
. For the sake of contradiction, assume that there

exits an i 6= j such that c′
i
= c′

j
. Note that this implies that ci and c j agree in all the first n −

d +1 positions, which in turn implies that ∆(ci ,c j) ≤ d −1. This contradicts the fact that C has
distance d . Thus, M is the number of prefixes of codewords in C of length n −d + 1, which
implies that M ≤ qn−d+1 as desired.

78

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R

δ

Hamming bound
GV bound

Singleton bound

Figure 4.4: The Hamming, GV and Singleton bound for binary codes.

Note that the asymptotic version of the Singleton bound states that k/n ≤ 1−d/n +1/n. In
other words,

R ≤ 1−δ+o(1).

Figure 4.4 presents a pictorial description of the asymptotic version of the Singleton bound.
It is worth noting that the bound is independent of the alphabet size. As is evident from Fig-
ure 4.4, the Singleton bound is worse than the Hamming bound for binary codes. However, this
bound is better for larger alphabet sizes. In fact, we will look at a family of codes called Reed-
Solomon codes in Chapter 5 that meets the Singleton bound. However, the alphabet size of the
Reed-Solomon codes increases with the block length n. Thus, a natural follow-up question is
the following:

Question 4.3.1. Given a fixed q ≥ 2, does there exist a q-ary code that meets the Singleton

bound?

We’ll see an answer to this question in the next section.

4.4 Plotkin Bound

In this section, we will study the Plotkin bound, which will answer Questions 4.2.2 and 4.3.1.
We start by stating the bound.

79

Theorem 4.4.1 (Plotkin bound). The following holds for any code C ⊆ [q]n with distance d:

1. If d =
(

1− 1
q

)

n, |C | ≤ 2qn.

2. If d >
(

1− 1
q

)

n, |C | ≤ qd

qd−(q−1)n
.

Note that the Plotkin bound (Theorem 4.4.1) implies that a code with relative distance δ ≥
1− 1

q
, must necessarily have R = 0, which answers Question 4.2.2 in the negative.

Before we prove Theorem 4.4.1, we make couple of remarks. We first note that the upper
bound in the first part of Theorem 4.4.1 can be improved to 2n for q = 2. (See Exercise 4.12.)
Second, it can be shown that this bound is tight– see Exercise 4.13. Third, the statement of
Theorem 4.4.1 gives a trade-off only for relative distance greater than 1−1/q . However, as the
following corollary shows, the result can be extended to work for 0 ≤ δ≤ 1−1/q . (See Figure 4.5
for an illustration for binary codes.)

Corollary 4.4.2. For any q-ary code with distance δ, R ≤ 1−
(

q

q−1

)

δ+o(1).

Proof. The proof proceeds by shortening the codewords. We group the codewords so that they

agree on the first n −n′ symbols, where n′ =
⌊

qd

q−1

⌋

−1. (We will see later why this choice of n′

makes sense.) In particular, for any x ∈ [q]n−n′
, define

Cx = {(cn−n′+1, . . .cn) | (c1 . . .cN) ∈C , (c1 . . .cn−n′) = x} .

Define d = δn. For all x, Cx has distance d as C has distance d .1 Additionally, it has block length

n′ < (q

q−1)d and thus, d >
(

1− 1
q

)

n′. By Theorem 4.4.1, this implies that

|Cx| ≤
qd

qd − (q −1)n′ ≤ qd , (4.5)

where the second inequality follows from the fact that qd − (q −1)n′ is an integer.
Note that by the definition of Cx:

|C | =
∑

x∈[q]n−n′
|Cx| ,

which by (4.5) implies that

|C | ≤
∑

x∈[q]n−n′
qd = qn−n′

·qd ≤ q
n− q

q−1 d+o(n) = q
n

(

1−δ· q
q−1+o(1)

)

.

In other words, R ≤ 1−
(

q

q−1

)

δ+o(1) as desired.

1If for some x, c1 6= c2 ∈ Cx, ∆(c1,c2) < d , then ∆((x,c1), (x,c2)) < d , which implies that the distance of C is less
than d (as by definition of Cx, both (x,c1), (x,c2) ∈C).

80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R

δ

Hamming bound
GV bound

Singleton bound
Plotkin bound

Figure 4.5: The current bounds on the rate R vs. relative distance δ for binary codes. The GV
bound is a lower bound on rate while the other three bounds are upper bounds on R.

Note that Corollary 4.4.2 implies that for any q-ary code of rate R and relative distance δ

(where q is a constant independent of the block length of the code), R < 1−δ. In other words,
this answers Question 4.3.1 in the negative.

Let us pause for a bit at this point and recollect the bounds on R versusδ that we have proved
till now. Figure 4.5 depicts all the bounds we have seen till now (for q = 2). The GV bound is
the best known lower bound at the time of writing of this book. Better upper bounds are known
and we will see one such trade-off (called the Elias-Bassalygo bound) in Section 8.1.

Now, we turn to the proof of Theorem 4.4.1, for which we will need two more lemmas.
The first lemma deals with vectors over real spaces. We quickly recap the necessary defini-

tions. Consider a vector v in Rn , that is, a tuple of n real numbers. This vector has (Euclidean)

norm ‖v‖ =
√

v2
1 + v2

2 + . . .+ v2
n , and is a unit vector if and only if its norm is 1. The inner product

of two vectors, u and v, is 〈u,v〉 =
∑

i ui · vi . The following lemma gives a bound on the number
of vectors that can exist such that every pair is at an obtuse angle with each other.

Lemma 4.4.3 (Geometric Lemma). Let v1,v2, . . . ,vm ∈RN be non-zero vectors.

1. If 〈vi ,v j 〉 ≤ 0 for all i 6= j , then m ≤ 2N .

2. Let vi be unit vectors for 1 ≤ i ≤ m. Further, if 〈vi ,v j 〉 ≤−ε< 0 for all i 6= j , then m ≤ 1+ 1
ε .2

(Item 1 is tight: see Exercise 4.14.) The proof of the Plotkin bound will need the existence of a
map from codewords to real vectors with certain properties, which the next lemma guarantees.

2Note that since vi and v j are both unit vectors, 〈vi ,v j 〉 is the cosine of the angle between them.

81

Lemma 4.4.4 (Mapping Lemma). Let C ⊆ [q]n . Then there exists a function f : C −→ Rnq such

that

1. For every c ∈C ,‖ f (c)‖ = 1.

2. For every c1 6= c2 such that c1,c2 ∈C ,〈 f (c1), f (c2)〉 = 1−
(

q

q−1

)(
∆(c1,c2)

n

)

.

We defer the proofs of the lemmas above to the end of the section. We are now in a position
to prove Theorem 4.4.1.
Proof of Theorem 4.4.1 Let C = {c1,c2, . . . ,cm}. For all i 6= j ,

〈

f (ci), f (c j)
〉

≤ 1−
(

q

q −1

)
∆(ci ,c j)

n
≤ 1−

(
q

q −1

)
d

n
.

The first inequality holds by Lemma 4.4.4, and the second holds as C has distance d .

For part 1, if d =
(

1− 1
q

)

n = (q−1)n

q
, then for all i 6= j ,

〈

f (ci), f (c j)
〉

≤ 0

and so by the first part of Lemma 4.4.3, m ≤ 2nq , as desired.

For part 2, d >
(

q−1
q

)

n and so for all i 6= j ,

〈 f (ci), f (c j)〉 ≤ 1−
(

q

q −1

)
d

n
=−

(
qd − (q −1)n

(q −1)n

)

and, since ε
def=

(
qd−(q−1)n

(q−1)n

)

> 0, we can apply the second part of Lemma 4.4.3. Thus, m ≤ 1+
(q−1)n

qd−(q−1)n
= qd

qd−(q−1)n
, as desired ✷

4.4.1 Proof of Geometric and Mapping Lemmas

Next, we prove Lemma 4.4.3.

Proof of Lemma 4.4.3. We begin with a proof of the first result. The proof is by induction on
n. Note that in the base case of N = 0, we have m = 0, which satisfies the claimed inequality
m ≤ 2N .

In the general case, we have m ≥ 1 non-zero vectors v1, . . . ,vm ∈RN such that for every i 6= j ,

〈vi ,v j 〉 ≤ 0. (4.6)

Since rotating all the vectors by the same amount does not change the sign of the inner
product (nor does scaling any of the vectors), w.l.o.g. we can assume that vm = 〈1,0, . . . ,0〉. For
1 ≤ i ≤ m −1, denote the vectors as vi = 〈αi ,yi 〉, for some αi ∈ R and yi ∈ RN−1. Now, for any
i 6= 1, 〈v1,vi 〉 = 1·αi +

∑m
i=2 0 =αi . However, note that (4.6) implies that 〈v1,vi 〉 ≤ 0, which in turn

implies that
αi ≤ 0. (4.7)

82

Next, we claim that at most one of y1, . . . ,ym−1 can be the all zeroes vector, 0. If not, assume
w.l.o.g., that y1 = y2 = 0. This in turn implies that

〈v1,v2〉 =α1 ·α2 +〈y1,y2〉
=α1 ·α2 +0

=α1 ·α2

> 0,

where the last inequality follows from the subsequent argument. As v1 = 〈α1,0〉 and v2 = 〈α2,0〉
are non-zero, this implies that α1,α2 6= 0. (4.7) then implies that α1,α2 < 0. However, 〈v1,v2〉 > 0
contradicts (4.6).

Thus, w.l.o.g., assume that v1, . . . ,vm−2 are all non-zero vectors. Further, note that for every
i 6= j ∈ [m − 2], 〈yi ,y j 〉 = 〈vi ,v j 〉−αi ·α j ≤ 〈vi ,v j 〉 ≤ 0. Thus, we have reduced problem on m

vectors with dimension N to an equivalent problem on m−2 vectors with dimension dimension
N −1. If we continue this process, we can conclude that every loss in dimension of the vector
results in twice in loss in the numbers of the vectors in the set. Induction then implies that
m ≤ 2N , as desired.

We now move on to the proof of the second part. Define z = v1 + . . .+vm . Now consider the
following sequence of relationships:

‖z‖2 =
m∑

i=1
‖vi‖2 +2

∑

i< j

〈vi ,v j 〉 ≤ m +2 ·
(

m

2

)

· (−ε) = m(1−εm +ε).

The inequality follows from the facts that each vi is a unit vector and the assumption that for
every i 6= j , 〈vi .v j 〉 ≤−ε. As ‖z‖2 ≥ 0,

m(1−εm +ε) ≥ 0.

Thus, we have m ≤ 1+ 1
ε

, as desired. ✷

Finally, we prove Lemma 4.4.4.

Proof of Lemma 4.4.4. We begin by defining a map φ : [q] →Rq with certain properties. Then
we apply φ to all the coordinates of a codeword to define the map f : Rq →Rnq that satisfies the
claimed properties. We now fill in the details.

Define φ : [q] →Rq as follows. For every i ∈ [q], we define

φ(i) =
〈

1

q
,

1

q
, . . . ,

−(q −1)

q
︸ ︷︷ ︸

i thposition

, . . .
1

q

〉

.

That is, all but the i ’th position in φ(i) ∈ Rq has a value of 1/q and the i th position has value
−(q −1)/q .

83

Next, we record two properties of φ that follow immediately from its definition. For every
i ∈ [q],

φ(i)2 =
(q −1)

q2
+

(q −1)2

q2
=

(q −1)

q
. (4.8)

Also for every i 6= j ∈ [q],

〈φ(i),φ(j)〉 =
(q −2)

q2
−

2(q −1)

q2
=−

1

q
. (4.9)

We are now ready to define our final map f : C →Rnq . For every c = (c1, . . . ,cn) ∈C , define

f (c) =
√

q

n(q −1)
·
(

φ(c1),φ(c2), . . . ,φ(cn)
)

.

(The multiplicative factor
√

q

n(q−1) is to ensure that f (c) for any c ∈C is a unit vector.)

To complete the proof, we will show that f satisfies the claimed properties. We begin with
condition 1. Note that

‖ f (c)‖2 =
q

(q −1)n
·

n∑

i=1

∣
∣φ(i)

∣
∣2 = 1,

where the first equality follows from the definition of f and the second equality follows from
(4.8).

We now turn to the second condition. For notational convenience define c1 = (x1, . . . , xn)
and c2 = (y1, . . . , yn). Consider the following sequence of relations:

〈

f (c1), f (c2)
〉

=
n∑

ℓ=1

〈

f (xℓ), f (yℓ)
〉

=
[

∑

ℓ:xℓ 6=yℓ

〈

φ(xℓ),φ(yℓ)
〉

+
∑

ℓ:xℓ=yℓ

〈

φ(xℓ),φ(yℓ)
〉

]

·
(

q

n(q −1)

)

=
[

∑

ℓ:xℓ 6=yℓ

(−1

q

)

+
∑

ℓ:xℓ=yℓ

(
q −1

q

)]

·
(

q

n(q −1)

)

(4.10)

=
[

∆(c1,c2)

(−1

q

)

+ (n −∆(c1,c2))

(
q −1

q

)]

·
(

q

n(q −1)

)

(4.11)

= 1−∆(c1,c2)

(
q

n(q −1)

)[
1

q
+

q −1

q

]

= 1−
(

q

q −1

)(
∆(c1,c2)

n

)

,

as desired. In the above, (4.10) is obtained using (4.9) and (4.8) while (4.11) follows from the
definition of the Hamming distance. ✷

84

4.5 Exercises

Exercise 4.1. Pick a (n −k)×n matrix H over Fq at random. Show that with high probability the
code whose parity check matrix is H achieves the GV bound.

Exercise 4.2. Recall the definition of an ε-biased space from Exercise 2.14. Show that there exists
an ε-biased space of size O(k/ε2).

Hint: Recall part 1 of Exercise 2.14.

Exercise 4.3. Argue that a random linear code as well as its dual both lie on the corresponding
GV bound.

Exercise 4.4. In Section 4.2.2, we saw that random linear code meets the GV bound. It is natural
to ask the question for general random codes. (By a random (n,k)q code, we mean the following:
for each of the qk messages, pick a random vector from [q]n . Further, the choices for each
codeword is independent.) We will do so in this problem.

1. Prove that a random q-ary code with rate R > 0 with high probability has relative distance
δ ≥ H−1

q (1− 2R − ε). Note that this is worse than the bound for random linear codes in
Theorem 4.2.1.

2. Prove that with high probability the relative distance of a random q-ary code of rate R is
at most H−1

q (1− 2R)+ ε. In other words, general random codes are worse than random
linear codes in terms of their distance.
Hint: Use Chebyshev’s inequality.

Exercise 4.5. We saw that Algorithm 5 can compute an (n,k)q code on the GV bound in time
qO(n). Now the construction for linear codes is a randomized construction and it is natural to
ask how quickly can we compute an [n,k]q code that meets the GV bound. In this problem,
we will see that this can also be done in qO(n) deterministic time, though the deterministic
algorithm is not that straight-forward anymore.

1. Argue that Theorem 4.2.1 gives a qO(kn) time algorithm that constructs an [n,k]q code
on the GV bound. (Thus, the goal of this problem is to “shave" off a factor of k from the
exponent.)

2. A k×n Toeplitz Matrix A = {Ai , j }k , n
i=1, j=1 satisfies the property that Ai , j = Ai−1, j−1. In other

words, any diagonal has the same value. For example, the following is a 4× 6 Toeplitz
matrix:

1 2 3 4 5 6
7 1 2 3 4 5
8 7 1 2 3 4
9 8 7 1 2 3

A random k ×n Toeplitz matrix T ∈ Fk×n
q is chosen by picking the entries in the first row

and column uniformly (and independently) at random.

85

Prove the following claim: For any non-zero m ∈ Fk
q , the vector m ·T is uniformly dis-

tributed over Fn
q , that is for every y ∈ Fn

q , Pr
[

m ·T = y
]

= q−n .

3. Briefly argue why the claim in part 2 implies that a random code defined by picking its
generator matrix as a random Toeplitz matrix with high probability lies on the GV bound.

4. Conclude that an [n,k]q code on the GV bound can be constructed in time qO(k+n).

Exercise 4.6. Show that one can construct the parity check matrix of an [n,k]q code that lies on
the GV bound in time qO(n).

Exercise 4.7. So far in Exercises 4.5 and 4.6, we have seen two constructions of [n,k]q code on
the GV bound that can be constructed in qO(n) time. For constant rate codes, at the time of
writing of this book, this is fastest known construction of any code that meets the GV bound.
For k = o(n), there is a better construction known, which we explore in this exercise.

We begin with some notation. For the rest of the exercise we will target a distance of d = δn.
Given a message m ∈ Fk

q and an [n,k]q code C , define the indicator variable:

Wm(C) =
{

1 if w t (C (m)) < d

0 otherwise.

Further, define

D(C) =
∑

m∈Fk
q \{0}

Wm(C).

We will also use D(G) and Wm(G) to denote the variables above for the code C generated by G .
Given an k ×n matrix M , we will use M i to denote the i th column of M and M≤i to denote

the column submatrix of M that contains the first i columns. Finally below we will use G to
denote a uniformly random k ×n generator matrix and G to denote a specific instantiation of
the generator matrix. We will arrive at the final construction in a sequence of steps. In what
follows define k < (1−Hq (δ))n for large enough n.

1. Argue that C has a distance d if and only if D(C) < 1.

2. Argue that E [D(G)] < 1.

3. Argue that for any 1 ≤ i < n and fixed k ×n matrix G ,

min
v∈Fk

q

E

[

D(G)|G≤i =G≤i ,G i+1 = v
]

≤ E

[

D(G)|G≤i =G≤i
]

.

4. We are now ready to define the algorithm to compute the final generator matrix G : see Al-
gorithm 6. Prove that Algorithm 6 outputs a matrix G such that the linear code generated
by G is an [n,k,δn]q code. Conclude that this code lies on the GV bound.

86

Algorithm 6 qO(k) time algorithm to compute a code on the GV bound
INPUT: Integer parameters 1 ≤ k 6= n such that k < (1−Hq (δ)n)
OUTPUT: An k ×n generator matrix G for a code with distance δn

1: Initialize G to be the all 0s matrix ⊲ This initialization is arbitrary
2: FOR every 1 ≤ i ≤ n DO

3: G i ← argminv∈Fk
q
E
[

D(G)|G≤i =G≤i ,G i+1 = v
]

4: RETURN G

5. Finally, we will analyze the run time of Algorithm 6. Argue that Step 2 can be implemented
in poly

(

n, qk
)

time. Conclude Algorithm 6 can be implemented in time poly
(

n, qk
)

.

Hint: It might be useful to maintain a data structure that keeps track of one number for every non-zero

m ∈ Fk
q throughout the run of Algorithm 6.

Exercise 4.8. In this problem we will derive the GV bound using a graph-theoretic proof, which
is actually equivalent to the greedy proof we saw in Section 4.2.1. Let 1 ≤ d ≤ n and q ≥ 1 be
integers. Now consider the graph Gn,d ,q = (V ,E), where the vertex set is the set of all vectors in
[q]n . Given two vertices u 6= v ∈ [q]n , we have the edge (u, v) ∈ E if and only if ∆(u,v) < d . An
independent set of a graph G = (V ,E) is a subset I ⊆V such that for every u 6= v ∈ I , we have that
(u, v) is not an edge. We now consider the following sub-problems:

1. Argue that any independent set C of Gn,d ,q is a q-ary code of distance d .

2. The degree of a vertex in a graph G is the number of edges incident on that vertex. Let ∆
be the maximum degree of any vertex in G = (V ,E).Then argue that G has an independent
set of size at least |V |

∆+1 .

3. Using parts 1 and 2 argue the GV bound.

Exercise 4.9. In this problem we will improve slightly on the GV bound using a more sophisti-
cated graph-theoretic proof. Let Gn,d ,q and N and ∆ be as in the previous exercise (Exercise 4.8).
So far we used the fact that Gn,d ,q has many vertices and small degree to prove it has a large in-
dependent set, and thus to prove there is a large code of minimum distance d . In this exercise
we will see how a better result can be obtained by counting the number of “triangles” in the
graph. A triangle in a graph G = (V ,E) is a set {u, v, w} ⊂ V of three vertices such that all three
vertices are adjancent, i.e., (u, v), (v, w), (w,u) ∈ E . For simplicity we will focus on the case where
q = 2 and d = n/5, and consider the limit as n →∞.

1. Prove that a graph on N vertices of maximum degree ∆ has at most O(N∆
2) triangles.

2. Prove that the number of triangle in graph Gn,d ,2 is at most

2n ·
∑

0≤e≤3d/2

(

n

e

)

·3e .

87

Hint: Fix u and let e count the number of coordinates where at least one of v or w disagree
with u. Prove that e is at most 3d/2.

3. Simplify the expression in the case where d = n/5 to show that the number of triangles in
Gn,n/5,2 is O(N ·∆2−η) for some η> 0.

4. A famous result in the “probabilistic method” shows (and you don’t have to prove this),
that if a graph on N vertices of maximum degree ∆ has at most O(N ·∆2−η) triangles,
then it has an independent set of size Ω(N

∆
log∆). Use this result to conclude that there

is a binary code of block length n and distance n/5 of size Ω(n2n/
(n

n/5

)

). (Note that this
improves over the GV-bound by an Ω(n) factor.)

Exercise 4.10. Use part 2 from Exercise 1.7 to prove the Singleton bound.

Exercise 4.11. Let C be an (n,k,d)q code. Then prove that fixing any n−d+1 positions uniquely
determines the corresponding codeword.

Exercise 4.12. Let C be a binary code of block length n and distance n/2. Then |C | ≤ 2n. (Note
that this is a factor 2 better than part 1 in Theorem 4.4.1.)

Exercise 4.13. Prove that the bound in Exercise 4.12 is tight– i.e. there exists binary codes C with
block length n and distance n/2 such that |C | = 2n.

Exercise 4.14. Prove that part 1 of Lemma 4.4.3 is tight.

Exercise 4.15. In this exercise we will prove the Plotkin bound (at least part 2 of Theorem 4.4.1)
via a purely combinatorial proof.

Given an (n,k,d)q code C with d >
(

1− 1
q

)

n define

S =
∑

c1 6=c2∈C

∆(c1,c2).

For the rest of the problem think of C has an |C | ×n matrix where each row corresponds to a
codeword in C . Now consider the following:

1. Looking at the contribution of each column in the matrix above, argue that

S ≤
(

1−
1

q

)

·n|C |2.

2. Look at the contribution of the rows in the matrix above, argue that

S ≥ |C | (|C |−1) ·d .

3. Conclude part 2 of Theorem 4.4.1.

Exercise 4.16. In this exercise, we will prove the so called Griesmer Bound. For any [n,k,d]q ,
prove that

n ≥
k−1∑

i=0

⌈
d

q i

⌉

.

Hint: Recall Exercise 2.17.

88

Exercise 4.17. Use Exercise 4.16 to prove part 2 of Theorem 4.4.1 for linear codes.

Exercise 4.18. Use Exercise 4.16 to prove Theorem 4.3.1 for linear code.

4.6 Bibliographic Notes

Theorem 4.2.1 was proved for general codes by Edgar Gilbert ([24]) and for linear codes by Rom
Varshamov ([76]). Hence, the bound is called the Gilbert-Varshamov bound. The Singleton
bound (Theorem 4.3.1) is due to Richard C. Singleton [67]. For larger (but still constant) values
of q , better lower bounds than the GV bound are known. In particular, for any prime power
q ≥ 49, there exist linear codes, called algebraic geometric (or AG) codes that outperform the
corresponding GV bound3. AG codes out of the scope of this book. One starting point could be
the following [42].

The proof method illustrated in Exercise 4.15has a name– double counting: in this specific
case this follows since we count S in two different ways.

3The lower bound of 49 comes about as AG codes are only defined for q being a square (i.e. q = (q ′)2) and it
turns out that q ′ = 7 is the smallest value where AG bound beats the GV bound.

89

90

Chapter 5

The Greatest Code of Them All:

Reed-Solomon Codes

In this chapter, we will study the Reed-Solomon codes. Reed-Solomon codes have been studied
a lot in coding theory. These codes are optimal in the sense that they meet the Singleton bound
(Theorem 4.3.1). We would like to emphasize that these codes meet the Singleton bound not
just asymptotically in terms of rate and relative distance but also in terms of the dimension,
block length and distance. As if this were not enough, Reed-Solomon codes turn out to be more
versatile: they have many applications outside of coding theory. (We will see some applications
later in the book.)

These codes are defined in terms of univariate polynomials (i.e. polynomials in one un-
known/variable) with coefficients from a finite field Fq . It turns out that polynomials over Fp ,
for prime p, also help us define finite fields Fp s , for s > 1. To kill two birds with one stone1, we
first do a quick review of polynomials over finite fields. Then we will define and study some
properties of Reed-Solomon codes.

5.1 Polynomials and Finite Fields

We begin with the formal definition of a (univariate) polynomial.

Definition 5.1.1. Let Fq be a finite field with q elements. Then a function F (X) =
∑∞

i=0 fi X i , fi ∈
Fq is called a polynomial.

For our purposes, we will only consider the finite case; that is, F (X) =
∑d

i=0 fi X i for some
integer d > 0, with coefficients fi ∈ Fq , and fd 6= 0. For example, 2X 3+X 2+5X +6 is a polynomial
over F7.

Next, we define some useful notions related to polynomials. We begin with the notion of
degree of a polynomial.

1No birds will be harmed in this exercise.

91

Definition 5.1.2. For F (X) =
∑d

i=0 fi X i (fd 6= 0), we call d the degree of F (X). We denote the
degree of the polynomial F (X) by deg(F).

For example, 2X 3 +X 2 +5X +6 has degree 3.
Let Fq [X] be the set of polynomials over Fq , that is, with coefficients from Fq . Let F (X),G(X) ∈

Fq [X] be polynomials. Then Fq [X] has the following natural operations defined on it:

Addition:

F (X)+G(X) =
max(deg(F),deg(G))∑

i=0
(fi + gi)X i ,

where the addition on the coefficients is done over Fq . For example, over F2, X + (1+X) =
X · (1+1)+1 · (0+1)1 = 1 (recall that over F2, 1+1 = 0).2

Multiplication:

F (X) ·G(X) =
deg(F)+deg(G)∑

i=0

(
min(i ,deg(F))∑

j=0
p j ·qi− j

)

X i ,

where all the operations on the coefficients are over Fq . For example, over F2, X (1+ X) =
X +X 2; (1+X)2 = 1+2X +X 2 = 1+X 2, where the latter equality follows since 2 ≡ 0 mod 2.

Next, we define the notion of a root of a polynomial.

Definition 5.1.3. α ∈ Fq is a root of a polynomial F (X) if F (α) = 0.

For instance, 1 is a root of 1+X 2 over F2.
We will also need the notion of a special class of polynomials, which are like prime numbers

for polynomials.

Definition 5.1.4. A polynomial F (X) is irreducible if for every G1(X),G2(X) such that F (X) =
G1(X)G2(X), we have min(deg(G1),deg(G2)) = 0

For example, 1+X 2 is not irreducible over F2, as (1+X)(1+X) = 1+X 2. However, 1+X +X 2

is irreducible, since its non-trivial factors have to be from the linear terms X or X +1. However,
it is easy to check that neither is a factor of 1+ X + X 2. (In fact, one can show that 1+ X + X 2

is the only irreducible polynomial of degree 2 over F2– see Exercise 5.1.) A word of caution: if a
polynomial E(X) ∈ Fq [X] does not have any root in Fq , it does not mean that E(X) is irreducible.
For example consider the polynomial (1+ X + X 2)2 over F2– it does not have any root in F2 but
it obviously is not irreducible.

Just as the set of integers modulo a prime is a field, so is the set of polynomials modulo an
irreducible polynomial:

Theorem 5.1.1. Let E(X) be an irreducible polynomial with degree ≥ 2 over Fp , p prime. Then

the set of polynomials in Fp [X] modulo E(X), denoted by Fp [X]/E(X), is a field.

2This will be a good time to remember that operations over a finite field are much different from operations over
integers/reals. For example, over reals/integers X + (X +1) = 2X +1.

92

The proof of the theorem above is similar to the proof of Lemma 2.1.2, so we only sketch the
proof here. In particular, we will explicitly state the basic tenets of Fp [X]/E(X).

• Elements are polynomials in Fp [X] of degree at most s − 1. Note that there are p s such
polynomials.

• Addition: (F (X)+G(X)) mod E(X) = F (X) mod E(X)+G(X) mod E(X) = F (X)+G(X).
(Since F (X) and G(X) are of degree at most s−1, addition modulo E(X) is just plain simple
polynomial addition.)

• Multiplication: (F (X) ·G(X)) mod E(X) is the unique polynomial R(X) with degree at
most s −1 such that for some A(X), R(X)+ A(X)E(X) = F (X) ·G(X)

• The additive identity is the zero polynomial, and the additive inverse of any element F (X)
is −F (X).

• The multiplicative identity is the constant polynomial 1. It can be shown that for every
element F (X), there exists a unique multiplicative inverse (F (X))−1.

For example, for p = 2 and E(X) = 1+X +X 2, F2[X]/(1+X +X 2) has as its elements {0,1, X ,1+
X }. The additive inverse of any element in F2[X]/(1+ X + X 2) is the element itself while the
multiplicative inverses of 1, X and 1+X are 1,1+X and X respectively.

A natural question to ask is if irreducible polynomials exist. Indeed, they do for every degree:

Theorem 5.1.2. For all s ≥ 2 and Fp , there exists an irreducible polynomial of degree s over Fp . In

fact, the number of such irreducible polynomials is Θ

(
p s

s

)

.3

Given any monic 4 polynomial E(X) of degree s, it can be verified whether it is an irre-
ducible polynomial by checking if gcd(E(X), X q s − X) = E(X). This is true as the product of
all monic irreducible polynomials in Fq [X] of degree exactly s is known to be the polynomial
X q s − X . Since Euclid’s algorithm for computing the gcd(F (X),G(X)) can be implemented in
time polynomial in the minimum of deg(F) and deg(G) and log q (see Section ??), this implies
that checking whether a given polynomial of degree s over Fq [X] is irreducible can be done in
time poly(s, log q).

This implies an efficient Las Vegas algorithm5 to generate an irreducible polynomial of de-
gree s over Fq . Note that the algorithm is to keep on generating random polynomials until it
comes across an irreducible polynomial (Theorem 5.1.2 implies that the algorithm will check
O(s) polynomials in expectation). Algorithm 7 presents the formal algorithm.

The above discussion implies the following:

3The result is true even for general finite fields Fq and not just prime fields but we stated the version over prime
fields for simplicity.

4I.e. the coefficient of the highest degree term is 1. It is easy to check that if E(X) = es X s + es−1X s−1 +·· ·+1 is
irreducible, then e−1

s ·E(X) is also an irreducible polynomial.
5A Las Vegas algorithm is a randomized algorithm which always succeeds and we consider its time complexity

to be its expected worst-case run time.

93

Algorithm 7 Generating Irreducible Polynomial
INPUT: Prime power q and an integer s > 1
OUTPUT: A monic irreducible polynomial of degree s over Fq

1: b ← 0
2: WHILE b = 0 DO

3: F (X) ← X s +
∑s−1

i=0 fi X i , where each fi is chosen uniformly at random from Fq .

4: IF gcd(F (X), X q s −X) = F (X) THEN

5: b ← 1.
6: RETURN F (X)

Corollary 5.1.3. There is a Las Vegas algorithm to generate an irreducible polynomial of degree s

over any Fq in expected time poly(s, log q).

Now recall that Theorem 2.1.3 states that for every prime power p s , there a unique field Fp s .
This along with Theorems 5.1.1 and 5.1.2 imply that:

Corollary 5.1.4. The field Fp s is Fp [X]/E(X), where E(X) is an irreducible polynomial of degree

s.

5.2 Reed-Solomon Codes

Recall that the Singleton bound (Theorem 4.3.1) states that for any (n,k,d)q code, k ≤ n−d +1.
Next, we will study Reed-Solomon codes, which meet the Singleton bound, i.e. satisfy k = n −
d +1 (but have the unfortunate property that q ≥ n). Note that this implies that the Singleton
bound is tight, at least for q ≥ n.

We begin with the definition of Reed-Solomon codes.

Definition 5.2.1 (Reed-Solomon code). Let Fq be a finite field. Let α1,α2, ...αn be distinct el-
ements (also called evaluation points) from Fq and choose n and k such that k ≤ n ≤ q . We
define an encoding function for Reed-Solomon code as RS : Fk

q → Fn
q as follows. A message

m = (m0,m1, ...,mk−1) with mi ∈ Fq is mapped to a degree k −1 polynomial.

m 7→ fm(X),

where

fm(X) =
k−1∑

i=0
mi X i . (5.1)

Note that fm(X) ∈ Fq [X] is a polynomial of degree at most k − 1. The encoding of m is the
evaluation of fm(X) at all the αi ’s :

RS(m) =
(

fm(α1), fm(α2), ..., fm(αn)
)

.

We call this image Reed-Solomon code or RS code. A common special case is n = q −1 with the

set of evaluation points being F∗
def= F\ {0}.

94

For example, the first row below are all the codewords in the [3,2]3 Reed-Solomon codes
where the evaluation points are F3 (and the codewords are ordered by the corresponding mes-
sages from F2

3 in lexicographic order where for clarity the second row shows the polynomial
fm(X) for the corresponding m ∈ F2

3):

(0,0,0), (1,1,1), (2,2,2), (0,1,2), (1,2,0), (2,0,1), (0,2,1), (1,0,2), (2,1,0)
0, 1, 2, X, X+1, X+2, 2X, 2X+1, 2X+2

Notice that by definition, the entries in {α1, ...,αn} are distinct and thus, must have n ≤ q .
We now turn to some properties of Reed-Solomon codes.

Claim 5.2.1. RS codes are linear codes.

Proof. The proof follows from the fact that if a ∈ Fq and f (X), g (X) ∈ Fq [X] are polynomials of
degree ≤ k−1, then a f (X) and f (X)+g (X) are also polynomials of degree ≤ k−1. In particular,
let messages m1 and m2 be mapped to fm1 (X) and fm2 (X) where fm1 (X), fm2 (X) ∈ Fq [X] are
polynomials of degree at most k −1 and because of the mapping defined in (5.1), it is easy to
verify that:

fm1 (X)+ fm2 (X) = fm1+m2 (X),

and
a fm1 (X) = fam1 (X).

In other words,
RS(m1)+RS(m2) = RS(m1 +m2)

aRS(m1) = RS(am1).

Therefore RS is a [n,k]q linear code.

The second and more interesting claim is the following:

Claim 5.2.2. RS is a [n,k,n −k +1]q code. That is, it matches the Singleton bound.

The claim on the distance follows from the fact that every non-zero polynomial of degree
k −1 over Fq [X] has at most k −1 (not necessarily distinct) roots, and that if two polynomials
agree on more than k −1 places then they must be the same polynomial.

Proposition 5.2.3 (“Degree Mantra"). A nonzero polynomial f (X) of degree t over a field Fq has

at most t roots in Fq

Proof. We will prove the theorem by induction on t . If t = 0, we are done. Now, consider f (X)
of degree t > 0. Let α ∈ Fq be a root such that f (α) = 0. If no such root α exists, we are done. If
there is a root α, then we can write

f (X) = (X −α)g (X)

where deg(g) = deg(f)− 1 (i.e. X −α divides f (X)). Note that g (X) is non-zero since f (X) is
non-zero. This is because by the fundamental rule of division of polynomials:

f (X) = (X −α)g (X)+R(X)

95

where deg(R) ≤ 0 (as the degree cannot be negative this in turn implies that deg(R) = 0) and
since f (α) = 0,

f (α) = 0+R(α),

which implies that R(α) = 0. Since R(X) has degree zero (i.e. it is a constant polynomial), this
implies that R(X) ≡ 0.

Finally, as g (X) is non-zero and has degree t −1, by induction, g (X) has at most t −1 roots,
which implies that f (X) has at most t roots.

We are now ready to prove Claim 5.2.2

Proof of Claim 5.2.2. We start by proving the claim on the distance. Fix arbitrary m1 6= m2 ∈
Fk

q . Note that fm1 (X), fm2 (X) ∈ Fq [X] are distinct polynomials of degree at most k − 1 since

m1 6= m2 ∈ Fk
q . Then fm1 (X)− fm2 (X) 6= 0 also has degree at most k −1. Note that w t (RS(m2)−

RS(m1)) =∆(RS(m1),RS(m2)). The weight of RS(m2)−RS(m1) is n minus the number of zeroes
in RS(m2)−RS(m1), which is equal to n minus the number of roots that fm1 (X)− fm2 (X) has
among {α1, ...,αn}. That is,

∆(RS(m1),RS(m2)) = n −|{αi | fm1 (αi) = fm2 (αi)}|.

By Proposition 5.2.3, fm1 (X)− fm2 (X) has at most k − 1 roots. Thus, the weight of RS(m2)−
RS(m1) is at least n − (k −1) = n −k +1. Therefore d ≥ n −k +1, and since the Singleton bound
(Theorem 4.3.1) implies that d ≤ n−k+1, we have d = n−k+1.6 The argument above also shows
that distinct polynomials fm1 (X), fm2 (X) ∈ Fq [X] are mapped to distinct codewords. (This is
because the Hamming distance between any two codewords is at least n −k +1 ≥ 1, where the
last inequality follows as k ≤ n.) Therefore, the code contains qk codewords and has dimension
k. The claim on linearity of the code follows from Claim 5.2.1. ✷

Recall that the Plotkin bound (Corollary 4.4.2) implies that to achieve the Singleton bound,
the alphabet size cannot be a constant. Thus, some dependence of q on n in Reed-Solomon
codes is unavoidable.

Let us now find a generator matrix for RS codes (which exists by Claim 5.2.1). By Defi-
nition 5.2.1, any basis fm1 , ..., fmk

of polynomial of degree at most k − 1 gives rise to a basis
RS(m1), ...,RS(mk) of the code. A particularly nice polynomial basis is the set of monomials
1, X , ..., X i , ..., X k−1. The corresponding generator matrix, whose i th row (numbering rows from
0 to k −1) is

(αi
1,αi

2, ...,αi
j , ...,αi

n)

and this generator matrix is called the Vandermonde matrix of size k ×n:

6See Exercise 5.3 for an alternate direct argument.

96

1 1 1 1 1 1
α1 α2 · · · α j · · · αn

α2
1 α2

2 · · · α2
j

· · · α2
n

...
...

. . .
...

. . .
...

αi
1 αi

2 · · · αi
j

· · · αi
n

...
...

. . .
...

. . .
...

αk−1
1 αk−1

2 · · · αk−1
j

· · · αk−1
n

The class of codes that match the Singleton bound have their own name, which we define
and study next.

5.3 A Property of MDS Codes

Definition 5.3.1 (MDS codes). An (n,k,d)q code is called Maximum Distance Separable (MDS)

if d = n −k +1.

Thus, Reed-Solomon codes are MDS codes.
Next, we prove an interesting property of an MDS code C ⊆ Σ

n with integral dimension k.
We begin with the following notation.

Definition 5.3.2. For any subset of indices S ⊆ [n] of size exactly k and a code C ⊆Σ
n , CS is the

set of all codewords in C projected onto the indices in S.

MDS codes have the following nice property that we shall prove for the special case of Reed-
Solomon codes first and subsequently for the general case as well.

Proposition 5.3.1. Let C ⊆ Σ
n of integral dimension k be an MDS code, then for all S ⊆ [n] such

that |S| = k, we have |CS | =Σ
k .

Before proving Proposition 5.3.1 in its full generality, we present its proof for the special case of
Reed-Solomon codes.
Consider any S ⊆ [n] of size k and fix an arbitrary v = (v1, . . . , vk) ∈ Fk

q , we need to show that
there exists a codeword c ∈ RS (assume that the RS code evaluates polynomials of degree at
most k − 1 over α1, . . . ,αn ⊆ Fq) such that cS = v. Consider a generic degree k − 1 polynomial
F (X) =

∑k−1
i=0 fi X i . Thus, we need to show that there exists F (X) such that F (αi) = vi for all i ∈

S, where |S| = k.

For notational simplicity, assume that S = [k]. We think of fi ’s as unknowns in the equations
that arise out of the relations F (αi) = vi . Thus, we need to show that there is a solution to the
following system of linear equations:

97

(
p0 p1 · · · pk−1

)

1 1 1
α1 αi αk

α2
1 α2

i
α2

k
...

...
...

αk−1
1 αk−1

i
αk−1

k

=

v1

v2

v3
...

vk

The above constraint matrix is a Vandermonde matrix and is known to have full rank (see Ex-
ercise 5.7). Hence, by Exercise 2.6, there always exists a unique solution for (p0, . . . , pk−1). This
completes the proof for Reed-Solomon codes.

Next, we prove the property for the general case which is presented below

Proof of Proposition 5.3.1. Consider a |C |×n matrix where each row represents a codeword
in C . Hence, there are |C | = |Σ|k rows in the matrix. The number of columns is equal to the
block length n of the code. Since C is Maximum Distance Separable, its distance d = n −k +1.

Let S ⊆ [n] be of size exactly k. It is easy to see that for any ci 6= c j ∈ C , the corresponding

projections ci
S and c

j

S
∈CS are not the same. As otherwise △(ci ,c j) ≤ d −1, which is not possible

as the minimum distance of the code C is d . Therefore, every codeword in C gets mapped to a
distinct codeword in CS . As a result, |CS | = |C | = |Σ|k . As CS ⊆ Σ

k , this implies that CS = Σ
k , as

desired. ✷

Proposition 5.3.1 implies an important property in pseudorandomness: see Exercise 5.8 for
more.

5.4 Exercises

Exercise 5.1. Prove that X 2 +X +1 is the unique irreducible polynomial of degree two over F2.

Exercise 5.2. Argue that any function f : Fq → Fq is equivalent to a polynomial P (X) ∈ Fq [X] of
degree at most q −1: that is, for every α ∈ Fq

f (α) = P (α).

Exercise 5.3. For any [n,k]q Reed-Solomon code, exhibit two codewords that are at Hamming
distance exactly n −k +1.

Exercise 5.4. Let RSF∗q [n,k] denote the Reed-Solomon code over Fq where the evaluation points
is Fq (i.e. n = q). Prove that

(

RSFq [n,k]
)⊥

= RSFq [n,n −k],

that is, the dual of these Reed-Solomon codes are Reed-Solomon codes themselves. Conclude
that Reed-Solomon codes contain self-dual codes (see Exercise 2.31 for a definition).

Hint: Exercise 2.2 might be useful.

98

Exercise 5.5. Since Reed-Solomon codes are linear codes, by Proposition 2.3.3, one can do error
detection for Reed-Solomon codes in quadratic time. In this problem, we will see that one can
design even more efficient error detection algorithm for Reed-Solomon codes. In particular, we
will consider data streaming algorithms (see Section 17.5 for more motivation on this class of al-
gorithms). A data stream algorithm makes a sequential pass on the input, uses poly-logarithmic
space and spend only poly-logarithmic time on each location in the input. In this problem we
show that there exists a randomized data stream algorithm to solve the error detection problem
for Reed-Solomon codes.

1. Give a randomized data stream algorithm that given as input y ∈ Fm
q decides whether y = 0

with probability at least 2/3. Your algorithm should use O(log qm) space and polylog(qm)
time per position of y. For simplicity, you can assume that given an integer t ≥ 1 and
prime power q , the algorithm has oracle access to an irreducible polynomial of degree t

over Fq .
Hint: Use Reed-Solomon codes.

2. Given [q,k]q Reed-Solomon code C (i.e. with the evaluation points being Fq), present a
data stream algorithm for error detection of C with O(log q) space and polylogq time per
position of the received word. The algorithm should work correctly with probability at
least 2/3. You should assume that the data stream algorithm has access to the values of k

and q (and knows that C has Fq as its evaluation points).
Hint: Part 1 and Exercise 5.4 should be helpful.

Exercise 5.6. We have defined Reed-Solomon in this chapter and Hadamard codes in Section 2.7.
In this problem we will prove that certain alternate definitions also suffice.

1. Consider the Reed-Solomon code over a field Fq and block length n = q −1 defined as

RSF∗q [n,k,n −k +1] = {(p(1), p(α), . . . , p(αn−1)) | p(X) ∈ F[X] has degree ≤ k −1}

where α is the generator of the multiplicative group F∗ of F.7

Prove that

RSF∗q [n,k,n −k +1] = {(c0,c1, . . . ,cn−1) ∈ Fn | c(αℓ) = 0 for 1 ≤ ℓ≤ n −k ,

where c(X) = c0 + c1X +·· ·+ cn−1X n−1} . (5.2)

Hint: Exercise 2.2 might be useful.

2. Recall that the [2r ,r,2r−1]2 Hadamard code is generated by the r ×2r matrix whose i th (for
0 ≤ i ≤ 2r −1) column is the binary representation of i . Briefly argue that the Hadamard
codeword for the message (m1,m2, . . . ,mr) ∈ {0,1}r is the evaluation of the (multivariate)

7This means that F∗q = {1,α, . . . ,αn−1}. Further, αn = 1.

99

polynomial m1X1 +m2X2 + ·· · +mr Xr (where X1, . . . , Xr are the r variables) over all the
possible assignments to the variables (X1, . . . , Xr) from {0,1}r .

Using the definition of Hadamard codes above (re)prove the fact that the code has dis-
tance 2r−1.

Exercise 5.7. Prove that the k ×k Vandermonde matrix (where the (i , j)th entry is αi
j
) has full

rank (where α1, . . . ,αk are distinct).

Exercise 5.8. A set S ⊆ Fn
q is said to be a t-wise independent source (for some 1 ≤ t ≤ n) if given a

uniformly random sample (X1, . . . , Xn) from S, the n random variables are t-wise independent:
i.e. any subset of t variables are uniformly independent random variables over Fq . We will
explore properties of these objects in this exercise.

1. Argue that the definition of t-wise independent source is equivalent to the definition in
Exercise 2.13.

2. Argue that any [n,k]q code C is an 1-wise independent source.

3. Prove that any [n,k]q MDS code is a k-wise independent source.

4. Using part 3 or otherwise prove that there exists a k-wise independent source over F2 of
size at most (2n)k . Conclude that k(log2 n +1) uniformly and independent random bits
are enough to compute n random bits that are k-wise independent.

5. For 0 < p ≤ 1/2, we say the n binary random variables X1, . . . , Xn are p-biased and t-
wise independent if any of the t random variables are independent and Pr[Xi = 1] = p

for every i ∈ [n]. For the rest of the problem, let p be a power of 1/2. Then show that
any t · log2(1/p)-wise independent random variables can be converted into t-wise in-
dependent p-biased random variables. Conclude that one can construct such sources
with k log2(1/p)(1 + log2 n) uniformly random bits. Then improve this bound to k(1 +
max(log2(1/p), log2 n)) uniformly random bits.

Exercise 5.9. In many applications, errors occur in “bursts"– i.e. all the error locations are con-
tained in a contiguous region (think of a scratch on a DVD or disk). In this problem we will use
how one can use Reed-Solomon codes to correct bursty errors.

An error vector e ∈ {0,1}n is called a t-single burst error pattern if all the non-zero bits in e

occur in the range [i , i + t −1] for some 1 ≤ i ≤ n = t +1. Further, a vector e ∈ {0,1}n is called a
(s, t)-burst error pattern if it is the union of at most s t-single burst error pattern (i.e. all non-
zero bits in e are contained in one of at most s contiguous ranges in [n]).

We call a binary code C ⊆ {0,1}n to be (s, t)-burst error correcting if one can uniquely decode
from any (s, t)-burst error pattern. More precisely, given an (s, t)-burst error pattern e and any
codeword c ∈ C , the only codeword c′ ∈ C such that (c+ e)− c′ is an (s, t)-burst error pattern
satisfies c′ = c.

1. Argue that if C is (st)-error correcting (in the sense of Definition 1.3.3), then it is also (s, t)-
burst error correcting. Conclude that for any ε > 0, there exists code with rate Ω(ε2) and
block length n that is (s, t)-burst error correcting for any s, t such that s · t ≤

(1
4 −ε

)

·n.

100

2. Argue that for any rate R > 0 and for large enough n, there exist (s, t)-burst error correcting

as long as s·t ≤
(1−R−ε

2

)

·n and t ≥Ω

(
logn

ε

)

. In particular, one can correct from 1
2−ε fraction

of burst-errors (as long as each burst is “long enough") with rate Ω(ε) (compare this with
item 1).
Hint: Use Reed-Solomon codes.

Exercise 5.10. In this problem we will look at a very important class of codes called BCH codes8.
Let F= F2m . Consider the binary code CBCH defined as RSF[n,k,n −k +1]∩Fn

2 .

1. Prove that CBCH is a binary linear code of distance at least d = n −k +1 and dimension at
least n − (d −1)log2(n +1).

Hint: Use the characterization (5.2) of the Reed-Solomon code from Exercise 5.6.

2. Prove a better lower bound of n −
⌈

d−1
2

⌉

log2(n +1) on the dimension of CBCH.

Hint: Try to find redundant checks amongst the “natural” parity checks defining CBCH).

3. For d = 3, CBCH is the same as another code we have seen. What is that code?

4. For constant d (and growing n), prove that CBCH have nearly optimal dimension for dis-
tance d , in that the dimension cannot be n − t log2(n +1) for t < d−1

2 .

Exercise 5.11. In this exercise, we continue in the theme of Exercise 5.10 and look at the inter-
section of a Reed-Solomon code with Fn

2 to get a binary code. Let F= F2m . Fix positive integers
d ,n with (d−1)m < n < 2m , and a set S = {α1,α2, . . . ,αn} of n distinct nonzero elements of F. For
a vector v = (v1, . . . , vn) ∈ (F∗)n of n not necessarily distinct nonzero elements from F, define the
Generalized Reed-Solomon code GRSS,v,d as follows:

GRSS,v,d = {(v1p(α1), v2p(α2), . . . , vn p(αn)) | p(X) ∈ F[X] has degree ≤ n −d} .

1. Prove that GRSS,v,d is an [n,n −d +1,d]F linear code.

2. Argue that GRSS,v,d ∩Fn
2 is a binary linear code of rate at least 1− (d−1)m

n
.

3. Let c ∈ Fn
2 be a nonzero binary vector. Prove that (for every choice of d ,S) there are at most

(2m −1)n−d+1 choices of the vector v for which c ∈ GRSS,v,d .

4. Using the above, prove that if the integer D satisfies Vol2(n,D − 1) < (2m − 1)d−1 (where
Vol2(n,D −1) =

∑D−1
i=0

(n
i

)

), then there exists a vector v ∈ (F∗)n such that the minimum dis-
tance of the binary code GRSS,v,d ∩Fn

2 is at least D .

5. Using parts 2 and 4 above (or otherwise), argue that the family of codes GRSS,v,d ∩ Fn
2

contains binary linear codes that meet the Gilbert-Varshamov bound.

8The acronym BCH stands for Bose-Chaudhuri-Hocquenghem, the discoverers of this family of codes.

101

Exercise 5.12. In this exercise we will show that the dual of a GRS code is a GRS itself with dif-
ferent parameters. First, we state the obvious definition of GRS codes over a general finite field
Fq (as opposed to the definition over fields of characteristic two in Exercise 5.11). In particular,
define the code GRSS,v,d ,q as follows:

GRSS,v,d ,q = {(v1p(α1), v2p(α2), . . . , vn p(αn)) | p(X) ∈ Fq [X] has degree ≤ n −d} .

Then show that
(

GRSS,v,d ,q
)⊥ = GRSS,v′,n−d+2,q ,

where v′ ∈ Fn
q is a vector with all non-zero components.

Exercise 5.13. In Exercise 2.16, we saw that any linear code can be converted in to a systematic
code. In other words, there is a map to convert Reed-Solomon codes into a systematic one. In
this exercise the goal is to come up with an explicit encoding function that results in a systematic
Reed-Solomon code.

In particular, given the set of evaluation points α1, . . . ,αn , design an explicit map f from
Fk

q to a polynomial of degree at most k − 1 such that the following holds. For every message

m ∈ Fk
q , if the corresponding polynomial is fm(X), then the vector

(

fm(αi)
)

i∈[n] has the message
m appear in the corresponding codeword (say in its first k positions). Further, argue that this
map results in an [n,k,n −k +1]q code.

Exercise 5.14. In this problem, we will consider the number-theoretic counterpart of Reed-
Solomon codes. Let 1 ≤ k < n be integers and let p1 < p2 < ·· · < pn be n distinct primes.
Denote K =

∏k
i=1 pi and N =

∏n
i=1 pi . The notation ZM stands for integers modulo M , i.e.,

the set {0,1, . . . , M − 1}. Consider the Chinese Remainder code defined by the encoding map
E : ZK →Zp1 ×Zp2 ×·· ·×Zpn defined by:

E(m) = (m mod p1, m mod p2, · · · , m mod pn) .

(Note that this is not a code in the usual sense we have been studying since the symbols at
different positions belong to different alphabets. Still notions such as distance of this code make
sense and are studied in the question below.)

Suppose that m1 6= m2. For 1 ≤ i ≤ n, define the indicator variable bi = 1 if E(m1)i 6= E(m2)i

and bi = 0 otherwise. Prove that
∏n

i=1 p
bi

i
> N /K .

Use the above to deduce that when m1 6= m2, the encodings E(m1) and E(m2) differ in at
least n −k +1 locations.

Exercise 5.15. In this problem, we will consider derivatives over a finite field Fq . Unlike the case
of derivatives over reals, derivatives over finite fields do not have any physical interpretation
but as we shall see shortly, the notion of derivatives over finite fields is still a useful concept. In
particular, given a polynomial f (X) =

∑t
i=0 fi X i over Fq , we define its derivative as

f ′(X) =
t−1∑

i=0
(i +1) · fi+1 ·X i .

Further, we will denote by f (i)(X), the result of applying the derivative on f i times. In this
problem, we record some useful facts about derivatives.

102

1. Define R(X , Z) = f (X +Z) =
∑t

i=0 ri (X) ·Z i . Then for any j ≥ 1,

f (j)(X) = j ! · r j (X).

2. Using part 1 or otherwise, show that for any j ≥ char(Fq),9 f (j)(X) ≡ 0.

3. Let j ≤ char(Fq). Further, assume that for every 0 ≤ i < j , f (i)(α) = 0 for some α ∈ Fq . Then
prove that (X −α) j divides f (X).

4. Finally, we will prove the following generalization of the degree mantra (Proposition 5.2.3).
Let f (X) be a non-zero polynomial of degree t and m ≤ char(Fq). Then there exists at most
⌊

t
m

⌋

distinct elements α ∈ Fq such that f (j)(α) = 0 for every 0 ≤ j < m.

Exercise 5.16. In this exercise, we will consider a code that is related to Reed-Solomon codes
and uses derivatives from Exercise 5.15. These codes are called derivative codes.

Let m ≥ 1 be an integer parameter and consider parameters k > char(Fq) and n such that
m < k < nm. Then the derivative code with parameters (n,k,m) is defined as follow. Consider
any message m ∈ Fk

q and let fm(X) be the message polynomial as defined for the Reed-Solomon
code. Let α1, . . . ,αn ∈ Fq be distinct elements. Then the codeword for m is given by

fm(α1) fm(α2) · · · fm(αn)
f (1)

m (α1) f (1)
m (α2) · · · f (1)

m (αn)
...

...
...

...
f (m−1)

m (α1) f (m−1)
m (α2) · · · f (m−1)

m (αn)

.

Prove that the above code is an
[

n, k
m

,n −
⌊

k−1
m

⌋]

qm
-code (and is thus MDS).

Exercise 5.17. In this exercise, we will consider another code related to Reed-Solomon codes
that are called Folded Reed-Solomon codes. We will see a lot more of these codes in Chapter 14.

Let m ≥ 1 be an integer parameter and let α1, . . . ,αn ∈ Fq are distinct elements such that for
some element γ ∈ F∗q , the sets

{αi ,αiγ,αiγ
2, . . . ,αiγ

m−1}, (5.3)

are pair-wise disjoint for different i ∈ [n]. Then the folded Reed-Solomon code with parameters
(m,k,n,γ,α1, . . . ,αn) is defined as follows. Consider any message m ∈ Fk

q and let fm(X) be the
message polynomial as defined for the Reed-Solomon code. Then the codeword for m is given
by:

fm(α1) fm(α2) · · · fm(αn)
fm(α1 ·γ) fm(α2 ·γ) · · · fm(αn ·γ)

...
...

...
...

fm(α1 ·γm−1) fm(α2 ·γm−1) · · · fm(αn ·γm−1)

.

Prove that the above code is an
[

n, k
m

,n −
⌊

k−1
m

⌋]

qm
-code (and is thus, MDS).

9char(Fq) denotes the characteristic of Fq . That is, if q = p s for some prime p, then char(Fq) = p. Any natural
number i in Fq is equivalent to i mod char(Fq).

103

Exercise 5.18. In this problem we will see that Reed-Solomon codes, derivative codes (Exer-
cise 5.16) and folded Reed-Solomon codes (Exercise 5.17) are all essentially special cases of
a large family of codes that are based on polynomials. We begin with the definition of these
codes.

Let m ≥ 1 be an integer parameter and define m < k ≤ n. Further, let E1(X), . . . ,En(X) be
n polynomials over Fq , each of degree m. Further, these polynomials pair-wise do not have
any non-trivial factors (i.e. gcd(Ei (X),E j (X)) has degree 0 for every i 6= j ∈ [n].) Consider any
message m ∈ Fk

q and let fm(X) be the message polynomial as defined for the Reed-Solomon
code. Then the codeword for m is given by:

(

fm(X) mod E1(X), fm(X) mod E2(X), . . . , fm(X) mod En(X)
)

.

In the above we think of fm(X) mod Ei (X) as an element of Fqm . In particular, given given a
polynomial of degree at most m −1, we will consider any bijection between the qm such poly-
nomials and Fqm . We will first see that this code is MDS and then we will see why it contains
Reed-Solomon and related codes as special cases.

1. Prove that the above code is an
[

n, k
m

,n −
⌊

k−1
m

⌋]

qm
-code (and is thus, MDS).

2. Let α1, . . . ,αn ∈ Fq be distinct elements. Define Ei (X) = X −αi . Argue that for this special
case the above code (with m = 1) is the Reed-Solomon code.

3. Let α1, . . . ,αn ∈ Fq be distinct elements. Define Ei (X) = (X −αi)m . Argue that for this
special case the above code is the derivative code (with an appropriate mapping from
polynomials of degree at most m − 1 and Fm

q , where the mapping could be different for
each i ∈ [n] and can depend on Ei (X)).

4. Let α1, . . . ,αn ∈ Fq be distinct elements and γ ∈ F∗q such that (5.3) is satisfied. Define

Ei (X) =
∏m−1

j=0 (X −αi ·γ j). Argue that for this special case the above code is the folded
Reed-Solomon code (with an appropriate mapping from polynomials of degree at most
m −1 and Fm

q , where the mapping could be different for each i ∈ [n] and can depend on
Ei (X)).

Exercise 5.19. In this exercise we will develop a sufficient condition to determine the irreducibil-
ity of certain polynomials called the Eisenstein’s criterion.

Let F (X ,Y) be a polynomial of Fq . Think of this polynomial as over X with coefficients as
polynomials in Y over Fq . Technically, we think of the coefficients as coming from the ring of
polynomials in Y over Fq . We will denote the ring of polynomials in Y over Fq as Fq (Y) and we
will denote the polynomials in X with coefficients from Fq (Y) as Fq (Y)[X].

In particular, let
F (X ,Y) = X t + ft−1(Y) ·X t−1 +·· ·+ f0(Y),

where each fi (Y) ∈ Fq (Y). Let P (Y) be a prime for Fq (Y) (i.e. P (Y) has degree at least one and
if P (Y) divides A(Y) ·B(Y) then P (Y) divides at least one of A(Y) or B(Y)). If the following
conditions hold:

104

(i) P (Y) divides fi (Y) for every 0 ≤ i < t ; but

(ii) P 2(Y) does not divide f0(Y)

then F (X ,Y) does not have any non-trivial factors over Fq (Y)[X] (i.e. all factors have either
degree t or 0 in X).

In the rest of the problem, we will prove this result in a sequence of steps:

1. For the sake of contradiction assume that F (X ,Y) =G(X ,Y) ·H(X ,Y) where

G(X ,Y) =
t1∑

i=0
gi (Y) ·X I and H(X ,Y) =

t2∑

i=0
hi (Y) ·X i ,

where 0 < t1, t2 < t . Then argue that P (Y) does not divide both of g0(Y) and h0(Y).

For the rest of the problem WLOG assume that P (Y) divides g0(Y) (and hence does not
divide h0(Y)).

2. Argue that there exists an i∗ such that P (Y) divide gi (Y) for every 0 ≤ i < i∗ but P (Y) does
not divide gi∗(Y) (define g t (Y) = 1).

3. Argue that P (Y) does not divide fi (Y). Conclude that F (X ,Y) does not have any non-
trivial factors, as desired.

Exercise 5.20. We have mentioned objects called algebraic-geometric (AG) codes, that general-
ize Reed-Solomon codes and have some amazing properties: see for example, Section 4.6. The
objective of this exercise is to construct one such AG code, and establish its rate vs distance
trade-off.

Let p be a prime and q = p2. Consider the equation

Y p +Y = X p+1 (5.4)

over Fq .

1. Prove that there are exactly p3 solutions in Fq ×Fq to (5.4). That is, if S ⊆ F2
q is defined as

S =
{

(α,β) ∈ F2
q |βp +β=αp+1

}

then |S| = p3.

2. Prove that the polynomial F (X ,Y) = Y p +Y −X p+1 is irreducible over Fq .
Hint: Exercise 5.19 could be useful.

3. Let n = p3. Consider the evaluation map ev : Fq [X ,Y] → Fn
q defined by

ev(f) = (f (α,β) : (α,β) ∈ S) .

Argue that if f 6= 0 and is not divisible by Y p +Y −X p+1, then ev(f) has Hamming weight
at least n −deg(f)(p +1), where deg(f) denotes the total degree of f .
Hint: You are allowed to make use of Bézout’s theorem, which states that if f , g ∈ Fq [X ,Y] are nonzero

polynomials with no common factors, then they have at most deg(f)deg(g) common zeroes.

105

4. For an integer parameter ℓ≥ 1, consider the set Fℓ of bivariate polynomials

Fℓ =
{

f ∈ Fq [X ,Y] | deg(f) ≤ ℓ,degX (f) ≤ p
}

where degX (f) denotes the degree of f in X .

Argue that Fℓ is an Fq -linear space of dimension (ℓ+1)(p +1)− p(p+1)
2 .

5. Consider the code C ⊆ Fn
q for n = p3 defined by

C =
{

ev(f) | f ∈Fℓ

}

.

Prove that C is a linear code with minimum distance at least n −ℓ(p +1).

6. Deduce a construction of an [n,k]q code with distance d ≥ n −k +1−p(p −1)/2.

(Note that Reed-Solomon codes have d = n −k +1, whereas these codes are off by p(p −
1)/2 from the Singleton bound. However they are much longer than Reed-Solomon codes,
with a block length of n = q3/2, and the deficiency from the Singleton bound is only o(n).)

5.5 Bibliographic Notes

Reed-Solomon codes were invented by Irving Reed and Gus Solomon [62]. Even though Reed-
Solomon codes need q ≥ n, they are used widely in practice. For example, Reed-Solomon codes
are used in storage of information in CDs and DVDs. This is because they are robust against
burst-errors that come in contiguous manner. In this scenario, a large alphabet is then a good
thing since bursty errors will tend to corrupt the entire symbol in Fq unlike partial errors, e.g.
errors over bits. (See Exercise 5.9.)

It is a big open question to present a deterministic algorithm to compute an irreducible
polynomial of a given degree with the same time complexity as in Corollary 5.1.3. Such results
are known in general if one is happy with polynomial dependence on q instead of log q . See the
book by Shoup [66] for more details.

106

Chapter 6

What Happens When the Noise is Stochastic:

Shannon’s Theorem

Shannon was the first to present a rigorous mathematical framework for communication, which
(as we have already seen) is the problem of reproducing at one point (typically called the “re-
ceiver" of the channel) a message selected at another point (called the “sender" to the channel).
Unlike Hamming, Shannon modeled the noise stochastically, i.e. as a well defined random pro-
cess. He proved a result that pin-pointed the best possible rate of transmission of information
over a very wide range of stochastic channels. In fact, Shannon looked at the communication
problem at a higher level, where he allowed for compressing the data first (before applying any
error-correcting code), so as to minimize the amount of symbols transmitted over the channel.

In this chapter, we will study some stochastic noise models (most of) which were proposed
by Shannon. We then prove an optimal tradeoff between the rate and fraction of errors that are
correctable for a specific stochastic noise model called the Binary Symmetric Channel.

6.1 Overview of Shannon’s Result

Shannon introduced the notion of reliable communication1 over noisy channels. Broadly, there
are two types of channels that were studied by Shannon:

• (Noisy Channel) This type of channel introduces errors during transmission, which result
in an incorrect reception of the transmitted signal by the receiver. Redundancy is added
at the transmitter to increase reliability of the transmitted data. The redundancy is taken
off at the receiver. This process is termed as Channel Coding.

• (Noise-free Channel) As the name suggests, this channel does not introduce any type of
error in transmission. Redundancy in source data is used to compress the source data at
the transmitter. The data is decompressed at the receiver. The process is popularly known
as Source Coding.

1That is, the ability to successfully send the required information over a channel that can lose or corrupt data.

107

Figure 6.1 presents a generic model of a communication system, which combines the two con-
cepts we discussed above.

(Decoded) Message

Message
Encoder

Source

Encoder

Channel

C
h

an
n

el

Decoder

Source

Decoder

Channel

Figure 6.1: The communication process

In Figure 6.1, source coding and channel coding are coupled. In general, to get the optimal
performance, it makes sense to design both the source and channel coding schemes simultane-
ously. However, Shannon’s source coding theorem allows us to decouple both these parts of the
communication setup and study each of these parts separately. Intuitively, this makes sense:
if one can have reliable communication over the channel using channel coding, then for the
source coding the channel effectively has no noise.

For source coding, Shannon proved a theorem that precisely identifies the amount by which
the message can be compressed: this amount is related to the entropy of the message. We
will however, not talk much more about source coding in in this book. (However, see Exer-
cises 6.10, 6.11 and 6.12.) From now on, we will exclusively focus on the channel coding part of
the communication setup. Note that one aspect of channel coding is how we model the chan-
nel noise. So far we have seen Hamming’s worst case noise model in some detail. Next, we will
study some specific stochastic channels.

6.2 Shannon’s Noise Model

Shannon proposed a stochastic way of modeling noise. The input symbols to the channel are
assumed to belong to some input alphabet X , while the channel selects symbols from its out-

put alphabet Y . The following diagram shows this relationship:

X ∋ x → channel → y ∈Y

The channels considered by Shannon are also memoryless, that is, noise acts independently
on each transmitted symbol. In this book, we will only study discrete channels where both the
alphabets X and Y are finite. For the sake of variety, we will define one channel that is contin-
uous, though we will not study it in any detail later on.

108

The final piece in specification of a channel is the transition matrix M that governs the pro-
cess of how the channel introduces error. In particular, the channel is described in form of a
matrix with entries as cross over probability over all combination of the input and output al-
phabets. For any pair (x, y) ∈ X ×Y , let Pr(y |x) denote the probability that y is output by the
channel when x is input to the channel. Then the transition matrix is given by M(x, y) = Pr(y |x).
Specific structure of the matrix is shown below.

M =

...
· · · Pr(y |x) · · ·

...

Next, we look at some specific instances of channels.

Binary Symmetric Channel (BSC). Let 0 ≤ p ≤ 1. The Binary Symmetric Channel with crossover

probability p or BSCp is defined as follows. X =Y = {0,1}. The 2×2 transition matrix can nat-
urally be represented as a bipartite graph where the left vertices correspond to the rows and
the right vertices correspond to the columns of the matrix, where M(x, y) is represented as the
weight of the corresponding (x, y) edge. For BSCp , the graph is illustrated in Figure 6.2.

0 0

1 1

1−p

p

1−p

p

Figure 6.2: Binary Symmetric Channel BSCp

In other words, every bit is flipped with probability p. We claim that we need to only con-
sider the case when p ≤ 1

2 , i.e. if we know how to ensure reliable communication over BSCp for
p ≤ 1

2 , then we can also handle the case of p > 1
2 . (See Exercise 6.1.)

q-ary Symmetric Channel (qSC). We now look at the generalization of BSCp to alphabets of
size q ≥ 2. Let 0 ≤ p ≤ 1− 1

q
. (As with the case of BSCp , we can assume that p ≤ 1− 1/q– see

Exercise 6.2.) The q-ary Symmetric Channel with crossover probability p, or qSCp is defined as
follows. X =Y = [q]. The transition matrix M for qSCp is defined as follows.

M(x, y) =
{

1−p if y = x
p

q−1 if y 6= x

In other words, every symbol is retained as it at the output with probability 1−p and is distorted
to each of the q −1 possible different symbols with equal probability of p

q−1 .

109

Binary Erasure Channel (BEC) In the previous two examples that we saw, X = Y . However
this might not always be the case.

Let 0 ≤ α ≤ 1. The Binary Erasure Channel with erasure probability α (denoted by BECα) is
defined as follows. X = {0,1} and Y = {0,1,?}, where ? denotes an erasure. The transition matrix
is as follows:

0 0

?

1 1

1−α

α

α

1−α

Figure 6.3: Binary Erasure Channel BECα

In Figure 6.3 any missing edge represents a transition that occurs with 0 probability. In other
words, every bit in BECα is erased with probability α (and is left unchanged with probability
1−α).

Binary Input Additive Gaussian White Noise Channel (BIAGWN). We now look at a channel
that is continuous. Let σ ≥ 0. The Binary Input Additive Gaussian White Noise Channel with
standard deviation σ or BIAGWNσ is defined as follows. X = {−1,1} and Y = R. The noise is
modeled by continuous Gaussian probability distribution function. The Gaussian distribution
has lots of nice properties and is a popular choice for modeling noise continuous in nature.
Given (x, y) ∈ {−1,1}×R, the noise y − x is distributed according to the Gaussian distribution of
mean of zero and standard deviation of σ. In other words,

Pr
(

y | x
)

=
1

σ
p

2π
·exp

(

−
(

(y −x)2

2σ2

))

6.2.1 Error Correction in Stochastic Noise Models

We now need to revisit the notion of error correction from Section 1.3. Note that unlike Ham-
ming’s noise model, we cannot hope to always recover the transmitted codeword. As an ex-
ample, in BSCp there is always some positive probability that a codeword can be distorted into
another codeword during transmission. In such a scenario no decoding algorithm can hope
to recover the transmitted codeword. Thus, in some stochastic channels there is always some
decoding error probability (where the randomness is from the channel noise): see Exercise 6.14
for example channels where one can have zero decoding error probability. However, we would
like this error probability to be small for every possible transmitted codeword. More precisely,
for every message, we would like the decoding algorithm to recover the transmitted message
with probability 1− f (n), where limn→∞ f (n) → 0, that is f (n) is o(1). Ideally, we would like to
have f (n) = 2−Ω(n). We will refer to f (n) as the decoding error probability.

110

6.2.2 Shannon’s General Theorem

Recall that the big question that we are interested in this book is the tradeoff between the rate
of the code and the fraction of errors that can be corrected. For stochastic noise models that
we have seen, it is natural to think of the fraction of errors to be the parameter that governs the
amount of error that is introduced by the channel. For example, for BSCp , we will think of p as
the fraction of errors.

Shannon’s remarkable theorem on channel coding was to precisely identify when reliable
transmission is possible over the stochastic noise models that he considered. In particular, for
the general framework of noise models, Shannon defined the notion of capacity, which is a
real number such that reliable communication is possible if and only if the rate is less than the
capacity of the channel. In other words, given a noisy channel with capacity C , if information is
transmitted at rate R for any R <C , then there exists a coding scheme that guarantees negligible
probability of miscommunication. On the other hand if R > C , then regardless of the chosen
coding scheme there will be some message for which the decoding error probability is bounded
from below by some constant.

In this chapter, we are going to state (and prove) Shannon’s general result for the special case
of BSCp .

6.3 Shannon’s Result for BSCp

We begin with a notation. For the rest of the chapter, we will use the notation e ∼ BSCp to
denote an error pattern e that is drawn according to the error distribution induced by BSCp . We
are now ready to state the theorem.

Theorem 6.3.1 (Shannon’s Capacity Theorem for BSC). For real numbers p,ε such that 0 ≤ p < 1
2

and 0 ≤ ε≤ 1
2 −p, the following statements are true for large enough n:

1. There exists a real δ> 0, an encoding function E : {0,1}k → {0,1}n and a decoding function

D : {0,1}n → {0,1}k where k ≤
⌊(

1−H(p +ε)
)

n
⌋

, such that the following holds for every

m ∈ {0,1}k :

Pr
e∼BSCp

[D(E(m)+e)) 6= m] ≤ 2−δn .

2. If k ≥ ⌈(1−H(p)+ε)n⌉ then for every pair of encoding and decoding functions, E : {0,1}k →
{0,1}n and D : {0,1}n → {0,1}k , there exists m ∈ {0,1}k such that

Pr
e∼BSCp

[D(E(m)+e)) 6= m] ≥
1

2
.

Note that Theorem 6.3.1 implies that the capacity of BSCp is 1−H(p). It can also be shown
that the capacity of qSCp and BECα are 1− Hq (p) and 1−α respectively. (See Exercises 6.6
and 6.7.)

Entropy function appears in Theorem 6.3.1 due to the same technical reason that it appears
in the GV bound: the entropy function allows us to use sufficiently tight bounds on the volume
of a Hamming ball (Proposition 3.3.1).

111

Dm

{0,1}n

Figure 6.4: The sets Dm partition the ambient space {0,1}n .

6.3.1 Proof of Converse of Shannon’s Capacity Theorem for BSC

We start with the proof of part (2) of Theorem 6.3.1. (Proof of part (1) follows in the next section.)
For the proof we will assume that p > 0 (since when p = 0, 1−H(p)+ε > 1 and so we have

nothing to prove). For the sake of contradiction, assume that the following holds for every m ∈
{0,1}k :

Pr
e∼BSCp

[D(E(m)+e) 6= m] ≤ 1/2.

Define Dm to be the set of received words y that are decoded to m by D , that is,

Dm =
{

y|D(y) = m
}

.

The main idea behind the proof is the following: first note that the sets Dm partition the
entire space of received words {0,1}n (see Figure 6.3.1 for an illustration). (This is because D is
a function.) Next we will argue that since the decoding error probability is at most a 1/2, then
Dm for every m ∈ {0,1}k is “large." Then by a simple packing argument, it follows that we cannot
have too many distinct m, which we will show implies that k < (1−H(p)+ε)n: a contradiction.
Before we present the details, we outline how we will argue that Dm is large. Let Sm be the shell
of radius [(1−γ)pn, (1+γ)pn] around E(m), that is,

Sm = B
(

E(m), (1+γ)pn
)

\ B
(

E(m), (1−γ)pn
)

.

(We will set γ > 0 in terms of ε and p at the end of the proof.) See Figure 6.3.1 for an illustra-
tion. Then we argue that because the decoding error probability is bounded by 1/2, most of
the received words in the shell Sm are decoded correctly, i.e. they fall in Dm. To complete the
argument, we show that number of such received words is indeed large enough.

Fix an arbitrary message m ∈ {0,1}k . Note that by our assumption, the following is true
(where from now on we omit the explicit dependence of the probability on the BSCp noise for
clarity):

Pr[E(m)+e 6∈ Dm] ≤ 1/2. (6.1)

112

(1+γ)pn

(1−γ)pn

E(m)

Figure 6.5: The shell Sm of inner radius (1−γ)pn and outer radius (1+γ)pn.

Further, by the (multiplicative) Chernoff bound (Theorem 3.1.6),

Pr[E(m)+e 6∈ Sm] ≤ 2−Ω(γ2n). (6.2)

(6.1) and (6.2) along with the union bound (Proposition 3.1.3) imply the following:

Pr[E(m)+e 6∈ Dm ∩Sm] ≤
1

2
+2−Ω(γ2n).

The above in turn implies that

Pr[E(m)+e ∈ Dm ∩Sm] ≥
1

2
−2−Ω(γ2n) ≥

1

4
, (6.3)

where the last inequality holds for large enough n. Next we upper bound the probability above
to obtain a lower bound on |Dm ∩Sm|.

It is easy to see that

Pr[E(m)+e ∈ Dm ∩Sm] ≤ |Dm ∩Sm| ·pmax,

where
pmax = max

y∈Sm

Pr
[

E(m)+e = y
]

= max
d∈[(1−γ)pn,(1+γ)pn]

pd (1−p)n−d .

In the above, the second equality follows from the fact that all error patterns with the same
Hamming weight appear with the same probability when chosen according to BSCp . Next, note
that pd (1−p)n−d is decreasing in d for p ≤ 1/2.2 Thus, we have

pmax = p(1−γ)pn(1−p)n−(1−γ)pn =
(

1−p

p

)γpn

·ppn(1−p)(1−p)n =
(

1−p

p

)γpn

2−nH(p).

2Indeed pd (1−p)n−d = (p/(1−p))d (1−p)n and the bound p ≤ 1/2 implies that the first exponent is at most 1,
which implies that the expression is decreasing in d .

113

Thus, we have shown that

Pr[E(m)+e ∈ Dm ∩Sm] ≤ |Dm ∩Sm| ·
(

1−p

p

)γpn

2−nH(p),

which, by (6.3), implies that

|Dm ∩S| ≥
1

4
·
(

1−p

p

)−γpn

2nH(p). (6.4)

Next, we consider the following sequence of relations:

2n =
∑

m∈{0,1}k

|Dm| (6.5)

≥
∑

m∈{0,1}k

|Dm ∩Sm|

≥
1

4

(
1

p
−1

)−γpn ∑

m∈{0,1}k

2H(p)n (6.6)

= 2k−2 ·2H(p)n−γp log(1/p−1)n

> 2k+H(p)n−εn . (6.7)

In the above, (6.5) follows from the fact that for m1 6= m2, Dm1 and Dm2 are disjoint. (6.6) follows
from (6.4). (6.7) follows for large enough n and if we pick γ = ε

2p log
(

1
p −1

) . (Note that as 0 < p <

1/2, γ=Θ(ε).)
(6.7) implies that k < (1−H(p)+ε)n, which is a contradiction. The proof of part (2) of The-

orem 6.3.1 is complete.

Remark 6.3.1. It can be verified that the proof above can also work if the decoding error prob-
ability is bounded by 1−2−βn (instead of the 1/2 in part (2) of Theorem 6.3.1) for small enough
β=β(ε) > 0.

Next, we will prove part (1) of Theorem 6.3.1.

6.3.2 Proof of Positive Part of Shannon’s Theorem

Proof Overview. The proof of part (1) of Theorem 6.3.1 will be done by the probabilistic
method (Section 3.2). In particular, we randomly select an encoding function E : {0,1}k →
{0,1}n . That is, for every m ∈ {0,1}k pick E (m) uniformly and independently at random from
{0,1}n . D will be the maximum likelihood decoding (MLD) function. The proof will have the
following two steps:

• (Step 1) For any arbitrary m ∈ {0,1}k , we will show that for a random choice of E, the prob-
ability of failure, over BSCp noise, is small. This implies the existence of a good encoding
function for any arbitrary message.

114

• (Step 2) We will show a similar result for all m. This involves dropping half of the code
words.

Note that there are two sources of randomness in the proof:

1. Randomness in the choice of encoding function E and

2. Randomness in the noise.

We stress that the first kind of randomness is for the probabilistic method while the second
kind of randomness will contribute to the decoding error probability.

“Proof by picture" of Step 1. Before proving part (1) of Theorem 6.3.1, we will provide a pic-
torial proof of Step 1. We begin by fixing m ∈ {0,1}k . In Step 1, we need to estimate the following
quantity:

EE

[

Pr
e∼BSCp

[D (E (m)+e) 6= m]

]

.

By the additive Chernoff bound (Theorem 3.1.6), with all but an exponentially small proba-
bility, the received word will be contained in a Hamming ball of radius

(

p +ε′
)

n (for some ε′ > 0
that we will choose appropriately). So one can assume that the received word y with high prob-
ability satisfies ∆(E(m),y) ≤ (p+ε′)n. Given this, pretty much the only thing to do is to estimate
the decoding error probability for such a y. Note that by the fact that D is MLD, an error can
happen only if there exists another message m′ such that ∆(E(m′),y) ≤ ∆(E(m),y). The latter
event implies that ∆(E(m′),y) ≤ (p +ε′)n (see Figure 6.6). Thus, the decoding error probability
is upper bounded by

Pr
e∼BSCp

[

E
(

m′) ∈ B
(

y,
(

p +ε′
)

n
)]

=
V ol2

((

p +ε′
)

n,n
)

2n
≈

2H(p)n

2n
,

where the last step follows from Proposition 3.3.1. Finally, by the union bound (Proposition 3.1.3),

the existence of such a “bad" m′ is upper bounded by ≈ 2k 2nH(p)

2n , which by our choice of k is
2−Ω(n), as desired.

The Details. For notational convenience, we will use y and E (m)+e interchangeably:

y = E (m)+e.

That is, y is the received word when E (m) is transmitted and e is the error pattern.
We start the proof by restating the decoding error probability in part (1) of Shannon’s capac-

ity theorem for BSCp (Theorem 6.3.1) by breaking up the quantity into two sums:

115

y

(p +ε′)n

(p +ε′)n

E(m)E(m′)

Figure 6.6: Hamming balls of radius
(

p +ε′
)

n and centers E (m) and E(m′) illustrates Step 1 in
the proof of part (1) of Shannon’s capacity theorem for the BSC.

Pr
e∼BSCp

[D (E (m)+e) 6= m] =
∑

y∈B(E(m),(p+ε′)n)

Pr
[

y|E(m)
]

· 1D(y) 6=m

+
∑

y6∈B(E(m),(p+ε′)n)

Pr
[

y|E(m)
]

· 1D(y) 6=m,

where 1D(y) 6=m is the indicator function for the event that D(y) 6= m given that E(m) was the
transmitted codeword and we use y|E(m) as a shorthand for “y is the received word given that
E(m) was the transmitted codeword." As 1D(y) 6=m ≤ 1 (since it takes a value in {0,1}) and by the
(additive) Chernoff bound (Theorem 3.1.6) we have

Pr
e∼BSCp

[D (E (m)+e) 6= m] ≤
∑

y∈B(E(m),(p+ε′)n)

Pr
[

y|E(m)
]

· 1D(y) 6=m +e−(ε′)2n/2.

In order to apply the probabilistic method (Section 3.2), we will analyze the expectation
(over the random choice of E) of the decoding error probability, which by the upper bound
above satisfies

EE

[

Pr
e∼BSCp

[D (E (m)+e) 6= m]

]

≤ e−ε′2n/2 +
∑

y∈B(E(m),(p+ε′)n)
Pr

e∼BSCp

[

y|E(m)
]

·EE

[

1D(y)6=m

]

. (6.8)

In the above we used linearity of expectation (Proposition 3.1.2) and the fact that the distribu-
tions on e and E are independent.

Next, for a fixed received word y and the transmitted codeword E(m) such that ∆(y,E(m)) ≤
(p +ε′)n we estimate EE

[

1D(y) 6=m

]

. Since D is MLD, we have

EE

[

1D(y) 6=m

]

= Pr
E

[

1D(y) 6=m|E(m)
]

≤
∑

m′ 6=m

Pr
[

∆
(

E
(

m′) ,y
)

≤∆
(

E (m) ,y
)

|E(m)
]

, (6.9)

where in the above “|E(m)" is short for “being conditioned on E(m) being transmitted" and the
inequality follows from the union bound (Proposition 3.1.3) and the fact that D is MLD.

116

Noting that ∆(E(m′),y) ≤∆(E(m),y) ≤ (p +ε′)n (see Figure 6.6), by (6.9) we have

EE

[

1D(y) 6=m

]

≤
∑

m′ 6=m

Pr
[

E
(

m′) ∈ B
(

y,
(

p +ε′
)

n
)

|E(m)
]

=
∑

m′ 6=m

∣
∣B

(

y,
(

p +ε′
)

n
)∣
∣

2n
(6.10)

≤
∑

m′ 6=m

2H(p+ε′)n

2n
(6.11)

<2k ·2−n(1−H(p+ε′))

≤2n(1−H(p+ε))−n(1−H(p+ε′)) (6.12)

=2−n(H(p+ε)−H(p+ε′)). (6.13)

In the above (6.10) follows from the fact that the choice for E(m′) is independent of E(m).
(6.11) follows from the upper bound on the volume of a Hamming ball (Proposition 3.3.1) while
(6.12) follows from our choice of k.

Using (6.13) in (6.8), we get

EE

[

Pr
e∼BSCp

[D(E(m)+e) 6= m]

]

≤e−ε′2n/2 +2−n(H(p+ε)−H(p+ε′)) ∑

y∈B(E(m),(p+ε′)n)

Pr
[

y|E(m)
]

≤e−ε′2n/2 +2−n(H(p+ε)−H(p+ε′)) ≤ 2−δ′n , (6.14)

where the second inequality follows from the fact that
∑

y∈B(E(m),(p+ε′)n)

Pr
[

y|E(m)
]

≤
∑

y∈{0,1}n

Pr
[

y|E(m)
]

= 1

and the last inequality follows for large enough n, say ε′ = ε/2 and by picking δ′ > 0 to be small
enough. (See Exercise 6.3.)

Thus, we have shown that for any arbitrary m the average (over the choices of E) decoding
error probability is small. However, we still need to show that the decoding error probability is
exponentially small for all messages simultaneously. Towards this end, as the bound holds for
each m we have

Em

[

EE

[

Pr
e∼BSCp

[D (E (m)+e) 6= m]

]]

≤ 2−δ′n .

The order of the summation in the expectation with respect to m and the summation in the
expectation with respect to the choice of E can be switched (as the probability distributions are
defined over different domains), resulting in the following expression:

EE

[

Em

[

Pr
e∼BSCp

[D (E (m)+e) 6= m]

]]

≤ 2−δ′n .

By the probabilistic method, there exists an encoding function E∗ (and a corresponding
decoding function D∗) such that

117

Em

[

Pr
e∼BSCp

[

D∗ (

E∗ (m)+e
)

6= m
]
]

≤ 2−δ′n . (6.15)

(6.15) implies that the average decoding error probability is exponentially small. However,
recall we need to show that the maximum decoding error probability is small. To achieve such
a result, we will throw away half of the messages, i.e. expurgate the code. In particular, we will
order the messages in decreasing order of their decoding error probability and then drop the
top half. We claim that the maximum decoding error probability for the remaining messages is
2 ·2−δ′n . Next, we present the details.

From Average to Worst-Case Decoding Error Probability. We begin with the following “aver-
aging" argument.

Claim 6.3.2. Let the messages be ordered as m1,m2, . . . ,m2k and define

Pi = Pr
e∼BSCp

[D(E(mi)+e) 6= mi] .

Assume that P1 ≤ P2 ≤ . . . ≤ P2k and (6.15) holds, then P2k−1 ≤ 2 ·2−δ′n

Proof. By the definition of Pi ,

1

2k

2k
∑

i=1
Pi = Em Pr

e∼BSCp

[D(E(m)+e) 6= m]

≤ 2−δ′n , (6.16)

where (6.16) follows from (6.15). For the sake of contradiction assume that

P2k−1 > 2 ·2−δ′n . (6.17)

So,

1

2k

2k
∑

i=1
Pi ≥

1

2k

2k
∑

i=2k−1+1

Pi (6.18)

>
2 ·2−δ′n ·2k−1

2k
(6.19)

> 2−δ′n , (6.20)

where (6.18) follows by dropping half the summands from the sum. (6.19) follows from (6.17)
and the assumption on the sortedness of Pi . The proof is now complete by noting that (6.20)
contradicts (6.16).

118

Thus, our final code will have m1, . . . ,m2k−1 as its messages and hence, has dimension k ′ =
k − 1. Define δ = δ′+ 1

n
. In the new code, maximum error probability is at most 2−δn . Also if

we picked k ≤ ⌊
(

1−H(p +ε)
)

n⌋+1, then k ′ ≤ ⌊
(

1−H(p +ε)
)

n⌋, as required. This completes the
proof of Theorem 6.3.1.

We have shown that a random code can achieve capacity. However, we do not know of even
a succinct representation of general codes. A natural question to ask is if random linear codes
can achieve the capacity of BSCp . The answer is yes: see Exercise 6.4.

For linear code, representation and encoding are efficient. But the proof does not give an
explicit construction. Intuitively, it is clear that since Shannon’s proof uses a random code it
does not present an “explicit" construction. However, in this book, we will formally define what
we mean by an explicit construction.

Definition 6.3.1. A code C of block length n is called explicit if there exists a poly(n)-time al-
gorithm that computes a succinct description of C given n. For linear codes, such a succinct
description could be a generator matrix or a parity check matrix.

We will also need the following stronger notion of an explicitness:

Definition 6.3.2. A linear [n,k] code C is called strongly explicit, if given any index pair (i , j) ∈
[k]× [n], there is a poly(logn) time algorithm that outputs Gi , j , where G is a generator matrix of
C .

Further, Shannon’s proof uses MLD for which only exponential time implementations are
known. Thus, the biggest question left unsolved by Shannon’s work is the following.

Question 6.3.1. Can we come up with an explicit construction of a code of rate 1−H(p +ε)
with efficient decoding and encoding algorithms that achieves reliable communication over

BSCp ?

As a baby step towards the resolution of the above question, one can ask the following ques-
tion:

Question 6.3.2. Can we come up with an explicit construction with R > 0 and p > 0?

Note that the question above is similar to Question 2.7.1 in Hamming’s world. See Exercise 6.13
for an affirmative answer.

6.4 Hamming vs. Shannon

As a brief interlude, let us compare the salient features of the works of Hamming and Shannon
that we have seen so far:

119

HAMMING SHANNON

Focus on codewords itself Directly deals with encoding and decoding functions
Looked at explicit codes Not explicit at all

Fundamental trade off: rate vs. distance Fundamental trade off: rate vs. error
(easier to get a handle on this)

Worst case errors Stochastic errors

Intuitively achieving positive results in the Hamming world is harder than achieving positive
results in Shannon’s world. The reason is that the adversary in Shannon’s world (e.g. BSCp) is
much weaker than the worst-case adversary in Hamming’s world (say for bits). We make this
intuition (somewhat) precise as follows:

Proposition 6.4.1. Let 0 ≤ p < 1
2 and 0 < ε≤ 1

2 −p. If an algorithm A can handle p +ε fraction of

worst case errors, then it can be used for reliable communication over BSCp

Proof. By the additive Chernoff bound (Theorem 3.1.6), with probability ≥ 1−e
−ε2n

2 , the fraction
of errors in BSCp is ≤ p +ε. Then by assumption on A, it can be used to recover the transmitted
message.

Note that the above result implies that one can have reliable transmission over BSCp with
any code of relative distance 2p +ε (for any ε> 0).

A much weaker converse of Proposition 6.4.1 is also true. More precisely, if the decoding
error probability is exponentially small for the BSC, then the corresponding code must have
constant relative distance (though this distance does not come even close to achieving say the
Gilbert-Varshamov bound). For more see Exercise 6.5.

6.5 Exercises

Exercise 6.1. Let (E ,D) be a pair of encoder and decoder that allows for successful transmission
over BSCp for every p ≤ 1

2 . Then there exists a pair (E ′,D ′) that allows for successful transmission
over BSCp ′ for any p ′ > 1/2. If D is (deterministic) polynomial time algorithm, then D ′ also has
to be a (deterministic) polynomial time algorithm.

Exercise 6.2. Let (E ,D) be a pair of encoder and decoder that allows for successful transmission
over qSCp for every p ≤ 1− 1

q
. Then there exists a pair (E ′,D ′) that allows for successful trans-

mission over qSCp ′ for any p ′ > 1− 1
2 . If D is polynomial time algorithm, then D ′ also has to be

a polynomial time algorithm though D ′ can be a randomized algorithm even if D is determin-
istic.3

Exercise 6.3. Argue that in the positive part of Theorem 6.3.1, one can pick δ = Θ(ε2). That is,
for 0 ≤ p < 1/2 and small enough ε, there exist codes of rate 1−H(p)−ε and block length n that
can be decoded with error probability at most 2−Θ(ε2)n over BSCp .

3A randomized D ′ means that given a received word y the algorithm can use random coins and the decoding
error probability is over both the randomness from its internal coin tosses as well as the randomness from the
channel.

120

Exercise 6.4. Prove that there exists linear codes that achieve the BSCp capacity. (Note that in
Section 6.3 we argued that there exists not necessarily a linear code that achieves the capacity.)

Hint: Modify the argument in Section 6.3: in some sense the proof is easier.

Exercise 6.5. Prove that for communication on BSCp , if an encoding function E achieves a max-
imum decoding error probability (taken over all messages) that is exponentially small, i.e., at
most 2−γn for some γ> 0, then there exists a δ= δ(γ, p) > 0 such that the code defined by E has
relative distance at least δ. In other words, good distance is necessary for exponentially small
maximum decoding error probability.

Exercise 6.6. Prove that the capacity of the qSCp is 1−Hq (p).

Exercise 6.7. The binary erasure channel with erasure probability α has capacity 1−α. In this
problem, you will prove this result (and its generalization to larger alphabets) via a sequence of
smaller results.

1. For positive integers k ≤ n, show that less than a fraction qk−n of the k ×n matrices G

over Fq fail to generate a linear code of block length n and dimension k. (Or equivalently,
except with probability less than qk−n , the rank of a random k ×n matrix G over Fq is k.)

Hint: Try out the obvious greedy algorithm to construct a k ×n matrix of rank k. You will see that you will

have many choices every step: from this compute (a lower bound on) the number of full rank matrices that

can be generated by this algorithm.

2. Consider the q-ary erasure channel with erasure probability α (qECα, for some α, 0 ≤α≤
1): the input to this channel is a field element x ∈ Fq , and the output is x with probability
1−α, and an erasure ‘?’ with probability α. For a linear code C generated by an k ×n

matrix G over Fq , let D : (Fq ∪ {?})n →C ∪ {fail} be the following decoder:

D(y) =
{

c if y agrees with exactly one c ∈C on the unerased entries in Fq

fail otherwise

For a set J ⊆ {1,2, . . . ,n}, let Perr(G|J) be the probability (over the channel noise and choice
of a random message) that D outputs fail conditioned on the erasures being indexed by J .
Prove that the average value of Perr(G|J) taken over all G ∈ Fk×n

q is less than qk−n+|J |.

3. Let Perr(G) be the decoding error probability of the decoder D for communication using
the code generated by G on the qECα. Show that when k = Rn for R < 1−α, the average
value of Perr(G) over all k ×n matrices G over Fq is exponentially small in n.

4. Conclude that one can reliably communicate on the qECα at any rate less than 1−α using
a linear code.

Exercise 6.8. Consider a binary channel whose input/output alphabet is {0,1}, where a 0 is trans-
mitted faithfully as a 0 (with probability 1), but a 1 is transmitted as a 0 with probability 1

2 and a
1 with probability 1/2. Compute the capacity of this channel.

121

Hint: This can be proved from scratch using only simple probabilistic facts already stated/used in the book.

Exercise 6.9. Argue that Reed-Solomon codes from Chapter 5 are strongly explicit codes (as in
Definition 6.3.2).

Exercise 6.10. In this problem we will prove a special case of the source coding theorem. For
any 0 ≤ p ≤ 1/2, let D(p) be the distribution on {0,1}n , where each of the n bits are picked
independently to be 1 with probability p and 0 otherwise. Argue that for every ε > 0, strings
from D(p) can be compressed with H(p +ε) ·n bits for large enough n.

More precisely show that for any constant 0 ≤ p ≤ 1/2 and every ε > 0, for large enough
n there exists an encoding (or compression) function E : {0,1}n → {0,1}∗ and a decoding (or
decompression) function D : {0,1}∗ → {0,1}n such that4

1. For every x ∈ {0,1}n , D(E(x)) = x, and

2. Ex←D(p) [|E(x)|] ≤ H(p +ε) ·n, where we use |E(x)| to denote the length of the string E(x).
In other words, the compression rate is H(p +ε).

Hint: Handle the “typical" strings from D and non-typical strings separately.

Exercise 6.11. Show that if there is a constructive solution to Shannon’s channel coding theorem
with E being a linear map, then there is a constructive solution to Shannon’s source coding
theorem in the case where the source produces a sequence of independent bits of bias p.

More precisely, let (E ,D) be an encoding and decoding pairs that allows for reliable com-
munication over BSCp with exponentially small decoding error and E is a linear map with rate
1− H(p)− ε. Then there exists a compressing and decompressing pair (E ′,D ′) that allows for
compression rate H(p)+ε (where compression rate is as defined in part 2 in Exercise 6.10). The
decompression algorithm D ′ can be randomized and is allowed exponentially small error prob-
ability (where the probability can be taken over both the internal randomness of D ′ and D(p)).
Finally if (E ,D) are both polynomial time algorithms, then (E ′,D ′) have to be polynomial time
algorithms too.

Exercise 6.12. Consider a Markovian source of bits, where the source consists of a 6-cycle with
three successive vertices outputting 0, and three successive vertices outputting 1, with the prob-
ability of either going left (or right) from any vertex is exactly 1/2. More precisely, consider
a graph with six vertices v0, v1, . . . , v5 such that there exists an edge (vi , v(i+1) mod 6) for every
0 ≤ i ≤ 5. Further the vertices vi for 0 ≤ i < 3 are labeled ℓ(vi) = 0 and vertices v j for 3 ≤ j < 6
are labeled ℓ(v j) = 1. Strings are generated from this source as follows: one starts with some
start vertex u0 (which is one of the vi ’s): i.e. the start state is u0. Any any point of time if the
current state if u, then the source outputs ℓ(u). Then with probability 1/2 the states moves to
each of the two neighbors of u.

Compute the optimal compression rate of this source.

4We use {0,1}∗ to denote the set of all binary strings.

122

Hint: Compress “state diagram" to a minimum and then make some basic observations to compress the source

information.

Exercise 6.13. Given codes C1 and C2 with encoding functions E1 : {0,1}k1 → {0,1}n1 and E2 :
{0,1}k2 → {0,1}n2 let E1 ⊗E2 : {0,1}k1×k2 → {0,1}n1×n2 be the encoding function obtained as fol-
lows: view a message m as a k1 ×k2 matrix. Encode the columns of m individually using the
function E1 to get an n1 ×k2 matrix m′. Now encode the rows of m′ individually using E2 to get
an n1×n2 matrix that is the final encoding under E1⊗E2 of m. Let C1⊗C2 be the code associated
with E1 ⊗E2 (recall Exercise 2.19).

For i ≥ 3, let Hi denote the [2i − 1,2i − i − 1,3]2-Hamming code. Let Ci = Hi ⊗Ci−1 with
C3 = H3 be a new family of codes.

1. Give a lower bound on the relative minimum distance of Ci . Does it go to zero as i →∞?

2. Give a lower bound on the rate of Ci . Does it go to zero as i →∞?

3. Consider the following simple decoding algorithm for Ci : Decode the rows of the rec’d
vector recursively using the decoding algorithm for Ci−1. Then decode each column ac-
cording to the Hamming decoding algorithm (e.g. Algorithm 4). Let δi denote the proba-
bility of decoding error of this algorithm on the BSCp . Show that there exists a p > 0 such
that δi → 0 as i →∞.

Hint: First show that δi ≤ 4iδ2
i−1.

Exercise 6.14. We consider the problem of determining the best possible rate of transmission on
a stochastic memoryless channel with zero decoding error probability. Recall that a memoryless
stochastic channel is specified by a transition matrix M s.t. M(x, y) denotes the probability of y

being received if x was transmitted over the channel. Further, the noise acts independently on
each transmitted symbol. Let D denote the input alphabet. Let R(M) denote the best possible
rate for a code C such that there exists a decoder D such that for every c ∈ C , Pr[D(y) 6= c] = 0,
where y is picked according to the distribution induced by M when c is transmitted over the
channel (i.e. the probability that y is a received word is exactly

∏n
i=1 M(ci , yi) where C has block

length n). In this exercise we will derive an alternate characterization of R(M).
We begin with some definitions related to graphs G = (V ,E). An independent set S of G is a

subset S ⊆ V such that there is no edge contained in S, i.e. for every u 6= v ∈ S, (u, v) 6∈ E . For a
given graph G , we use α(G) to denote the size of largest independent set in G . Further, given
an integer n ≥ 1, the n-fold product of G , which we will denote by G

n , is defined as follows:
G

n = (V n ,E ′), where ((u1, . . . ,un), (v1, . . . , vn)) ∈ E ′ if and only if for every i ∈ [n] either ui = vi or
(ui , vi) ∈ E .

Finally, define a confusion graph GM = (V ,E) as follows. The set of vertices V = D and for
every x1 6= x2 ∈D, (x, y) ∈ E if and only if there exists a y such that M(x1, y) 6= 0 and M(x2, y) 6= 0.

123

1. Prove that

R(M) = lim
n→∞

1

n
· log|D|

(

α
(

G
n
M

))

.5 (6.21)

2. A clique cover for a graph G = (V ,E) is a partition of the vertices V = {V1, . . . ,Vc } (i.e. Vi and
V j are disjoint for every i 6= j ∈ [c] and ∪i Vi = V) such that the graph induced on Vi is a
complete graph (i.e. for every i ∈ [c] and x 6= y ∈Vi , we have (x, y) ∈ E). We call c to be the
size of the clique cover V1, . . . ,Vc . Finally, define ν(G) to be the size of the smallest clique
cover for G . Argue that

α(G)n ≤α(G n) ≤ ν(G)n .

Conclude that
log|D|α(G) ≤ R(M) ≤ log|D|ν(G). (6.22)

3. Consider any transition matrix M such that the corresponding graph C4 =GM is a 4-cycle
(i.e. the graph ({0,1,2,3},E) where (i , i +1 mod 4) ∈ E for every 0 ≤ i ≤ 3). Using part 2 or
otherwise, argue that R(M) = 1

2 .

4. Consider any transition matrix M such that the corresponding graph C5 =GM is a 5-cycle
(i.e. the graph ({0,1,2,4},E) where (i , i +1 mod 5) ∈ E for every 0 ≤ i ≤ 4). Using part 2
or otherwise, argue that R(M) ≥ 1

2 · log5 5. (This lower bound is known to be tight: see
Section 6.6 for more.)

6.6 Bibliographic Notes

Shannon’s results that were discussed in this chapter appeared in his seminal 1948 paper [65].
All the channels mentioned in this chapter were considered by Shannon except for the BEC

channel, which was introduced by Elias.
The proof method used to prove Shannon’s result for BSCp has its own name– “random

coding with expurgation."
Elias [18] answered Question 6.3.2 (the argument in Exercise 6.13 is due to him).

5In literature, R(M) is defined with log|D| replaced by log2. We used the definition in (6.21) to be consistent with
our definition of capacity of a noisy channel. See Section 6.6 for more.

124

Chapter 7

Bridging the Gap Between Shannon and

Hamming: List Decoding

In Section 6.4, we made a qualitative comparison between Hamming and Shannon’s world. We
start this chapter by doing a more quantitative comparison between the two threads of coding
theory. In Section 7.2 we introduce the notion of list decoding, which potentially allows us to
go beyond the (quantitative) results of Hamming and approach those of Shannon’s. Then in
Section 7.3, we show how list decoding allows us to go beyond half the distance bound for any
code. Section 7.4 proves the optimal trade-off between rate and fraction of correctable errors via
list decoding. Finally, in Section 7.5, we formalize why list decoding could be a useful primitive
in practical communication setups.

7.1 Hamming versus Shannon: part II

Let us compare Hamming and Shannon theories in terms of the asymptotic bounds we have
seen so far (recall rate R = k

n
and relative distance δ= d

n
).

• Hamming theory: Can correct ≤ δ
2 fraction of worse case errors for codes of relative dis-

tance δ. By the Singleton bound (Theorem 4.3.1),

δ≤ 1−R,

which by Proposition 1.4.1 implies that p fraction of errors can be corrected has to satisfy

p ≤
1−R

2
.

The above can be achieved via efficient decoding algorithms for example for Reed-Solomon
codes (we’ll see this later in the book).

• Shannon theory: In qSCp , for 0 ≤ p < 1−1/q , we can have reliable communication with
R < 1−Hq (p). It can be shown that

125

bad examples

bad examples

δ
2

δ
2

δ
2

δ
2

> δ
2

c1

c2
c3

c4
y

z

Figure 7.1: In this example vectors are embedded into Euclidean space such that the Euclidean
distance between two mapped points is the same as the Hamming distance between vectors.
c1,c2,c3,c4 are codewords. The dotted lines contain the “bad examples," that is, the received
words for which unique decoding is not possible.

1. 1−Hq (p) ≤ 1−p (this is left as an exercise); and

2. 1−Hq (p) ≥ 1−p−ε, for large enough q– in particular, q = 2Ω(1/ε) (Proposition 3.3.2).

Thus, we can have reliable communication with p ∼ 1−R on qSCp for large enough q .

There is a gap between Shannon and Hamming world: one can correct twice as many errors
in Shannon’s world. One natural question to ask is whether we can somehow “bridge" this gap.
Towards this end, we will now re-visit the the bad example for unique decoding (Figure 1.3) and
consider an extension of the bad example as shown in Figure 7.1.

Recall that y and the codewords c1 and c2 form the bad example for unique decoding that
we have already seen before. Recall that for this particular received word we can not do error
recovery by unique decoding since there are two codewords c1 and c2 having the same distance
δ
2 from vector y. On the other hand, the received word z has an unique codeword c1 with dis-

tance p > δ
2 . However, unique decoding does not allow for error recovery from z. This is because

by definition of unique decoding, the decoder must be able to recover from every error pattern
(with a given Hamming weight bound). Thus, by Proposition 1.4.1, the decoded codeword can-
not have relative Hamming distance larger than δ/2 from the received word. In this example,
because of the received word y, unique decoding gives up on the opportunity to decode z.

Let us consider the example in Figure 7.1 for the binary case. It can be shown that the
number of vectors in dotted lines is insignificant compared to volume of shaded area (for large
enough block length of the code). The volume of all Hamming balls of radius δ

2 around all the

126

2k codewords is roughly equal to:

2k 2nH(δ2),

which implies that the volume of the shaded area (without the dotted lines) is approximately
equal to:

2n −2k 2nH(δ2).

In other words, the volume when expressed as a fraction of the volume of the ambient space is
roughly:

1−2−n(1−H(δ2)−R), (7.1)

where k = Rn and by the Hamming bound (Theorem 1.3) R ≤ 1− H(δ2). If R < 1− H(δ2) then
second term of (7.1) is very small. Therefore the number of vectors in shaded area (without
the bad examples) is almost all of the ambient space. Note that by the stringent condition on
unique decoding none of these received words can be decoded (even though for such received
words there is a unique closest codeword). Thus, in order to be able to decode such received
vectors, we need to relax the notion of unique decoding. We will consider such a relaxation
called list decoding next.

7.2 List Decoding

The new notion of decoding that we will discuss is called list decoding as the decoder is allowed
to output a list of answers. We now formally define (the combinatorial version of) list decoding:

Definition 7.2.1. Given 0 ≤ ρ ≤ 1,L ≥ 1, a code C ⊆Σ
n is (ρ,L)-list decodable if for every received

word y ∈Σ
n ,

∣
∣
{

c ∈C |∆(y,c) ≤ ρn
}∣
∣≤ L

Given an error parameter ρ, a code C and a received word y, a list-decoding algorithm
should output all codewords in C that are within (relative) Hamming distance ρ from y. Note
that if the fraction of errors that occurred during transmission is at most ρ then the transmitted
codeword is guaranteed to be in the output list. Further, note that if C is (ρ,L)-list decodable
then the algorithm will always output at most L codewords for any received word. In other
words, for efficient list-decoding algorithm, L should be a polynomial in the block length n

(as otherwise the algorithm will have to output a super-polynomial number of codewords and
hence, cannot have a polynomial running time). Thus, the restriction of L being at most some
polynomial in n is an a priori requirement enforced by the fact that we are interested in effi-
cient polynomial time decoding algorithms. Another reason for insisting on a bound on L is
that otherwise the decoding problem can become trivial: for example, one can output all the
codewords in the code. Finally, it is worthwhile to note that one can always have an exponential
time list-decoding algorithm: go through all the codewords in the code and pick the ones that
are within ρ (relative) Hamming distance of the received word.

Note that in the communication setup, we need to recover the transmitted message. In
such a scenario, outputting a list might not be useful. There are two ways to get around this
“problem":

127

1. Declare a decoding error if list size > 1. Note that this generalizes unique decoding (as
when the number of errors is at most half the distance of the code then there is a unique
codeword and hence, the list size will be at most one). However, the gain over unique
decoding would be substantial only if for most error patterns (of weight significantly more
than half the distance of the code) the output list size is at most one. Fortunately, it can
be show that:

• For random codes, with high probability, for most error patterns, the list size is at
most one. In other words, for most codes, we can hope to see a gain over unique
decoding. The proof of this fact follows from Shannon’s proof for the capacity for
qSC: the details are left as an exercise.

• In Section 7.5, we show that the above behavior is in fact general: i.e. for any code
(over a large enough alphabet) it is true that with high probability, for most error
patterns, the list size is at most one.

Thus, using this option to deal with multiple answers, we still deal with worse case errors
but can correct more error patterns than unique decoding.

2. If the decoder has access to some side information, then it can use that to prune the list.
Informally, if the worst-case list size is L, then the amount of extra information one needs
is O(logL). This will effectively decrease1 the dimension of the code by O(logL), so if L

is small enough, this will have negligible effect on the rate of the code. There are also
application (especially in complexity theory) where one does not really care about the
rate being the best possible.

Recall that Proposition 1.4.1 implies that δ/2 is the maximum fraction of errors correctable
with unique decoding. Since list decoding is a relaxation of unique decoding, it is natural to
wonder

Question 7.2.1. Can we correct more than δ/2 fraction of errors using list decoding?

and if so

Question 7.2.2. What is the maximum fraction of errors correctable using list decoding?

In particular, note that the intuition from Figure 7.1 states that the answer to Question 7.2.1
should be yes.

1Note that side information effectively means that not all possible vectors are valid messages.

128

7.3 Johnson Bound

In this section, we will indeed answer Question 7.2.1 in the affirmative by stating a bound due
to Johnson. To setup the context again, recall that Proposition 1.4.1 implies that any code with
relative distance δ is (δ/2,1)-list decodable.

Notice that if we can show a code for some e >
⌊

d−1
2

⌋

is (e/n,nO(1))-list decodable, then

(combinatorially) it is possible to list decode that code up to e errors. We’ll show by proving the
Johnson bound that this is indeed the case for any code.

Theorem 7.3.1 (Johnson Bound). Let C ⊆ [q]n be a code of distance d. If ρ < Jq

(
d
n

)

, then C is a

(ρ, qdn)-list decodable code, where the function Jq (δ) is defined as

Jq (δ) =
(

1−
1

q

)(

1−
√

1−
qδ

q −1

)

.

Proof (for q = 2). The proof technique that we will use has a name: double counting. The main
idea is to count the same quantity in two different ways to get both an upper and lower bound
on the same quantity. These bounds then imply an inequality and we will derive our desired
bound from this inequality.

We have to show that for every binary code C ⊆ {0,1}n with distance d (i.e. for every c1 6= c2 ∈
C , ∆(c1,c2) ≥ d) and every y ∈ {0,1}n , |B(y,e)

⋂
C | ≤ 2dn.

Fix arbitrary C and y. Let c1, . . . ,cM ∈ B(y,e). We need to show that M ≤ 2dn. Define c′
i
=

ci −y for 1 ≤ i ≤ M . Then we have the following:

(i) w t (c′
i
) ≤ e for 1 ≤ i ≤ M because ci ∈ B(y,e).

(ii) ∆(c′
i
,c′

j
) ≥ d for every i 6= j because ∆(ci ,c j) ≥ d .

Define
S =

∑

i< j

∆(c′i ,c′j).

We will prove both an upper and a lower bound on S from which we will extract the required
upper bound on M . Then from (ii) we have

S ≥
(

M

2

)

d (7.2)

Consider the n × M matrix (c′T1 , · · · ,c′TM). Define mi as the number of 1’s in the i -th row for
1 ≤ i ≤ n. Then the i -th row of the matrix contributes the value mi (M −mi) to S because this
is the number of 0-1 pairs in that row. (Note that each such pair contributes one to S.) This
implies that

S =
n∑

i=1
mi (M −mi). (7.3)

129

Define
ē =

∑

i

mi

M
.

Note that
n∑

i=1
mi =

M∑

j=1
w t (ci) ≤ eM ,

where the inequality follows From (i) above. Thus, we have

ē ≤ e.

Using the Cauchy-Schwartz inequality (i.e., 〈x,y〉 ≤ ||x|| · ||y|| for x,y ∈ Rn) by taking x =
(m1, · · · ,mn), y = (1/n, · · · ,1/n), we have

(∑n
i=1 mi

n

)2

≤
(

n∑

i=1
m2

i

)

1

n
. (7.4)

Thus, from (7.3)

S =
n∑

i=1
mi (M −mi) = M 2ē −

n∑

i=1
m2

i ≤ M 2ē −
(Mē)2

n
= M 2(ē −

ē2

n
), (7.5)

where the inequality follows from (7.4). By (7.2) and (7.5),

M 2
(

ē −
ē2

n

)

≥
M(M −1)

2
d ,

which implies that

M ≤
dn

dn −2nē +2ē2
=

2dn

2dn −n2 +n2 −4nē +4ē2
=

2dn

(n −2ē)2 −n(n −2d)

≤
2dn

(n −2e)2 −n(n −2d)
, (7.6)

where the last inequality follows from the fact that ē ≤ e. Then from

e

n
<

1

2

1−

√

1−
2d

n

 ,

we get

n −2e >
√

n(n −2d).

In other words
(n −2e)2 > n(n −2d).

Thus, (n−2e)2−n(n−2d) ≥ 1 because n,e are all integers and therefore, from (7.6), we have
M ≤ 2dn as desired.

130

Next, we prove the following property of the function Jq (·), which along with the Johnson
bound answers Question 7.2.1 in the affirmative.

Lemma 7.3.2. Let q ≥ 2 be an integer and let 0 ≤ x ≤ 1− 1
q

. Then the following inequalities hold:

Jq (x) ≥ 1−
p

1−x ≥
x

2
,

where the second inequality is tight for x > 0.

Proof. We start with by proving the inequality

(

1−
1

q

)(

1−
√

1−
xq

q −1

)

≥ 1−
p

1−x.

Indeed, both the LHS and RHS of the inequality are zero at x = 0. Further, it is easy to check
that the derivatives of the LHS and RHS are 1

√

1− xq
q−1

and 1p
1−x

respectively. The former is always

larger than the latter quantity. This implies that the LHS increases more rapidly than the RHS,
which in turn proves the required inequality.

The second inequality follows from the subsequent relations. As x ≥ 0,

1−x +
x2

4
≥ 1−x,

which implies that
(

1−
x

2

)2
≥ 1−x,

which in turn implies the required inequality. (Note that the two inequalities above are strict
for x > 0, which implies that 1−

p
1−x > x/2 for every x > 0, as desired.)

Theorem 7.3.1 and Lemma 7.3.2 imply that for any code, list decoding can potentially cor-
rect strictly more errors than unique decoding in polynomial time, as long as q is at most some
polynomial in n (which will be true of all the codes that we discuss in this book). This answers
Question 7.2.1 in the affirmative. See Figure 7.2 for an illustration of the gap between the John-
son bound and the unique decoding bound.

Theorem 7.3.1 and Lemma 7.3.2 also implies the following “alphabet-free" version of the
Johnson bound.

Theorem 7.3.3 (Alphabet-Free Johnson Bound). If e ≤ n −
p

n(n −d), then any code with dis-

tance d is (e/n, qnd)-list decodable for all the q.

A natural question to ask is the following:

131

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 e
rr

or
s

(p
)

--
->

Rate (R) --->

Singleton bound
Johnson bound

Unique decoding bound

Figure 7.2: The trade-off between rate R and the fraction of errors that can be corrected. 1−
p

R

is the trade-off implied by the Johnson bound. The bound for unique decoding is (1−R)/2 while
1−R is the Singleton bound (and the list decoding capacity for codes over large alphabets).

Question 7.3.1. Is the Johnson bound tight?

The answer is yes in the sense that there exist linear codes with relative distance δ such
that we can find Hamming ball of radius larger than Jq (δ) with super-polynomially many code-
words. On the other hand, in the next section, we will show that, in some sense, it is not tight.

7.4 List-Decoding Capacity

In the previous section, we saw what can one achieve with list decoding in terms of distance of
a code. In this section, let us come back to Question 7.2.2. In particular, we will consider the
trade-off between rate and the fraction of errors correctable by list decoding. Unlike the case of
unique decoding and like the case of BSCp , we will be able to prove an optimal trade-off.

Next, we will prove the following result regarding the optimal trade-off between rate of a
code and the fraction of errors that can be corrected via list decoding.

Theorem 7.4.1. Let q ≥ 2, 0 ≤ p < 1− 1
q

, and ε > 0. Then the following holds for codes of large

enough block length n:

(i) If R ≤ 1−Hq (p)−ε, then there exists a
(

p,O
(1
ε

))

-list decodable code.

(ii) If R > 1−Hq (p)+ε, every
(

ρ,L
)

-list decodable code has L ≥ qΩ(n).

132

Thus, the List-decoding capacity2 is 1− Hq (p) (where p is the fraction of errors). Further,
this fully answers Question 7.2.2. Finally, note that this exactly matches capacity for qSCp and
hence, list decoding can be seen as a bridge between Shannon’s world and Hamming’s world.
The remarkable aspect of this result is that we bridge the gap between these worlds by allowing
the decoder to output at most O(1/ε) many codewords.

7.4.1 Proof of Theorem 7.4.1

We begin with the basic idea behind the proof of part (i) of the theorem.
As in Shannon’s proof for capacity of BSCp , we will use the probabilistic method (Section 3.2).

In particular, we will pick a random code and show that it satisfies the required property with
non-zero probability. In fact, we will show that a random code is (ρ,L)-list decodable with high
probability as long as:

R ≤ 1−Hq (p)−
1

L

The analysis will proceed by proving that probability of a “bad event" is small. “Bad event"
means there exist messages m0,m1, · · · ,mL ∈ [q]Rn and a received code y ∈ [q]n such that:

∆
(

C (mi),y)
)

≤ ρn, for every 0 ≤ i ≤ L.

Note that if a bad event occurs, then the code is not a (ρ,L)-list decodable code. The probability
of the occurrence of any bad event will then be calculated by an application of the union bound.

Next, we restate Theorem 7.4.1 and prove a stronger version of part (i). (Note that L =
⌈1
ε

⌉

in
Theorem 7.4.2 implies Theorem 7.4.1.)

Theorem 7.4.2 (List-Decoding Capacity). Let q ≥ 2 be an integer, and 0 < ρ < 1− 1
q

be a real

number.

(i) Let L ≥ 1 be an integer, then there exists an
(

ρ,L
)

-list decodable code with rate

R ≤ 1−Hq (ρ)−
1

L

(ii) For every
(

ρ,L
)

code of rate 1−Hq (ρ)+ε, it is necessary that L ≥ 2Ω(εn).

Proof. We start with the proof of (i). Pick a code C at random where

|C | = qk , where k ≤
(

1−Hq (ρ)−
1

L

)

n.

That is, as in Shannon’s proof, for every message m, pick C (m) uniformly and independently at
random from [q]n .

2Actually the phrase should be something like “capacity of worst case noise model under list decoding" as the
capacity is a property of the channel. However, in the interest of brevity we will only use the term list-decoding
capacity.

133

Given y ∈ [q]n , and m0, · · · ,mL ∈ [q]k , the tuple (y,m0, · · · ,mL) defines a bad event if

C (mi) ∈ B(y,ρn),0 ≤ i ≤ L.

Note that a code is (ρ,L)-list decodable if and only if there does not exist any bad event.
Fix y ∈ [q]n and m0, · · · ,mL ∈ [q]k .

Note that for fixed i , by the choice of C , we have:

Pr[C (mi) ∈ B(y,ρn)] =
V olq (ρn,n)

qn
≤ q−n(1−Hq (ρ)), (7.7)

where the inequality follows from the upper bound on the volume of a Hamming ball (Proposi-
tion 3.3.1). Now the probability of a bad event given (y,m0, · · · ,mL) is

Pr

[
L∧

i=0
C (mi) ∈ B(y,ρn)

]

=
L∏

0
Pr[C (mi) ∈ B(y,ρn)] ≤ q−n(L+1)(1−Hq (ρ)), (7.8)

where the equality follows from the fact that the random choices of codewords for distinct mes-
sages are independent and the inequality follows from (7.7). Then,

Pr[There is a bad event] ≤ qn

(

qk

L+1

)

q−n(L+1)(1−Hq (ρ)) (7.9)

≤ qn qRn(L+1)q−n(L+1)(1−Hq (ρ)) (7.10)

= q−n(L+1)[1−Hq (ρ)− 1
L+1−R]

≤ q−n(L+1)[1−Hq (ρ)− 1
L+1−1+Hq (ρ)+ 1

L] (7.11)

= q− n
L

< 1

In the above, (7.9) follows by the union bound (Lemma 3.1.3) with (7.8) and by counting the

number of y’s (which is qn), and the number of L+1 tuples (which is
(qk

L+1

)

). (7.10) follows from

the fact that
(a

b

)

≤ ab and k = Rn. (7.11) follows by assumption R ≤ 1−Hq (ρ)− 1
L

. The rest of the
steps follow from rearranging and canceling the terms. Therefore, by the probabilistic method,
there exists C such that it is (ρ,L)-list decodable.

Now we turn to the proof of part (ii). For this part, we need to show the existence of a y ∈ [q]n

such that |C ∩B(y,ρn)| is exponentially large for every C of rate R ≥ 1−Hq (ρ)+ε. We will again
use the probabilistic method to prove this result.

Pick y ∈ [q]n uniformly at random. Fix c ∈C . Then

Pr[c ∈ B(y,ρn)] = Pr[y ∈ B(c,ρn)]

=
V olq (ρn,n)

qn
(7.12)

≥ q−n(1−Hq (ρ))−o(n), (7.13)

134

where (7.12) follows from the fact that y is chosen uniformly at random from [q]n and (7.13)
follows by the lower bound on the volume of the Hamming ball (Proposition 3.3.1).

We have

E [|C ∩B(y,ρn)|] =
∑

c∈C

E [1c∈B(y,ρn)] (7.14)

=
∑

c∈C

Pr[c ∈ B(y,ρn)]

≥
∑

c∈C

q−n(1−Hq (ρ)+o(n)) (7.15)

= qn[R−1+Hq (ρ)−o(1)]

≥ qΩ(εn)

(7.16)

In the above, (7.14) follows by the linearity of expectation (Proposition 3.1.2), (7.15) follows
from (7.13), and (7.16) follows by choice of R. Hence, by the probabilistic method, there exists y

such that |B(y,ρn)∩C | is qΩ(n), as desired.

The above proof can be modified to work for random linear codes. (See Exercise ??.)
We now return to Question 7.3.1. Note that by the Singleton bound, the Johnson bound im-

plies that for any code one can hope to list decode from about p ≤ 1−
p

R fraction of errors.
However, this trade-off between p and R is not tight. Note that Lemma 3.3.2 along with Theo-
rem 7.4.1 implies that for large q , the list decoding capacity is 1−R > 1−

p
R. Figure 7.2 plots

and compares the relevant trade-offs.
Finally, we have shown that the list decoding capacity is 1−Hq (p). However, we showed the

existence of a code that achieves the capacity by the probabilistic method. This then raises the
following question:

Question 7.4.1. Do there exist explicit codes that achieve list decoding capacity?

Also the only list decoding algorithm that we have seen so far is the brute force algorithm that
checks every codeword to see if they need to be output. This also leads to the follow-up question

Question 7.4.2. Can we achieve list decoding capacity with efficient list decoding algorithms?

A more modest goal related to the above would be the following:

135

Question 7.4.3. Can we design an efficient list decoding algorithm that can achieve the John-

son bound? In particular, can we efficiently list decode a code of rate R from 1−
p

R fraction

of errors?

7.5 List Decoding from Random Errors

In this section, we formalize the intuition we developed from Figure 7.1. In particular, recall
that we had informally argued that for most error patterns we can correct beyond the δ/2 bound
for unique decoding (Proposition 1.4.1). Johnson bound (Theorem 7.3.1) tells us that one can
indeed correct beyond δ/2 fraction of errors. However, there are two shortcomings. The first is
that the Johnson bounds tells us that the output list size is qdn but it does not necessarily imply
that for most error patterns, there is unique by closest codewords (i.e. one can uniquely recover
the transmitted codeword). In other words, Johnson bound is a “true" list decoding result and
tells us nothing about the behavior of codes on the “average." The second aspect is that the
Johnson bound holds for up to 1−

p
1−δ fraction of errors. Even though it is more than δ/2 for

every δ> 0, the bound e.g. is not say twice the unique decoding bound for every δ> 0.
Next we show that for any code with relative distance δ (over a large enough alphabet size)

for most error patterns, the output of a list decoder for any fraction of errors arbitrarily close to
δ will have size one. In fact, the result is somewhat stronger: it show that even if one fixes the
error locations arbitrarily, for most error patterns the output list size is one.

Theorem 7.5.1. Let ε> 0 be a real and q ≥ 2Ω(1/ε) be an integer. Then the following is true for any

0 < δ< 1−1/q and large enough n. Let C ⊆ {0,1, ...q −1}n be a code with relative distance δ and

let S⊆ [n] such that |S| = (1−ρ)n, where (0 < ρ ≤ δ−ε).

Then, for all c ∈C and all but a q−Ω(εn) fraction of error patterns, e ∈ {0,1...q −1}n such that

eS = 0 and w t (e) = ρn (7.17)

the only codeword within Hamming distance ρn of c+e is c itself.

For illustration of the kinds of error pattern we will deal with, see Figure 7.3.

eS

S

0e

Figure 7.3: Illustration of the kind of error patterns we are trying to count.

Before we present the proof, we present certain corollaries (the proofs of which we leave as
exercises). First the result above implies a similar result of the output list size being one for the

136

following two random noise models: (i) uniform distribution over all error patterns of weight
ρn and (ii) qSCp . In fact, we claim that the result also implies that any code with distance at
least p +ε allows for reliable communication over qSCp . (Contrast the 2p +ε distance that was
needed for a similar result that was implied by Proposition 6.4.1.)

Finally, we present a lemma (the proof is left as an exercise) that will be crucial to the proof
of Theorem 7.5.1.

Lemma 7.5.2. Let be C be an (n,k,d)q code. If we fix the values in n−d +1 out of the n positions

in a possible codeword, then at most one codeword in C can agree with the fixed values.

Proof of Theorem 7.5.1. For the rest of the proof, fix a c ∈C . For notational convenience define
ES to be the set of all error patterns e such that eS = 0 and w t (e) = ρn. Note that as every error
position has (q −1) non-zero choices and there are ρn such positions in [n] \ S, we have

|Es | = (q −1)ρn . (7.18)

Call an error pattern e ∈ Es as bad if there exists another codeword c′ 6= c such that

△(c′,c+e) ≤ ρn.

Now, we need to show that the number of bad error patterns is at most

q−Ω(εn)|Es |.

We will prove this by a somewhat careful counting argument.
We begin with a definition.

Definition 7.5.1. Every error pattern e is associated with a codeword c(e), which is the closest
codeword which lies within Hamming distance ρn from it.

For a bad error pattern we insist on having c(e) 6= c– note that for a bad error pattern such a
codeword always exists. Let A be the set of positions where c(e) agrees with c+e.

The rest of the argument will proceed as follows. For each possible A, we count how many
bad patterns e are associated with it (i.e. c+e and c(e) agree exactly in the positions in A). To
bound this count non-trivially, we will use Lemma 7.5.2.

Define a real number α such that |A| = αn. Note that since c(e) and c+ e agree in at least
1−ρ positions,

α≥ 1−ρ ≥ 1−δ+ε. (7.19)

For now let us fix A with |A| = αn and to expedite the counting of the number of bad error
patterns, let us define two more sets:

A1 = A∩S,

and
A2 = A \ A1.

137

A

S

A1

A2

e

c+e

c(e)

Figure 7.4: Illustration of notation used in the proof of Theorem 7.5.1. Positions in two different
vectors that agree have the same color.
.

See Figure 7.4 for an illustration of the notation that we have fixed so far.
Define β such that

|A1| =βn. (7.20)

Note that this implies that

|A2| = (α−β)n. (7.21)

Further, since A1 ⊆ A, we have

β≤α.

To recap, we have argued that every bad error pattern e corresponds to a codeword c(e) 6= c

and is associated with a pair of subsets (A1, A2). So, we fix (A1, A2) and then count the number
of bad e ’s that map to (A1, A2). (Later on we will aggregate this count over all possible choices
of (A1, A2).)

Towards this end, first we overestimate the number of error patterns e that map to (A1, A2)
by allowing such e to have arbitrary values in [n] \ (S ∪ A2). Note that all such values have to be
non-zero (because of (7.17). This implies that the number of possible distinct e[n]\(S∪A2) is at
most

(q −1)n−|S|−|A2| = qn−(1−ρ)n−(α−β)n , (7.22)

where the equality follows from the given size of S and (7.21). Next fix a non-zero x and let us
only consider error patterns e such that

e[n]\(S∪A2) = x.

Note that at this stage we have an error pattern e as depicted in Figure 7.5.

138

??e

S

A1 A2

0 x

Figure 7.5: Illustration of the kind of error patterns we are trying to count now. The ? denote
values that have not been fixed yet.

Now note that if we fix c(e)A2 , then we would also fix eA2 (as (c+e)A2 = (c(e))A2). Recall that
c is already fixed and hence, this would fix e as well. Further, note that

c(e)A1 = (c+e)A1 = cA1 .

This implies that c(e)A1 is already fixed and hence, by Lemma 7.5.2 we would fix c(e) if we fix (say
the first) (1−δ)n+1−|A1|positions in c(e)A2 . Or in other words, by fixing the first (1−δ)n+1−|A1|
positions in eA2 , e would be completely determined. Thus, the number of choices for e that have
the pattern in Figure 7.5 is upper bounded by

q (1−δ)n+1−|A1| = (q −1)(1−δ)n+1−βn , (7.23)

where the equality follows from (7.20).
Thus, by (7.22) and (7.23) the number of possible bad error patterns e that map to (A1, A2)

is upper bounded by

(q −1)n−(1−ρ)n−αn+βn+(1−δ)n+1−βn ≤ (q −1)ρn−εn+1 = (q −1)−εn+1|Es |,

where the inequality follows from (7.19) and the equality follows from (7.18).
Finally, summing up over all choices of A = (A1, A2) (of which there are at most 2n), we get

that the total number of bad patterns is upper bounded by

2n · (q −1)−εn+1 · |ES | ≤ q
n

log2 q
− εn

2 +1
2 · |EA| ≤ q−εn/4 · |ES |,

where the first inequality follows from q − 1 ≥ p
q (which in turn is true for q ≥ 3) while the

last inequality follows from the fact that for q ≥ Ω(1/ε) and large enough n, n+1/2
log2 q

< εn
4 . This

completes the proof. ✷

It can be shown that Theorem 7.5.1 is not true for q = 2o(1/ε). The proof is left as an exercise.

7.6 Exercises

Exercise 7.1. Show that with high probability, a random linear code is (ρ,L)-list decodable code
as long as

R ≤ 1−Hq (ρ)−
1

⌈logq (L+1)⌉
. (7.24)

139

Hint: Think how to fix (7.8) for random linear code.

Exercise 7.2. In this exercise we will see how we can "fix" the dependence on L is the rate of
random linear codes from Exercise 7.1. In particular, we will consider the following family of
codes that are somewhere between linear and general codes and are called pseudolinear codes,
which are defined as follows.

Let q be a prime power and let 1 ≤ k ≤ n and L ≥ 1 be integers. Then an (n,k,L,r, q)-family
of pseudolinear codes is defined as follows. Let H be the parity check matrix of an [qk −1, qk −
1− r,L + 1]q linear code and H′ be an extension of H with the first column being 0 (and the
rest being H). Every code in the family is indexed by a matrix A ∈ Fn×r

q . Fix such a A. Then the

corresponding code CA is defined as follows. For any x ∈ Fk
q , we have

CA(x) = A ·H′
x,

where H′
x is the column corresonding to x, when though of as an integer between 0 and qk −1.

Next, we will argue that random pseudolinear codes have near optimal list decodability:

1. Fix non-zero messages m1, . . .mL. Then for a random code CA from an (n,k,L,r, q)-family
of pseudolinear code family, the codewords CA(m1), . . . ,CA(mL) are independent random
vectors in Fn

q .

2. Define (n,k,L, q)-family of pseudolinear codes to be (n,k,L,O(kL), q)-family of pseudo-
linear codes. Argue that (n,k,L, q)-family of pseudolinear codes exist.
Hint: Exercise 5.10 might be helpful.

3. Let ε> 0 and q ≥ 2 be a prime power. Further let 0 ≤ ρ < 1−1/q . Then for a large enough
n and k such that

k

n
≥ 1−Hq (ρ)−

1

L
−ε,

a random (n,k,L, q)-pesudolinear code is (ρ,L)-list decodable.

4. Show that one can construct a (ρ,L)-list decodable pseudolinear code with rate at least
1−Hq (ρ)− 1

L
−ε in qO(kL+n) time.

Hint: Use method of conditional expectations.

Exercise 7.3. In this exercise we will consider a notion of “average" list decoding that is closely
related to our usual notion of list decoding. As we will see in some subsequent exercises, some-
times it is easier to work with this average list decoding notion.

1. We begin with an equivalent definition of our usual notion of list decoding. Argue that
a code C is (ρ,L) list decodable if and only if for every y ∈ [q]n and every subset of L +1
codewords c0, . . . ,cL we have that

max
0≤i≤L

∆(y,ci) > ρn.

140

2. We define a code C to be (ρ,L)-average list decodable if for every y ∈ [q]n and L +1 code-
words c0, . . . ,cL we have

1

L
·

L∑

i=0
∆(y,ci) > ρn.

Argue that if C is (ρ,L)-average list decodable then it is also (ρ,L)-list decodable.

3. Argue that if C is (ρ,L)-list decodable then it is also (ρ(1−γ),⌈L/γ⌉)-average list decodable
(for any 0 < γ< ρ).

Exercise 7.4. In Section 7.5 we saw that for any code one can correct arbitrarily close to relative
distance fraction of random errors. In this exercise we will see that one can prove a weaker
result. In particular let D be an arbitrary distribution on Bq (0,ρn). Then argue that for most
codes, the list size with high probability is 1. In other words, show that for 1−o(1), fraction of
codes C we have that for every codeword c ∈C

Pr
e←D

[

|Bq (c+e,ρn)∩C | > 1
]

= o(1).

Hint: Adapt the proof of Theorem 6.3.1 from Section 6.3.2.

Exercise 7.5. We call a code (ρ,L)-erasure list-decodable is informally for any received word with
at most ρ fraction of erasures at most L codewords agree with it in the unerased positions. More
formally, an (n,k)q -code C is (ρ,L)-erasure list-decodable if for every y ∈ [q](1−ρ)n and every
subset T ⊆ [n] with |T | = (1−ρ)n, we have that

∣
∣{c ∈C |cT = y}

∣
∣≤ L.

In this exercise you will prove some simple bounds on the best possible rate for erasure-list
decodable code.

1. Argue that if C has distance d then it is
(

d−1
n

,1
)

-erasure list decodable.

2. Show that there exists a (ρ,L)-erasure list decodable code of rate

L

L+1
· (1−ρ)−

Hq (ρ)

L
−γ,

for any γ> 0.

3. Argue that there exists a linear (ρ,L)-erasure list decodable code with rate

J −1

J
· (1−ρ)−

Hq (ρ)

J −1
−γ,

where J =
⌈

logq (L+1)
⌉

and γ> 0.

4. Argue that the bound in item 2 is tight for large enough L by showing that if a code of rate
1−ρ+ε is (ρ,L)-erasure list decodable then L is 2Ωε(n).

141

Exercise 7.6. In this exercise we will see an alternate characterization of erasure list-decodable
code for linear codes, which we will use to show separation between linear and non-linear code
in the next exercise.

Given a linear code C ⊆ Fn
q and an integer 1 ≤ r ≤ n, define the r ’th generalized Hamming

distance, denoted by dr (C), as follows. First given a set D ⊆ FN
q , we define the support of D as

the union of the supports of vectors in D . More precisely

supp(D) = {i | there exists (u1, . . . ,un) ∈ S such that ui 6= 0}.

Then dr (C) is size of the smallest support of all r -dimensional subcodes of C .
Argue the following:

1. (Warmup) Convince yourself that d1(C) is the usual Hamming distance of C .

2. Prove that C is (ρn,L)-erasure list-decodable if and only if d1+⌊logq L⌋(C) > ρn.

Exercise 7.7. In this exercise we use the connection between generalized Hamming distance
and erasure list decodability from Exercise 7.6 to show an “exponential separation" between
linear and non-linear codes when it comes to list decoding from erasure.

Argue the following:

1. Let C be an [n,k]q code. Then show that the average support size of r -dimensional sub-
codes of C is exactly

qr −1

qr
·

|C |
|C |−1

·n.

2. From previous part or otherwise, conclude that if for an [n,k]q code C we have dr (C) >
n(1−q−r), then we have

|C | ≤
dr (C)

dr (C)−n(1−q−r)
,

Note that the above bound for r = 1 recovers the Plotkin bound (second part of Theo-
rem 4.4.1).

3. Argue that any (family) of code C with dr (C) = δr ·n, its rate satisfies:

R(C) ≤ 1−
qr

qr −1
·δr +o(1).

Hint: Use a the result from previous part on a code related to C .

4. Argue that for small enough ε > 0, any linear (1− ε,L)-erasure list decodable code with
positive rate must have L ≥Ω(1/ε).

5. Argue that there exist (1−ε,O(log(1/ε)))-erasure list decodable code with positive (in fact
Ω(ε)) rate. Conclude that there exists non-linear codes that have the same erasure list
decodability but with exponentially smaller list sizes than linear codes.

142

Exercise 7.8. In this exercise we will prove an analog of the Johnson bound (Theorem 7.3.1) but
for erasure list-decodable codes. In particular, let C be an (n,k,δn)q code. Then show that for

any ε> 0, C is an
((

q

q−1 −ε
)

δ, q

(q−1)ε

)

-erasure list decodable.

Hint: The Plotkin bound (Theorem 4.4.1) might be useful.

Exercise 7.9. Let C be a q-ary (ρ,L)-(average) list decodable of rate R, then show that there exists
another (ρ,L)-(average) list decodable code with rate at least

R +Hq (λ)−1−o(1),

for any λ ∈ (ρ,1−1/q] such that all codewords in C ′ have Hamming weight exactly λn.
Hint: Try to translate C .

Exercise 7.10. In this exercise, we will prove a lower bound on the list size of list decodable codes
that have optimal rate. We do this via a sequence of following steps:

1. Let C ⊆ [q]n be a (ρ,L − 1)-list decodable code such that all codewords have Hamming
weight exactly λn for

λ= ρ+
1

2L
·ρL .

Then prove that

|C | <
2L2

λL
.

Hint: It might be useful to use the following result due to Erdös [20] (where we choose the variables to match

the relevant ones in the problem). Let A be a family of subsets of [n]. Then if every A ∈A has size at least

2L2/λL , then there exist distinct A1, . . . , AL ∈A such that ∩L
i=1 Ai has size at least nλL

2 .

2. Argue that any q-ary (ρ,L −1)-list decodable code C (for large enough block length) has

rate at most 1−Hq (ρ)−bρ,q · ρ
L

L
for some constant bρ,q that only depends on ρ and q .

Hint: Use the previous part and Exercise 7.9.

3. Argue that any q-ary (ρ,L)-list decodable C with rate 1−Hq (ρ)−εmush satisfy L ≥Ωρ,q (log(1/ε)).

Exercise 7.11. It follows from Theorem 7.4.1 that a random code of rate 1−Hq (ρ)−ε with high
probability is (ρ,O(1/ε))-list decodable. On the other hand, the best lower bound on the list
size for codes of rate 1−Hq (ρ)−ε (for constant p, q) is Ω(log(1/ε)) (as we just showed in Exer-
cise 7.10). It is natural to wonder if one can perhaps do a better argument for random codes. In
this exercise, we will show that our argument for random codes is the best possible (for random
codes). We will show this via the following sequence of steps:

1. Let C be a random (n,k)q code of rate 1− Hq (ρ)− ε. For any y ∈ [q]n and any subset
S ⊆ [q]k of size L + 1, define the random event E (y,S) that for every m ∈ S, C (m) is at
Hamming distance at most ρn from y. Define

W =
∑

y,S
E (y,S).

Argue that C is (ρ,L)-list decodable if and only if W = 0.

143

2. Define
µ= q−n ·V olq (ρn,n).

Argue that

E [W] ≥
1

(L+1)L+1
·µL+1 ·qn ·qk(L+1).

3. Argue that

σ2(Z) ≤ q2n ·
L+1∑

ℓ=1

(L+1)2(L+1) ·qk(2L+2−ℓ) ·µ2L−ℓ+3.

Hint: Analyze the probability of both events E (y,S) and E (z,T) happening together for various intersection

sizes ℓ= |S ∩T |.

4. Argue that C is
(

ρ,
1−Hq (ρ)

2ε

)

-list decodable with probability at most q−Ωρ,ε(n).
Hint: Use Chebyschev’s inequality.

7.7 Bibliographic Notes

List decoding was defined by Elias [19] and Wozencraft [78].
The result showing that for random error patterns, the list size with high probability is one

for the special case of Reed-Solomon codes was shown by McEliece [55]. The result for all codes
was proved by Rudra and Uurtamo [64]

In applications of list decoding in complexity theory (see for example [72],[27, Chap. 12]),
side information is used crucially to prune the output of a list decoding algorithm to compute
a unique answer.

Guruswami [26] showed that the answer to Question 7.3.1 is yes in the sense that there ex-
ist linear codes with relative distance δ such that we can find Hamming ball of radius larger
than Jq (δ) with super-polynomially many codewords. This result was proven under a number-
theoretic assumption, which was later removed by [36].

(7.24) implies that there exist linear codes with rate 1 − Hq (ρ) − ε that are
(

ρ, qO(1/ε)
)

-list
decodable. (This is also true for most linear codes with the appropriate parameters.) However,
for a while just for q = 2, we knew the existence of

(

ρ,O(1/ε)
)

-list decodable codes [30] (though
it was not a high probability result). Guruswami, Håstad and Kopparty resolved this “gap" by
showing that random linear codes of rate 1−Hq (ρ)−ε are (ρ,O(1/ε))-list decodable (with high
probability) [29].

144

Chapter 8

What Cannot be Done-II

In this brief interlude of a chapter, we revisit the trade-offs between rate and relative distance
for codes. Recall that the best (and only) lower bound on R that we have seen is the GV bound
and the best upper bound on R that we have have seen so far is a combination of the Plotkin
and Hamming bounds (see Figure 4.5). In this chapter, we will prove the final upper bound on
R in this book due to Elias and Bassalygo. Then we will mention the best known upper bound
on rate (but without stating or proving it). Finally, we will conclude by summarizing what we
have seen so far and laying down the course for the rest of the book.

8.1 Elias-Bassalygo bound

We begin with the statement of a new upper bound on the rate called the Elias-Bassalygo bound.

Theorem 8.1.1 (Elias-Bassalygo bound). Every q-ary code of rate R, distance δ, and large enough

block length, satisfies the following:

R ≤ 1−Hq

(

Jq (δ)
)

+o (1)

See Figure 8.1 for an illustration of the Elias-Bassalygo bound for binary codes. Note that
this bound is tighter than all the previous upper bounds on rate that we have seen so far.

The proof of Theorem 8.1.1 uses the following lemma:

Lemma 8.1.2. Given a q-ary code, C ⊆ [q]nand 0 ≤ e ≤ n, there exists a Hamming ball of radius

e with at least
|C |V olq (e,n)

qn codewords in it.

Proof. We will prove the existence of the required Hamming ball by the probabilistic method.
Pick a received word y ∈ [q]n at random. It is easy to check that the expected value of |B(y,e)∩C |
is

|C |V olq (e,n)
qn . (We have seen this argument earlier in the proof of part (ii) of Theorem 7.4.2.)

This by the probabilistic method implies the existence of a y ∈ [q]n such that

|B(y,e)∩C | ≥
|C |V olq (e,n)

qn
,

as desired.

145

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R

δ

Hamming bound
GV bound

Singleton bound
Plotkin bound

Elias-Bassalygo bound

Figure 8.1: Singleton, Hamming, Plotkin, GV and Elias-Bassalygo bounds on rate versus dis-
tance for binary codes.

Proof of Theorem 8.1.1. Let C ⊆ [q]n be any code with relative distance δ. Define e = n Jq (δ)−
1. By Lemma 8.1.2, there exists a Hamming ball with B codewords such that the following
inequality is true:

B ≥
|C |V olq (e,n)

qn
.

By our choice of e and the Johnson bound (Theorem 7.3.1), we have

B ≤ qdn.

Combining the upper and lower bounds on B implies the following

|C | ≤ qnd ·
qn

V olq (e,n)
≤ qn(1−Hq (Jq (δ))+o(1)),

where the second inequality follows from our good old lower bound on the volume of a
Hamming ball (Proposition 3.3.1) and the fact that qdn ≤ qn2 ≤ qo(n) for large enough n. This
implies that the rate R of C satisfies:

R ≤ 1−Hq

(

Jq (δ)
)

+o (1) ,

as desired. ✷

146

8.2 The MRRW bound: A better upper bound

The MRRW bound (due to McEliece, Rodemich, Rumsey and Welch) is based on a linear pro-
gramming approach introduced by Delsarte to bound the rate of a code. The MRRW bound
is a better upper bound than the Elias-Bassalygo bound (though we will not state or prove the
bound in this book). However, there is a gap between the Gilbert-Varshamov (GV) bound and
the MRRW bound. The gap still exists to this day. To give one data point on the gap, consider
δ= 1

2−ε (think of ε→ 0), the GV bound gives a lower bound on R ofΩ
(

ε2
)

(see Proposition 3.3.5),
while the MRRW bound gives an upper bound on R of O

(

ε2 log
(1
ε

))

.

8.3 A Breather

Let us now recap the combinatorial results that we have seen so far. Table 8.1 summarizes what
we have seen so far for binary codes in Shannon’s world and Hamming’s world (under both
unique and list decoding settings).

Shannon Hamming

BSCp Unique List

1-H
(

p
)

is capacity R ≥ 1−H (δ) 1−H
(

p
)

is list decoding capacity
R ≤ MRRW

Explicit codes at capacity? Explicit Asymptotically good codes? Explicit codes at capacity?
Efficient decoding algorithm? Efficient decoding algorithms? Efficient decoding algorithms?

Table 8.1: High level summary of results seen so far.

For the rest of the section, we remind the reader about the definition of explicit codes (Def-
inition 6.3.1) and strongly explicit codes (Definition 6.3.2).

We begin with BSCp . We have seen that the capacity of BSCp is 1− H(p). The most nat-
ural open question is to obtain the capacity result but with explicit codes along with efficient
decoding (and encoding) algorithms (Question 6.3.1).

Next we consider Hamming’s world under unique decoding. For large enough alphabets,
we have seen that Reed-Solomon codes (Chapter 5) meet the Singleton bound (Theorem 4.3.1).
Further, the Reed-Solomon codes are strongly explicit1. The natural question then is

Question 8.3.1. Can we decode Reed-Solomon codes up to half its distance?

For smaller alphabets, especially binary codes, as we have seen in the last section, there is a
gap between the best known lower and upper bounds on the rate of a code with a given relative

1The proof is left as an exercise.

147

distance. Further, we do not know of an explicit construction of a binary code that lies on the
GV bound. These lead to the following questions that are still wide open:

Open Question 8.3.1. What is the optimal trade-off between R and δ?

Open Question 8.3.2.

Does there exist an explicit construction of (binary) codes on the GV bound?

If we scale down our ambitions, the following is a natural weaker version of the second ques-
tion above:

Question 8.3.2. Do there exist explicit asymptotically good binary codes?

We also have the following algorithmic counterpart to the above question:

Question 8.3.3. If one can answer Question 8.3.2, then can we decode such codes efficiently

from a non-zero fraction of errors?

For list decoding, we have seen that the list decoding capacity is 1− Hq (p). The natural
open questions are whether we can achieve the capacity with explicit codes (Question 7.4.1)
along with efficient list decoding algorithms (Question 7.4.2).

In the remainder of the book, we will focus on the questions mentioned above (and sum-
marized in the last two rows of Table 8.1).

8.4 Bibliographic Notes

The McEliece-Rodemich-Rumsey-Welch (MRRW) bound was introduced in 1977 in the paper
[56].

148

Part III

The Codes

149

Chapter 9

When Polynomials Save the Day:

Polynomial Based Codes

As we saw in Chapter 5, The Reed-Solomon codes give a remarkable family of codes with op-
timal dimension vs. distance tradeoff. They even match the Singleton bound (recall Theo-
rem 4.3.1), get k = n −d +1 for a code of block length n, distance d and dimension k. However
they achieve this remarkable performance only over large alphabets, namely when the alpha-
bet size q ≥ n. In fact, so far in this book, we have not seen any explicit asymptotically good
code other than a Reed-Solomon code. This naturally leads to the following question (which is
a weaker form for Question 8.3.2):

Question 9.0.1. Do there exist explicit asymptotically good codes for small alphabets q ≪ n?

In this chapter we study an extension of Reed-Solomon codes, called the (generalized) Reed-
Muller codes, that lead to codes over smaller alphabets while losing in the dimension-distance
tradeoff (but under certain settings do answer Question 9.0.1 in the affirmative).

The main idea is to extend the notion of functions we work with, to multivariate functions.
(See Exercise 5.2 for equivalence between certain Reed-Solomon codes and univariate func-
tions.) Just working with bivariate functions (functions on two variables), allows us to get codes
of block length n = q2, and more variables can increase the length further for the same alpha-
bet size. We look at functions of total degree at most r . Analysis of the dimension of the code
reduces to simple combinatorics. Analysis of the distance follows from “polynomial-distance”
lemmas, whose use is ubiquitous in algebra, coding theory and computer science, and we de-
scribe these in the sections below. We start with the generic construction.

151

9.1 The generic construction

Recall that for a monomial Xd = X
d1
1 · X

d2
2 · · ·X

dm
m its total degree is d1 +d2 + ·· · +dm . We next

extend this to the definition of the degree of a polynomial:

Definition 9.1.1. The total degree of a polynomial P (X) =
∑

d cdXd over Fq (i.e. every cd ∈ Fq) is
the maximum over d such that cd 6= 0, of the total degree of Xd. We denote the total degree of P

by deg(P).

For example, the degree of the polynomial 3X 3Y 4 +X 5 +Y 6 is 7.
In turns out that when talking about Reed-Muller codes, it is convenient to switch back and

forth between multivariate functions and multivariate polynomials. We can extend the notion
above to functions from Fm

q → Fq . For f : Fm
q → Fq let deg(f) be the minimal degree of a polyno-

mial P ∈ Fq [X1, . . . , Xm] (where Fq [X1, . . . , Xm] denotes the set of all m-variate polynomials with
coefficients from Fq) such that f (α) = P (α) for every α ∈ Fm

q . Note that since (by Exercise 2.3) for
every a ∈ Fq we have aq − a = 0, it follows that a minimal degree polynomial does not contain
monomials with degree more than q −1 any single variable. In what follows,

Definition 9.1.2. We use degXi
(p) to denote the degree of polynomial p in variable Xi and

degXi
(f) to denote the degree of (the minimal polynomial corresponding to) a function f in

variable Xi .

For example degX (3X 3Y 4 + X 5 +Y 6) = 5 and degY (3X 3Y 4 + X 5 +Y 6) = 6. Further, in this
notation we have for every function f : Fm

q → Fq , degXi
(f) ≤ q −1 for every i ∈ [m].

Reed-Muller codes are given by three parameters: a prime power q and positive integers m

and r , and consist of the evaluations of m-variate polynomials of degree at most r over all of
the domain Fm

q .

Definition 9.1.3 (Reed-Muller Codes). The Reed-Muller code with parameters q,m,r , denoted
RM(q,m,r), is the set of evaluations of all m-variate polynomials in Fq [X1, . . . , Xm] of total de-
gree at most r and individual degree at most q −1 over all points in Fm

q . Formally

RM(q,m,r)
def=

{

f : Fm
q → Fq |deg(f) ≤ r

}

.

For example consider the case of m = q = 2 and r = 1. Note that all bivariate polynomials
over F2 of degree at most 1 are 0, 1, X1, X2, 1+X1, 1+X2, X1+X2 and 1+X1+X2. Thus, we have
that (where the evaluation points for (X1, X2) are ordered as (0,0), (0,1), (1,0), (1,1)):

RM(2,2,1) = {(0,0,0,0), (1,1,1,1), (0,0,1,1), (0,1,0,1), (1,1,0,0), (1,0,1,0), (0,1,1,0), (1,0,0,1)} .

Also note that RM(q,m,1) is almost the Hadamard code (see Exercise 5.6).
The Reed-Muller code with parameters (q,m,r) clearly has alphabet Fq and block length

n = qm . Also it can be verified that RM(q,m,r) is a linear code (see Exercise 9.1.) This leads to
the following question, which will be the primary focus of this chapter:

152

Question 9.1.1. What are the dimension and distance of an RM(q,m,r) code?

The dimension of the code is the number of m-variate monomials of degree at most r , with
the condition that degree in each variable is at most q −1. No simple closed form expression
for this that works for all choices of q,m and r is known, so we will describe the effects only in
some cases. The distance analysis of these codes takes a little bit more effort and we will start
with two simple settings before describing the general result.

9.2 The low degree case

We start by considering RM(q,m,r) when r < q , i.e., the degree is smaller than the field size. We
refer to this setting as the “low-degree” setting.

Dimension. The dimension of RM(q,m,r) in the low-degree case turns out to have a nice
closed form, since we do not have to worry about the constraint that each variable has degree
at most q −1: this is already imposed by restricting the total degree to at most r ≤ q −1. This
leads to a nice expression for the dimension:

Proposition 9.2.1. The dimension of the Reed Muller code RM(q,m,r) equals
(m+r

r

)

when r < q.

Proof. The dimension equals the size of the set

D =
{

(d1, . . . ,dm) ∈Zm |di ≥ 0 for all i ∈ [m],
m∑

i=1
di ≤ r

}

, (9.1)

since for every (d1, . . . ,dm) ∈ D , the monomial X
d1
1 · · ·X

dm
m is a monomial of degree at most r and

these are all such monomials. The closed form expression for the dimension follows by a simple
counting argument. (See Exercise 9.2).

Distance. Next we turn to the analysis of the distance of the code. To understand the distance
we will first state and prove a simple fact about the number of zeroes a multivariate polynomial
can have. (We will have three versions of this in this chapter - with the third subsuming the first
(Lemma 9.2.2) and second (Lemma 9.3.1), but the first two will be slightly simpler to state and
remember.)

Lemma 9.2.2 (Polynomial Zero Lemma (low-degree case)). Let f ∈ Fq [X1, . . . , Xm] be a non-zero

polynomial with deg(f) ≤ r . Then the fraction of zeroes of f is at most r
q

, i.e.,

|{a ∈ Fm
q | f (a) = 0}|

qm
≤

r

q
.

153

We make couple of remarks. First note that the above lemma for m = 1 is the degree mantra
(Proposition 5.2.3). We note that for every m ≥ 1 the above lemma is tight (see Exercise 9.3).
However, there exists polynomials for which the lemma is not tight (see Exercise 9.4).

Proof of Lemma 9.2.2. Note that the lemma statement is equivalent to saying that the probabil-

ity that f (a) = 0 is at most deg(f)
q

when a = (a1, . . . , am) is chosen uniformly at random from Fm
q .

We claim that this holds by induction on m.
We will prove the lemma by induction on m ≥ 1. Note that the base case follows from the

degree mantra (Proposition 5.2.3). Now consider the case of m > 1 (and we assume that the
lemma is true for m −1). To apply inductive hypothesis we first write f as a polynomial in Xm

with coefficients that are themselves polynomials in X1, . . . , Xm−1. So let

f = f0X 0
m + f1X 1

m + . . . ft X t
m ,

where each fi (X1, . . . , Xm−1) is a polynomial from Fq [X1, . . . , Xm−1] and deg(fi) ≤ r − i . Further-
more let t be the largest index such that ft is not zero. Now we consider picking a ∈ Fm

q in two

steps: We first pick (a1, . . . , am−1) uniformly at random from Fm−1
q , and then we pick am uni-

formly from Fq . Let

f (a1,...,am−1)(Xm) = f0(a1, . . . , am−1)X 0
m +·· ·+ . . . ft (a1, . . . , am−1)X t

m .

We consider two possible events:

E1 = {(a1, . . . , am)| ft (a1, . . . , am−1) = 0}

and
E2 = {((a1, . . . , am)| ft (a1, . . . , am−1) 6= 0 and f (a1,...,am−1)(am) = 0}.

By the inductive hypothesis, we have that

Pr[E1] ≤
r − t

q
, (9.2)

since deg(ft) ≤ r − t and ft 6= 0.
For every (a1, . . . , am−1) ∈ Fm−1

q such that ft (a1, . . . , am−1) 6= 0 we also have that the univariate

polynomial f (a1,...,am−1)(Xm) is non-zero and of degree at most t , and so by the degree mantra
it has at most t roots. It follows that for every such (a1, . . . , am−1) the probability, over am , that
f (a1,...,am−1)(am) = 0 is at most t

q
. In turn, it now immediately follows that

Pr[E2] ≤
t

q
. (9.3)

Finally, we claim that if neither E1 nor E2 occur, then f (a) 6= 0. This is immediate from the defi-
nitions of E1 and E2, since if f (a1, . . . , am) = 0, it must either be the case that ft (a1, . . . , am−1) = 0
(corresponding to E1) or it must be that ft (a1, . . . , am−1) 6= 0 and f (a1,...,am−1)(am) = 0 (covered by
E2). Note that this implies that Pra[f (a) = 0] ≤ Pr[E1 ∪E2]. The lemma now follows from the fact
that

Pr
a

[f (a) = 0] ≤ Pr[E1 ∪E2] ≤ Pr[E1]+Pr[E2] ≤
r

q
,

where the second inequality follows from the union bound (Proposition 3.1.3) and the final
inequality follows from (9.2) and (9.3).

154

Comparison with other codes

The lemmas above, while quite precise may not be fully transparent in explaining the asymp-
totics of the performance of the Reed-Muller codes, or contrast them with other codes we have
seen. We mention a few basic facts here to get a clearer comparison.

If we set m = 1 and r = k − 1, then we get the Reed-Solomon codes evaluated on all of Fq

(see Chapter 5). If we set m = k −1, r = 1 and q = 2, then we get family of extended Hadamard
codes (extended by including all Hadamard codewords and their complements). For more on
this, see Exercise 5.6.

Thus Reed-Muller codes generalize some previously known codes - some with large alpha-
bets and some with small alphabets. Indeed if we wish the alphabet to be small compared to
the block length, then we can pick m to be a constant. For instance if we choose m = 2, we get
codes of length n over an alphabets of size

p
n, while for any choice of relative distance δ, the

code has rate (1−δ)2

2 . In general for larger values of m, the code has alphabet size n1/m and rate
(1−δ)m

m! . (See Exercise 9.5.) Thus for small values of m and fixed positive distance δ < 1 there is
a rate R > 0 such that, by choosing q appropriately large, one get codes on infinitely long block
length n and alphabet n1/m with rate R and distance δ, which answers Question 9.0.1 in the
affirmative.

This is one of the simplest such families of codes with this feature. We will do better in later
in the book (e.g. Chapter 10), and indeed get alphabet size q independent of n with R > 0 and
δ> 0. But for now this is best we have.

9.3 The case of the binary field

Next we turn to a different extreme of parameter choices for the Reed-Muller codes. Here we fix
the alphabet size q = 2 and see what varying m and r gets us.

Since we will prove a stronger statement later in Lemma 9.4.1, we only state the distance of
the code RM(2,m,r) below, leaving the proof to Exercise 9.6.

Lemma 9.3.1 (Polynomial distance (binary case)). Let f be a non-zero polynomial from F2[X1. . . . , Xm]
with degXi

(f) ≤ 1 for every i ∈ [m]. Then |{a ∈ Fm
2 | f (a) 6= 0}| ≥ 2m−deg(f).

Further, it can be established that the bound in Lemma 9.3.1 is tight (see Exercise 9.7).
The dimension of the code is relatively straightforward to analyze. The dimension is again

given by the number of monomials of degree at most r . Since the degree in each variable is
either zero or one, this just equals the number of subsets of [m] of size at most r . Thus we have:

Proposition 9.3.2. For any r ≤ m, the dimension of the Reed-Muller code RM(2,m,r) is exactly
∑r

i=0

(m
i

)

.

Lemma 9.3.1 and Proposition 9.3.2 imply the following result:

Theorem 9.3.3. For every r ≤ m, the Reed-Muller code RM(2,m,r) is a code of block length 2m ,

dimension
∑r

i=0

(m
i

)

and distance 2m−r .

155

Again, to get a sense of the asymptotics of this code, we can fix τ > 0 and set r = τ ·m and
let m →∞. In this case we get a code of block length n (for infinitely many n) with rate roughly
nH(τ)−1 and distance n−τ (see Exercise 9.8). So both the rate and the distance tend to zero at a
rate that is a small polynomial in the block length but the code has a constant sized alphabet.
(Note that this implies that we have made some progress towards answering Question 8.3.2.)

9.4 The general case

We now turn to the general case, where q is general and r is allowed to be larger than q −1. We
will try to analyze the dimension and distance of this code. The distance turns out to still have
a clean expression, so we will do that first. The dimension does not have a simple expression
describing it exactly, so we will give a few lower bounds that may be generally useful (and are
often asymptotically tight).

9.4.1 The general case: Distance

Lemma 9.4.1 (Polynomial distance (general case)). Let f be a non-zero polynomial from Fq [X1. . . . , Xm]
with degXi

(f) ≤ q −1 for every i ∈ [m] and deg(f) ≤ r . Furthermore, let s, t be the unique non-

negative integers such that t ≤ q −2 and

s(q −1)+ t = r.

Then

|{a ∈ Fm
q | f (a) 6= 0}| ≥ (q − t) ·qm−s−1 ≥ q

m− r
q−1 .

Hence, RM(q,m,r) has distance at least q
m− r

q−1 .

Before proving the lemma we make a few observations: The above lemma clearly generalizes
both Lemma 9.2.2 (which corresponds to the case s = 0) and Lemma 9.3.1 (where q = 2, s = r −1
and t = 1). In the general case the second lower bound is a little simpler and it shows that the
probability that a polynomial is non-zero at a uniformly chosen point in Fm

q is at least q−r /(q−1).
Finally, we note that Lemma 9.4.1 is tight for all settings of parameters (see Exercise 9.9).

Proof of Lemma 9.4.1. The proof is similar to the proof of Lemma 9.2.2 except we take advan-
tage of the fact that the degree in a single variable is at most q −1. We also need to prove some
simple inequalities.

As in the proof of Lemma 9.2.2 we prove that for a random choice of a = (a1, . . . , am) ∈ Fm
q ,

the probability that f (a) 6= 0 is at least

(q − t) ·q−(s+1). (9.4)

Note that in contrast to the proof of Lemma 9.2.2 we focus on the good events — the polynomial
being non-zero — rather than on the bad events.

156

We prove the lemma by induction on m. In the case of m = 1 we have by the degree mantra
(Proposition 5.2.3) that the probability that f (a1) 6= 0 is at least q−r

q
. If r < q −1 we have s = 0

and t = r and so the expression in (9.4) satisfies

(q − t) ·q−1 =
q − r

q
≤ Pr[f (a1) 6= 0].

If r = q −1 we have s = 1 and t = 0, but then again we have that (9.4) equals

q ·q−2 =
q − (q −1)

q
≤ Pr[f (a1) 6= 0],

where the inequality follows from the degree mantra.
Now we turn to the inductive step. Assume the hypothesis is true for (m −1)-variate poly-

nomials and let f =
∑b

i=0 fi X i
m where fi ∈ Fq [X1, . . . , Xm−1] with fb 6= 0. Note 0 ≤ b ≤ q −1 and

deg(fb) ≤ r −b. Let E be the event of interest to us, i.e.,

E = {(a1, . . . , am)| f (a1, . . . , am) 6= 0}.

Let
E1 = {(a1, . . . , am−1)| fb(a1, . . . , am−1) 6= 0}.

We first bound Pr[E |E1]. Fix a1, . . . , am−1 such that fb(a1, . . . , am−1) 6= 0 and let

P (Z) =
b∑

i=0
fi (a1, . . . , am−1)Z i .

Note P is a non-zero polynomial of degree b and we have

Pr[f (a1, . . . , am) = 0|a1, . . . , am−1] = Pr
am

[P (am) 6= 0].

Since by the degree mantra, a univariate polynomial of degree b has at most b roots, we have

Pr
am

[P (am) 6= 0] ≥
q −b

q
.

We conclude

Pr[E |E1] ≥ 1−
b

q
.

Next we will bound Pr[E1]. This will allow us to lower bound the probability of E since

Pr[E] ≥ Pr[E and E1] = Pr[E1] ·Pr[E |E1] .

Recall that deg(fb) ≤ r −b. Write r −b = s′(q −1)+ t ′ where s′, t ′ ≥ 0 and t ′ ≤ q −2. By induction
we have

Pr[E1] = Pr[fb(a1, . . . , am−1) 6= 0] ≥ (q − t ′) ·q−(s′+1).

157

Putting the two bounds together, we get

Pr[E] ≥ Pr[E |E1] ·Pr[E1] ≥
q −b

q
· (q − t ′) ·q−(s′+1).

We are now left with a calculation to verify that the bound above is indeed lower bounded
by (q − t) · q−(s+1) and we do so in Claim 9.4.2 using the facts that t , t ′ ≤ q − 2, b ≤ q − 1, r =
s(q − 1)+ t , and r − b = s′(q − 1)+ t ′. In the claim further below (Claim 9.4.3), we also prove
(q − t) ·q−(s+1) ≥ q−r /(q−1) and this concludes the proof of the lemma.

Claim 9.4.2. If q,r, s, t , s′, t ′,b are non-negative integers such that r = s(q −1)+ t , r −b = s′(q −
1)+ t ′, t , t ′ ≤ q −2 and b ≤ q −1 then we have

q −b

q
· (q − t ′) ·q−(s′+1) ≥ (q − t) ·q−(s+1).

Proof. The proof breaks up in to two cases depending on s − s′. Note that an equivalent defini-
tion of s and s′ are that these are the quotients when we divide r and r −b respectively by q −1.
Since 0 ≤ b ≤ q −1, it follows that either s′ = s or s′ = s−1. We consider the two cases separately.

If s = s′ we have t = t ′+b and then it suffices to show that

q −b

q
· (q − t ′) ≥ q − (t ′+b).

In turn this is equivalent to showing

(q −b)(q − t ′) ≥ q(q − (t ′+b)).

But this is immediate since the expression on the left is

(q −b)(q − t ′) = q2 − (b + t ′)q +bt ′ = q(q − (b + t ′))+bt ′ ≥ q(q − (b + t ′)),

where the final inequality uses bt ′ ≥ 0.
If s = s′+1 we have a bit more work. Here we have t + q −1 = t ′+b and it suffices to show

that
q −b

q
· (q − t ′) ·q ≥ (q − t) = (2q − (t ′+b +1)).

Write q −b =α and q − t ′ =β. The expression on the left above simplifies to αβ and on the right
to α+β−1. Since b, t ′ ≤ q −1, we also have α,β ≥ 1. So it suffices to show that αβ ≥ α+β−1.
This is true since αβ=α+α(β−1) and we have α(β−1) ≥β−1 since α≥ 1 and β−1 ≥ 0.

We thus conclude that the inequality holds for both s = s′ and s = s′+1 and this yields the
claim.

Claim 9.4.3. Let q,r, s, t be non-negative real numbers such that q ≥ 2, r = s(q −1)+ t and t ≤
q −2. Then

(q − t) ·q−(s+1) ≥ q−r /(q−1).

158

We remark that while the inequality is quite useful, the proof below is not particularly in-
sightful. We include it for completeness, but we recommend that the reader skip it unless nec-
essary.

Proof of Claim 9.4.3. We have four parameters in the inequality above. We will simplify it in
steps removing parameters one at a time. First we get rid of r by substituting r = s(q −1)+ t . So
it suffices to prove:

(q − t) ·q−(s+1) ≥ q−(s(q−1)+t)/(q−1) = q−s ·q−t/(q−1).

We can get rid of q−s from both sides (since the remaining terms are non-negative) and so it
suffices to prove:

q − t

q
≥ q−t/(q−1).

Let fq (t) = t
q
+ q−t/(q−1) −1. The inequality above is equivalent to proving fq (t) ≤ 0 for 0 ≤ t ≤

q −2. We use some basic calculus to prove the above. Note that the first and second derivatives

of fq with respect to t are given by f ′
q (t) = 1

q
− ln q

q−1 q−t/(q−1) and f ′′
q (t) =

(

ln(q)/(q −1)
)2

q−t/(q−1).
In particular the second derivative is always positive which means fq (t) is maximized at one of
the two end points of the interval t ∈ [0, q −2]. We have fq (0) = 0 ≤ 0 as desired and so it suffices
to prove that

fq (q −2) = q−(q−2)/(q−1) −
2

q
≤ 0.

Multiplying the expression above by q we have that it suffices to show q1/(q−1) ≤ 2 which in
turn is equivalent to proving q ≤ 2q−1 for every q ≥ 2. The final inequality follows easily from
Bernoulli’s inequality (Lemma B.1.4) 1+kx ≤ (1+x)k which holds for every x ≥−1 and k ≥ 1. In
our case we substitute x = 1 and k = q −1 to conclude q ≤ 2q−1 as desired.

9.4.2 The general case: Dimension

For integers q,m,r let

Sq,m,r =
{

d = (d1, . . . ,dm) ∈Zm |0 ≤ di ≤ q −1 for all i ∈ [m] and ,
m∑

i=1
di ≤ r

}

(9.5)

and let
Kq,m,r = |Sq,m,r |.

We start with the following, almost tautological, proposition.

Proposition 9.4.4. For every prime power q and integers m ≥ 1 and r ≥ 0, the dimension of the

code RM(q,m,r) is Kq,m,r .

Proof. Follows from the fact that for every d = (d1, . . . ,dm) ∈ Sq,m,r the associated monomial

Xd = X
d1
1 · · ·X

dm
m is a monomial of degree at most r and individual degree at most q −1. Thus

these monomials (i.e., their evaluations) form a basis for the Reed-Muller code RM(q,m,r). (See
Exercise 9.10.)

159

The definition of Kq,m,r does not give a good hint about its growth so below we give a few
bounds on Kq,m,r that help estimate its growth. Specifically the proposition below gives a lower
bound K −

q,m,r and an upper bound K +
q,m,r on Kq,m,r that are (1) given by simple expressions and

(2) within polynomial factors of each other for every setting of q , m, and r .

Proposition 9.4.5. For integers q ≥ 2, m ≥ 1 and r ≥ 0, let

K +
q,m,r ,min

{

qm ,

(

m + r

r

)}

and let

K −
q,m,r ,

{

max
{

qm/2, qm −K +
q,m,(q−1)m−r

}

if r ≥ (q −1)m/2

max
{(m

r

)

, 1
2

(⌊2r+m
m

⌋)m}

if r < (q −1)m/2

Then there are universal constants c1,c2 (c1 < 3.1 and c2 < 8.2 suffice) such that

K −
q,m,r ≤ Kq,m,r ≤ K +

q,m,r ≤ c1 · (K −
q,m,r)c2

.

Proof. We tackle the inequalities in order of growing complexity of the proof. In our bounds we
use the fact that Kq,m,r is monotone non-decreasing in q as well as r (when other parameters
are fixed)– see Exercise 9.11.

First we prove Kq,m,r ≤ K +
q,m,r . On the one hand we have

Kq,m,r ≤ Kq,m,(q−1)m = qm ,

which follows by ignoring the total degree restriction and on the other hand we have

Kq,m,r ≤ Kr,m,r =
(

m + r

r

)

,

whereas here we ignored the individual degree restriction.
Next we show K −

q,m,r ≤ Kq,m,r . First we consider the case r ≥ (q − 1)m/2. Here we argue

via symmetry. Consider a map that maps vectors d = (d1, . . . ,dm) ∈ Zm with 0 ≤ di < q to d =
(q −1−d1, . . . , q −1−dm). The map d → d is a one-to-one map which maps vectors with

∑

i di >
r to vectors with

∑

i di < (q − 1)m − r . In other words either d ∈ {0, . . . , q − 1}m is in Sq,m,r or

d ∈ Sq,m,(q−1)m−r , thus establishing

Kq,m,r = qm −Kq,m,(q−1)m−r .

Since r ≥ (q −1)m/2 we have (q −1)m − r ≤ r and so

Kq,m,r ≥ Kq,m,(q−1)m−r ,

which in turn implies
Kq,m,r ≥ qm/2.

160

This establishes Kq,m,r ≥ K −
q,m,r when r ≥ (q −1)m/2. Next, turning to the case r < (q −1)m/2,

first let q ′ =
⌊2r+m

m

⌋

. We have
Kq,m,r ≥ Kq ′,m,r ≥ (q ′)m/2

since r ≥ (q ′−1)m/2, and this yields

Kq,m,r ≥ (q ′)m/2 =
1

2

(⌊
2r +m

m

⌋)m

.

Finally we also have

Kq,m,r ≥ K2,m,r =
r∑

i=0

(

m

i

)

≥
(

m

r

)

,

thus establishing Kq,m,r ≥ K −
q,m,r when r < (q −1)m/2.

Finally we turn to the inequalities showing K +
q,m,r ≤ c1 · (K −

q,m,r)c2 . If r ≥ (q −1)m/2 we have

qm

2
≤ K −

q,m,r ≤ K +
q,m,r ≤ qm

establishing K +
q,m,r ≤ 2K −

q,m,r . Next we consider the case r < m/2. In this case we have

K −
q,m,r ≥

(

m

r

)

≥ (m/r)r ≥ 2r .

On the other hand we also have
(

m + r

r

)

≤
(

e(m + r)

r

)r

≤
(

e · (3/2) ·m

r

)r

=
(

3e

2

)r

·
(m

r

)r
.

From 2r ≤ K −
q,m,r we get

(3e
2

)r ≤ (K −
q,m,r)log2(3e/2). Combining with

(
m
r

)r ≤ K −
q,m,r and K +

q,m,r ≤
(m+r

r

)

we get

K +
q,m,r ≤

(
3e

2

)r

·
(m

r

)r
≤ (K −

q,m,r)1+log2(3e/2)

. Finally, we consider the case m/2 ≤ r < (q −1)m/2. In this range we have
⌊

2r +m

m

⌋

= 1+
⌊

2r

m

⌋

≥ 1+
r

m
=

m + r

m
.

Thus

K −
q,m,r ≥

1

2

(⌊
2r +m

m

⌋)m

≥
1

2

(m + r

m

)m

≥
1

2

(
3

2

)m

.

On the other hand we have

K +
q,m,r ≤

(

m + r

m

)

≤
(

e(m + r)

m

)m

= em ·
(m + r

m

)m

.

Again we have
(

m+r
m

)m ≤ 2K −
q,m,r and em ≤ (2K −

q,m,r)log2(3e/2) and so K +
q,m,r ≤ (2K −

q,m,r)1+log2(3e/2).
Thus in all cases we have K +

q,m,r ≤ c1 · (K −
q,m,r)c2 for c2 = 1+ log2(3e/2) < 3.1 and c1 = 2c2 < 8.2, as

desired.

161

We now give a few examples of codes that can be derived from the bounds above, to illus-
trate the variety offered by Reed-Muller codes. In each of the cases we set one or more of the
parameters among alphabet size, rate, (relative) distance or absolute distance to a constant and
explore the behavior in the other parameters. In all cases we use Lemma 9.4.1 to lower bound
the distance and Proposition 9.4.5 to lower bound the dimension.

Example 9.4.6 (RM Codes of constant alphabet size and (relative) distance.). Fix q and r < q−1
and consider m → ∞. Then the Reed-Muller codes RM(q,m,r) are [N ,K ,D]q codes with block

length N = qm , distance D = δ ·N for δ= 1− r /q, with dimension

K ≥
(

m

r

)

≥
(

logq N

r

)r

.

In other words Reed-Muller codes yield codes of constant alphabet size and relative distance with

dimension growing as an arbitrary polynomial in the logarithm of the block length.

Example 9.4.7 (Binary RM Codes of rate close to 1 with constant (absolute) distance.). Fix q = 2
and d and let m → ∞. Then the Reed-Muller codes RM(2,m,m −d) are [N ,K ,D]2 codes with

N = 2m , D = 2d and

K ≥ N −
(

log2 N +d

d

)

≥ N − (log2 N)d .

(See Exercise 9.12 for bound on K .) Note that the rate → 1 as N →∞.

Example 9.4.8 (RM codes of constant rate and relative distance over polynomially small al-
phabets.). Given any ε > 0 and let m =

⌈1
ε

⌉

and now consider q → ∞ with r = q/2. Then the

Reed-Muller codes RM(q,m,r) are [N ,K ,D]q codes with N = qm , D = N
2 and

K ≥
1

2

(q +m

m

)m

≥
1

2mm
·N .

Expressed in terms of N and ε, the codes have length N , dimension Ω
(

ε1/ε
)

·N and relative dis-

tance 1/2 over an alphabet of size Nε.

Another natural regime is to consider the case of constant rate 1/2: see Exercise 9.13 for
more.

Finally we mention a range of parameters that has been very useful in the theory of com-
puter science. Here the alphabet size is growing with N , but very slowly. But the code has a fixed
relative distance and dimension that is polynomially related to the block length.

Example 9.4.9 (RM Codes over polylogarithmic alphabets with polynomial dimension.). Given

0 < ε < 1, let q → ∞ and let r = q/2 and m = qε. Then the Reed-Muller codes RM(q,m,r) are

[N ,K ,D]q codes with N = qm , D = N
2 and

K ≥
1

2

(q +m

m

)m

≥
1

2

(

q1−ε)m =
1

2
·N 1−ε.

Expressed in terms of N and ε, the codes have length N , dimension Ω(N 1−ε) and relative distance

1/2 over an alphabet of size (log N)1/ε. (See Exercise 9.14 for claim on the bound on q.)

162

9.5 Exercises

Exercise 9.1. Argue that any RM(q,m,r) is a linear code.

Exercise 9.2. Argue that for D as defined in (9.1), we have

|D| =
(

m + r

r

)

.

Exercise 9.3. Show that Lemma 9.2.2 is tight in the sense that for every prime power q and inte-
gers m ≥ 1 and 1 ≤ r ≤ q −1, there exists a polynomial with exactly r ·qm−1 roots.

Exercise 9.4. Show that Lemma 9.2.2 is not tight for most polynomials. In particular show
that for every prime power q and integers m ≥ 1 and 1 ≤ r ≤ q − 1, a random polynomial in
Fq [X1, . . . , Xm] of degree r has qm−1 expected number of roots.

Exercise 9.5. Show that the Reed-Muller codes of Section 9.2 give rise to codes of relative dis-
tance δ (for any 0 < δ< 1) and block length n such that they have alphabet size of m

p
n and rate

(1−δ)m

m! .

Exercise 9.6. Prove Lemma 9.3.1.

Exercise 9.7. Prove that the lower bound in Lemma 9.3.1 is tight.

Exercise 9.8. Show that there exists a binary RM code with block length n, rate nH(τ)−1 and
relative distance n−τ for any 0 < τ< 1/2.

Exercise 9.9. Prove that the (first) lower bound in Lemma 9.4.1 is tight for all settings of the
parameters.

Exercise 9.10. Prove that the evaluations of Xd for every d ∈ Sq,m,r (as in (9.5)) form a basis for
RM(q,m,r).

Exercise 9.11. Argue that Kq,m,r is monotone non-decreasing in q as well as r (when other pa-
rameters are fixed).

Exercise 9.12. Argue the claimed bound on K in Example 9.4.7.

Exercise 9.13. Figure out a RM code that has rate 1
2 and has as large a distance as possible and

as small an alphabet as possible.

Exercise 9.14. Prove the claimed bound on q in Example 9.4.9.

9.6 Bibliographic Notes

We point out that the original code considered by Reed and Muller is the one in Section 9.3.

163

164

Chapter 10

From Large to Small Alphabets: Code

Concatenation

Recall Question 8.3.2 that we had asked before: Is there an explicit asymptotically good binary
code (that is, rate R > 0 and relative distance δ> 0)? In this chapter, we will consider this ques-
tion when we think of explicit code in the sense of Definition 6.3.1 as well as the stronger notion
of a strongly explicit code (Definition 6.3.2).

Let us recall all the (strongly) explicit codes that we have seen so far. (See Table 10.1 for an
overview.)

Code R δ

Hamming 1−O
(

logn

n

)

O
(1

n

)

Hadamard O
(

logn

n

)
1
2

Reed-Solomon 1
2 O

(
1

logn

)

Table 10.1: Strongly explicit binary codes that we have seen so far.

Hamming code (Section 2.4), which has rate R = 1−O(logn/n) and relative distance δ =
O(1/n) and the Hadamard code (Section 2.7), which has rate R = O(logn/n) and relative dis-
tance 1/2. Both of these codes have extremely good R or δ at the expense of the other param-
eter. Next, we consider the Reed-Solomon code (of say R = 1/2) as a binary code, which does
much better– δ= 1

logn
, as we discuss next.

Consider the Reed-Solomon over F2s for some large enough s. It is possible to get an
[

n, n
2 , n

2 +1
]

2s

Reed-Solomon code (i.e. R = 1/2). We now consider a Reed-Solomon codeword, where every
symbol in F2s is represented by an s-bit vector. Now, the “obvious” binary code created by view-
ing symbols from F2s as bit vectors as above is an

[

ns, ns
2 , n

2 +1
]

2 code1. Note that the distance

of this code is only Θ

(
N

log N

)

, where N = ns is the block length of the final binary code. (Recall

that n = 2s and so N = n logn.)

1The proof is left as an exercise.

165

The reason for the (relatively) poor distance is that the bit vectors corresponding to two
different symbols in F2s may only differ by one bit. Thus, d positions which have different F2s

symbols might result in a distance of only d as bit vectors.
To fix this problem, we can consider applying a function to the bit-vectors to increase the

distance between those bit-vectors that differ in smaller numbers of bits. Note that such a func-
tion is simply a code! We define this recursive construction more formally next. This recursive
construction is called concatenated codes and will help us construct (strongly) explicit asymp-
totically good codes.

10.1 Code Concatenation

For q ≥ 2, k ≥ 1 and Q = qk , consider two codes which we call outer code and inner code:

Cout : [Q]K → [Q]N ,

Cin : [q]k → [q]n .

Note that the alphabet size of Cout exactly matches the number of messages for Cin. Then given
m = (m1, . . . ,mK) ∈ [Q]K , we have the code Cout ◦Cin : [q]kK → [q]nN defined as

Cout ◦Cin(m) = (Cin(Cout(m)1), . . . ,Cin(Cout(m)N)) ,

where
Cout(m) = (Cout(m)1, . . . ,Cout(m)N) .

This construction is also illustrated in Figure 10.1.

Cin

m1 m2 mK

Cout(m)1 Cout(m)2 Cout(m)N

Cin (Cout(m)1) Cin (Cout(m)2) Cin (Cout(m)N)

Cout

Cin Cin

Figure 10.1: Concatenated code Cout ◦Cin.

We now look at some properties of a concatenated code.

Theorem 10.1.1. If Cout is an (N ,K ,D)qk code and Cin is an (n,k,d)q code, then Cout ◦Cin is an

(nN ,kK ,dD)q code. In particular, if Cout (Cin resp.) has rate R (r resp.) and relative distance δout

(δin resp.) then Cout ◦Cin has rate Rr and relative distance δout ·δin.

166

Proof. The first claim immediately implies the second claim on the rate and relative distance of
Cout ◦Cin. The claims on the block length, dimension and alphabet of Cout ◦Cin follow from the
definition.2 Next we show that the distance is at least dD . Consider arbitrary m1 6= m2 ∈ [Q]K .
Then by the fact that Cout has distance D , we have

∆ (Cout (m1) ,Cout (m2)) ≥ D. (10.1)

Thus for each position 1 ≤ i ≤ N that contributes to the distance above, we have

∆
(

Cin
(

Cout (m1)i

)

,Cin
(

Cout (m2)i

))

≥ d , (10.2)

as Cin has distance d . Since there are at least D such positions (from (10.1)), (10.2) implies

∆ (Cout ◦Cin (m1) ,Cout ◦Cin (m2)) ≥ dD.

The proof is complete as the choices of m1 and m2 were arbitrary.

If Cin and Cout are linear codes, then so is Cout ◦Cin, which can be proved for example, by
defining a generator matrix for Cout ◦Cin in terms of the generator matrices of Cin and Cout. The
proof is left as an exercise.

10.2 Zyablov Bound

We now instantiate an outer and inner codes in Theorem 10.1.1 to obtain a new lower bound on
the rate given a relative distance. We’ll initially just state the lower bound (which is called the
Zyablov bound) and then we will consider the explicitness of such codes.

We begin with the instantiation of Cout. Note that this is a code over a large alphabet and
we have seen an optimal code over large enough alphabet: Reed-Solomon codes (Chapter 5).
Recall that the Reed-Solomon codes are optimal because they meet the Singleton bound 4.3.1.
Hence, let us assume that Cout meets the Singleton bound with rate of R, i.e. Cout has relative
distance δout > 1−R. Note that now we have a chicken and egg problem here. In order for
Cout ◦Cin to be an asymptotically good code, Cin needs to have rate r > 0 and relative distance
δin > 0 (i.e. Cin also needs to be an asymptotically good code). This is precisely the kind of code
we are looking for to answer Question 8.3.2! However the saving grace will be that k can be
much smaller than the block length of the concatenated code and hence, we can spend “more"
time searching for such an inner code.

Suppose Cin meets the GV bound (Theorem 4.2.1) with rate of r and thus with relative dis-
tance δin ≥ H−1

q (1− r)−ε, for some ε> 0. Then by Theorem 10.1.1, Cout ◦Cin has rate of r R and

δ= (1−R)(H−1
q (1− r)−ε). Expressing R as a function of δ and r , we get the following:

R = 1−
δ

H−1
q (1− r)−ε

.

2Technically, we need to argue that the qkK messages map to distinct codewords to get the dimension of kK .
However, this follows from the fact, which we will prove soon, that Cout ◦Cin has distance dD ≥ 1, where the in-
equality follows for d ,D ≥ 1.

167

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R

δ

GV bound
Zyablov bound

Figure 10.2: The Zyablov bound for binary codes. For comparison, the GV bound is also plotted.

Then optimizing over the choice of r , we get that the rate of the concatenated code satisfies

R ≥ max
0<r<1−Hq (δ+ε)

r

(

1−
δ

H−1
q (1− r)−ε

)

,

where the bound of r < 1−Hq (δ+ε) is necessary to ensure that R > 0. This lower bound on the
rate is called the Zyablov bound. See Figure 10.2 for a plot of this bound for binary codes.

To get a feel for how the bound behaves, consider the case when δ = 1
2 − ε. We claim that

the Zybalov bound states that R ≥Ω(ε3). (Recall that the GV bound for the same δ has a rate of
Ω(ε2).) The proof of this claim is left as an exercise.

Note that the Zyablov bound implies that for every δ> 0, there exists a (concatenated) code
with rate R > 0. However, we already knew about the existence of an asymptotically good code
by the GV bound (Theorem 4.2.1). Thus, a natural question to ask is the following:

Question 10.2.1. Can we construct an explicit code on the Zyablov bound?

We will focus on linear codes in seeking an answer to the question above because linear codes
have polynomial size representation. Let Cout be an [N ,K]Q Reed-Solomon code where N =
Q −1 (evaluation points being F∗Q with Q = qk). This implies that k =Θ(log N). However we still
need an efficient construction of an inner code that lies on the GV bound. We do not expect
to construct such a Cin in time poly(k) as that would answer Open Question 8.3.2! However,
since k =O(log N), note that an exponential time in k algorithm is still a polynomial (in N) time
algorithm.

There are two options for this exponential (in k) time construction algorithm for Cin:

168

• Perform an exhaustive search among all generator matrices for one satisfying the required
property for Cin. One can do this because the Varshamov bound (Theorem 4.2.1) states
that there exists a linear code which lies on the GV bound. This will take qO(kn) time.
Using k = r n (or n =O(k)), we get qO(kn) = qO(k2) = NO(log N), which is upper bounded by
(nN)O(log(nN)), a quasi-polynomial time bound.

• The second option is to construct Cin in qO(n) time and thus use (nN)O(1) time overall. See
Exercise 10.1 for one way to construct codes on the GV bound in time qO(n).

Thus,

Theorem 10.2.1. We can construct a code that achieves the Zyablov bound in polynomial time.

In particular, we can construct explicit asymptotically good code in polynomial time, which
answers Question 10.2.1 in the affirmative.

A somewhat unsatisfactory aspect of this construction (in the proof of Theorem 10.2.1) is
that one needs a brute force search for a suitable inner code (which led to the polynomial con-
struction time). A natural followup question is

Question 10.2.2. Does there exist a strongly explicit asymptotically good code?

10.3 Strongly Explicit Construction

We will now consider what is known as the Justesen code. The main insight in these codes is that
if we are only interested in asymptotically good codes, then the arguments in the previous sec-
tion would go through even if (i) we pick different inner codes for each of the N outer codeword
positions and (ii) most (but not necessarily all) inner code lie on the GV bound. It turns out that
constructing an “ensemble" of codes such that most of the them lie on the GV bound is much
easier than constructing a single code on the GV bound. For example, the ensemble of all linear
codes have this property– this is exactly what Varshamov proved. However, it turns out that we
need this ensemble of inner codes to be a smaller one than the set of all linear codes.

Justesen code is concatenated code with multiple, different linear inner codes. Specifically,
it is composed of an (N ,K ,D)qk outer code Cout and different inner codes C i

in : 1 ≤ i ≤ N . For-

mally, the concatenation of these codes, denoted by Cout ◦
(

C 1
in, . . . ,C N

in

)

, is defined as follows:

given a message m ∈
[

qk
]K

, let the outer codeword be denoted by (c1, . . . ,cN)
def= Cout(m). Then

Cout ◦
(

C 1
in, . . . ,C N

in

)

(m) =
(

C 1
in(c1),C 2

in(c2), . . . ,C n
in(cN)

)

.
We will need the following result.

Theorem 10.3.1. Let ε> 0. There exists an ensemble of inner codes C 1
in,C 2

in, . . . ,C N
in of rate 1

2 , where

N = qk −1, such that for at least (1−ε)N values of i , C i
in has relative distance ≥ H−1

q

(1
2 −ε

)

.

169

In fact, this ensemble is the following: for α ∈ F∗
qk , the inner code Cα

in : Fk
q → F2k

q is defined as

Cα
in(x) = (x,αx). This ensemble is called the Wozencraft ensemble. We claim that Cα

in for every
α ∈ F∗

qk is linear and is strongly explicit. (The proof if left as an exercise.)

10.3.1 Justesen code

For the Justesen code, the outer code Cout is a Reed-Solomon code evaluated over F∗
qk of rate

R, 0 < R < 1. The outer code Cout has relative distance δout = 1−R and block length of N =
qk −1. The set of inner codes is the Wozencraft ensemble {Cα

in}α∈F∗
qk

from Theorem 10.3.1. So

the Justesen code is the concatenated code C∗ def= Cout ◦ (C 1
in,C 2

in, . . . ,C N
in) with the rate R

2 . The
following proposition estimates the distance of C∗.

Proposition 10.3.2. Let ε> 0. C∗ has relative distance at least (1−R −ε) ·H−1
q

(1
2 −ε

)

Proof. Consider m1 6= m2 ∈ (Fqk)K . By the distance of the outer code |S| ≥ (1−R)N , where

S =
{

i |Cout(m1)i 6=Cout(m2)i

}

.

Call the i th inner code good if C i
in has distance at least d

def= H−1
q

(1
2 −ε

)

·2k. Otherwise, the inner
code is considered bad. Note that by Theorem 10.3.1, there are at most εN bad inner codes. Let
Sg be the set of all good inner codes in S, while Sb is the set of all bad inner codes in S. Since
Sb ≤ εN ,

|Sg | = |S|− |Sb | ≥ (1−R −ε)N . (10.3)

For each good i ∈ S, by definition we have

∆

(

C i
in

(

Cout
(

m1)

i

)

,C i
in

(

Cout
(

m2)

i

))

≥ d . (10.4)

Finally, from (10.3) and (10.4), we obtain that the distance of C∗ is at least

(1−R −ε) ·N d = (1−R −ε)H−1
q

(
1

2
−ε

)

N ·2k,

as desired.

Since the Reed-Solomon codes as well as the Wozencraft ensemble are strongly explicit, the
above result implies the following:

Corollary 10.3.3. The concatenated code C∗ from Proposition 10.3.2 is an asymptotically good

code and is strongly explicit.

Thus, we have now satisfactorily answered Question 10.2.2 modulo Theorem 10.3.1, which
we prove next.

170

Proof of Theorem 10.3.1. Fix y = (y1,y2) ∈ F2k
q \{0}. Note that this implies that y1 = 0 and y2 = 0

are not possible. We claim that y ∈ Cα
in for at most one α ∈ F∗

2k . The proof is by a simple case
analysis. First, note that if y ∈Cα

in, then it has to be the case that y2 =α ·y1.

• Case 1: y1 6= 0 and y2 6= 0, then y ∈Cα
in, where α= y2

y1
.

• Case 2: y1 6= 0 and y2 = 0, then y ∉ Cα
in for every α ∈ F∗

2k (as αy1 6= 0 since product of two
elements in F∗

2k also belongs to F∗
2k).

• Case 3: y1 = 0 and y2 6= 0, then y ∉Cα
in for every α ∈ F∗

2k (as αy1 = 0).

Now assume that w t (y) < H−1
q (1−ε)n. Note that if y ∈Cα

in, then Cα
in is “bad”(i.e. has relative

distance < H−1
q

(1
2 −ε

)

). Since y ∈Cα
in for at most one value of α, the total number of bad codes

is at most
∣
∣
∣
∣

{

y|w t (y) < H−1
q

(
1

2
−ε

)

·2k

}∣
∣
∣
∣≤V olq

(

H−1
q

(
1

2
−ε

)

·2k,2k

)

≤ q Hq (H−1
q (1

2−ε))·2k (10.5)

= q (1
2−ε)·2k

=
qk

q2εk

< ε(qk −1) (10.6)

= εN . (10.7)

In the above, (10.5) follows from our good old upper bound on the volume of a Hamming ball
(Proposition 3.3.1) while (10.6) is true for large enough k. Thus for at least (1−ε)N values of α,
Cα

in has relative distance at least H−1
q

(1
2 −ε

)

, as desired. ✷

By concatenating an outer code of distance D and an inner code of distance d , we can ob-
tain a code of distance at least ≥ Dd (Theorem 10.1.1). Dd is called the concatenated code’s de-

sign distance. For asymptotically good codes, we have obtained polynomial time construction
of such codes (Theorem 10.2.1, as well as strongly explicit construction of such codes (Corol-
lary 10.3.3). Further, since these codes were linear, we also get polynomial time encoding. How-
ever, the following natural question about decoding still remains unanswered.

Question 10.3.1. Can we decode concatenated codes up to half their design distance in poly-

nomial time?

10.4 Exercises

Exercise 10.1. In Section 4.2.1, we saw that the Gilbert construction can compute an (n,k)q code
in time qO(n). Now the Varshamov construction (Section 4.2.2) is a randomized construction

171

and it is natural to ask how quickly can we compute an [n,k]q code that meets the GV bound.
In this exercise, we will see that this can also be done in qO(n) deterministic time, though the
deterministic algorithm is not that straight-forward anymore.

1. (A warmup) Argue that Varshamov’s proof gives a qO(kn) time algorithm that constructs
an [n,k]q code on the GV bound. (Thus, the goal of this exercise is to “shave" off a factor
of k from the exponent.)

2. A k×n Toeplitz Matrix A = {Ai , j }k , n
i=1, j=1 satisfies the property that Ai , j = Ai−1, j−1. In other

words, any diagonal has the same value. For example, the following is a 4× 6 Toeplitz
matrix:

1 2 3 4 5 6
7 1 2 3 4 5
8 7 1 2 3 4
9 8 7 1 2 3

A random k ×n Toeplitz matrix T ∈ Fk×n
q is chosen by picking the entries in the first row

and column uniformly (and independently) at random.

Prove the following claim: For any non-zero m ∈ Fk
q , the vector m ·T is uniformly dis-

tributed over Fn
q , that is for every y ∈ Fn

q , Pr
[

m ·T = y
]

= q−n .

(Hint: Write down the expression for the value at each of the n positions in the vector m·T
in terms of the values in the first row and column of T . Think of the values in the first row
and column as variables. Then divide these variables into two sets (this “division" will
depend on m) say S and S. Then argue the following: for every fixed y ∈ Fn

q and for every

fixed assignment to variables in S, there is a unique assignment to variables in S such that
mT = y.)

3. Briefly argue why the claim in part (b) implies that a random code defined by picking its
generator matrix as a random Toeplitz matrix with high probability lies on the GV bound.

4. Conclude that an [n,k]q code on the GV bound can be constructed in time 2O(k+n).

10.5 Bibliographic Notes

Code concatenation was first proposed by Forney[21].
Justesen codes were constructed by Justesen [44]. In his paper, Justesen attributes the Wozen-

craft ensemble to Wozencraft.

172

Part IV

The Algorithms

173

Chapter 11

Decoding Concatenated Codes

In this chapter we study Question 10.3.1. Recall that the concatenated code Cout◦Cin consists of
an outer [N ,K ,D]Q=qk code Cout and an inner [n,k,d]q code Cin, where Q =O(N). (Figure 11.1
illustrates the encoding function.) Then Cout ◦Cin has design distance Dd and Question 10.3.1
asks if we can decode concatenated codes up to half the design distance (say for concatenated
codes that we saw in Section 10.2 that lie on the Zyablov bound). In this chapter, we begin
with a very natural unique decoding algorithm that can correct up to Dd/4 errors. Then we
will consider a more sophisticated algorithm that will allow us to answer Question 10.3.1 in the
affirmative.

11.1 A Natural Decoding Algorithm

We begin with a natural decoding algorithm for concatenated codes that “reverses" the encod-
ing process (as illustrated in Figure 11.1). In particular, the algorithm first decodes the inner
code and then decodes the outer code.

For the time being let us assume that we have a polynomial time unique decoding algo-

rithm DCout :
[

qk
]N →

[

qk
]K

for the outer code that can correct up to D/2 errors.

This leaves us with the task of coming up with a polynomial time decoding algorithm for the
inner code. Our task of coming up with such a decoder is made easier by the fact that the
running time needs to be polynomial in the final block length. This in turn implies that we
would be fine if we pick a decoding algorithm that runs in singly exponential time in the inner
block length as long as the inner block length is logarithmic in the outer code block length.
(Recall that we put this fact to good use in Section 10.2 when we constructed explicit codes on
the Zyablov bound.) Note that the latter is what we have assumed so far and thus, we can use
the Maximum Likelihood Decoder (or MLD) (e.g. its implementation in Algorithm 1, which we
will refer to as DCin). Algorithm 8 formalizes this algorithm.

It is easy to check that each step of Algorithm 8 can be implemented in polynomial time. In
particular,

175

Decoding of Cout ◦Cin

m1 m2 mK

DCout

DCin DCin DCin

m1 m2 mK

Cout(m)1 Cout(m)2 Cout(m)N

Cin (Cout(m)1) Cin (Cout(m)2) Cin (Cout(m)N)

Cout

Cin Cin Cin

y ′
1

y1

y ′
2

y2

y ′
N

yN

y′

y

Encoding of Cout ◦Cin

Figure 11.1: Encoding and Decoding of the concatenated code Cout ◦Cin. DCout is a unique
decoding algorithm for Cout and DCin is a unique decoding algorithm for the inner code (e.g.
MLD).

Algorithm 8 Natural Decoder for Cout ◦Cin

INPUT: Received word y =
(

y1, · · · , yN

)

∈
[

qn
]N

OUTPUT: Message m′ ∈
[

qk
]K

1: y′ ←
(

y ′
1, · · · , y ′

N

)

∈
[

qk
]N

where

Cin
(

y ′
i

)

= DCin

(

yi

)

1 ≤ i ≤ N .

2: m′ ← DCout

(

y′)

3: RETURN m′

176

1. The time complexity of Step 1 is O(nqk), which for our choice of k = O(log N) (and con-
stant rate) for the inner code, is (nN)O(1) time.

2. Step 2 needs polynomial time by our assumption that the unique decoding algorithm
DCout takes NO(1) time.

Next, we analyze the error-correction capabilities of Algorithm 8:

Proposition 11.1.1. Algorithm 8 can correct < Dd
4 many errors.

Proof. Let m be the (unique) message such that ∆
(

Cout ◦Cin (m) ,y
)

< Dd
4 .

We begin the proof by defining a bad event as follows. We say a bad event has occurred (at
position 1 ≤ i ≤ N) if yi 6=Cin (Cout (m)i). More precisely, define the set of all bad events to be

B =
{

i |yi 6=Cin (Cout (m)i)
}

.

Note that if |B| < D
2 , then the decoder in Step 2 will output the message m. Thus, to com-

plete the proof, we only need to show that |B| < D/2. To do this, we will define a superset
B

′ ⊇B and then argue that |B′| < D/2, which would complete the proof.
Note that if ∆

(

yi ,Cin (Cout (m)i)
)

< d
2 then i 6∈ B (by the proof of Proposition 1.4.1)– though

the other direction does not hold. We define B
′ to be the set of indices where i ∈B

′ if and only
if

∆
(

yi ,Cin (Cout (m)i)
)

≥
d

2
.

Note that B ⊆B
′.

Now by definition, note that the total number of errors is at least |B′| · d
2 . Thus, if |B′| ≥ D

2 ,

then the total number of errors is at least D
2 · d

2 = Dd
4 , which is a contradiction. Thus, |B′| < D

2 ,
which completes the proof.

Note that Algorithm 8 (as well the proof of Proposition 11.1.1) can be easily adapted to work
for the case where the inner codes are different, e.g. Justesen codes (Section 10.3).

Thus, Proposition 11.1.1 and Theorem 11.3.3 imply that

Theorem 11.1.2. There exist an explicit linear code on the Zyablov bound that can be decoded

up to a fourth of the Zyablov bound in polynomial time.

This of course is predicated on the fact that we need a polynomial time unique decoder for
the outer code. Note that Theorem 11.1.2 implies the existence of an explicit asymptotically
good code that can be decoded from a constant fraction of errors.

We now state two obvious open questions. The first is to get rid of the assumption on the
existence of DCout :

Question 11.1.1. Does there exist a polynomial time unique decoding algorithm for outer

codes, e.g. for Reed-Solomon codes?

177

Next, note that Proposition 11.1.1 does not quite answer Question 10.3.1. We move to an-
swering this latter question next.

11.2 Decoding From Errors and Erasures

Now we digress a bit from answering Question 10.3.1 and talk about decoding Reed-Solomon
codes. For the rest of the chapter, we will assume the following result.

Theorem 11.2.1. An [N ,K]q Reed-Solomon code can be corrected from e errors (or s erasures) as

long as e < N−K+1
2 (or s < N −K +1) in O(N 3) time.

We defer the proof of the result on decoding from errors to Chapter 13 and leave the proof
of the erasure decoder as an exercise. Next, we show that we can get the best of both worlds by
correcting errors and erasures simultaneously:

Theorem 11.2.2. An [N ,K]q Reed-Solomon code can be corrected from e errors and s erasures in

O(N 3) time as long as

2e + s < N −K +1. (11.1)

Proof. Given a received word y ∈ (Fq ∪ {?})N with s erasures and e errors, let y′ be the sub-vector
with no erasures. This implies that y′ ∈ FN−s

q is a valid received word for an [N − s,K]q Reed-
Solomon code. (Note that this new Reed-Solomon code has evaluation points that correspond-
ing to evaluation points of the original code, in the positions where an erasure did not occur.)
Now run the error decoder algorithm from Theorem 11.2.1 on y′. It can correct y′ as long as

e <
(N − s)−K +1

2
.

This condition is implied by (11.1). Thus, we have proved one can correct e errors under (11.1).
Now we have to prove that one can correct the s erasures under (11.1). Let z′ be the output after
correcting e errors. Now we extend z′ to z ∈ (Fq∪{?})N in the natural way. Finally, run the erasure
decoding algorithm from Theorem 11.2.1 on z. This works as long as s < (N −K +1), which in
turn is true by (11.1).

The time complexity of the above algorithm is O(N 3) as both the algorithms from Theo-
rem 11.2.1 can be implemented in cubic time.

Next, we will use the above errors and erasure decoding algorithm to design decoding algo-
rithms for certain concatenated codes that can be decoded up to half their design distance (i.e.
up to Dd/2).

178

11.3 Generalized Minimum Distance Decoding

Recall the natural decoding algorithm for concatenated codes from Algorithm 8. In particular,
we performed MLD on the inner code and then fed the resulting vector to a unique decoding
algorithm for the outer code. A drawback of this algorithm is that it does not take into account
the information that MLD provides. For example, it does not distinguish between the situations
where a given inner code’s received word has a Hamming distance of one vs where the received
word has a Hamming distance of (almost) half the inner code distance from the closest code-
word. It seems natural to make use of this information. Next, we study an algorithm called the
Generalized Minimum Distance (or GMD) decoder, which precisely exploits this extra informa-
tion.

In the rest of the section, we will assume Cout to be an [N ,K ,D]qk code that can be decoded
(by DCout) from e errors and s erasures in polynomial time as long as 2e + s < D . Further, let Cin

be an [n,k,d]q code with k =O(log N) which has a unique decoder DCin (which we will assume
is the MLD implementation from Algorithm 1).

We will in fact look at three versions of the GMD decoding algorithm. The first two will be
randomized algorithms while the last will be a deterministic algorithm. We will begin with the
first randomized version, which will present most of the ideas in the final algorithm.

11.3.1 GMD algorithm- I

Before we state the algorithm, let us look at two special cases of the problem to build some
intuition.

Consider the received word y = (y1, . . . , yN) ∈ [qn]N with the following special property: for
every i such that 1 ≤ i ≤ N , either yi = y ′

i
or ∆(yi , y ′

i
) ≥ d/2, where y ′

i
= MLDCin (yi). Now we

claim that if ∆(y,Cout ◦Cin) < dD/2, then there are < D positions in y such that ∆(yi ,Cin(y ′
i
)) ≥

d/2 (we call such a position bad). This is because, for every bad position i , by the definition of
y ′

i
, ∆(yi ,Cin) ≥ d/2. Now if there are ≥ D bad positions, this implies that ∆(y,Cout ◦Cin) ≥ dD/2,

which is a contradiction. Now note that we can decode y by just declaring an erasure at every
bad position and running the erasure decoding algorithm for Cout on the resulting vector.

Now consider the received word y = (y1, . . . , yN) with the special property: for every i such
that i ∈ [N], yi ∈Cin. In other words, if there is an error at position i ∈ [N], then a valid codeword
in Cin gets mapped to another valid codeword yi ∈ Cin. Note that this implies that a position
with error has at least d errors. By a counting argument similar to the ones used in the previous
paragraph, we have that there can be < D/2 such error positions. Note that we can now decode
y by essentially running a unique decoder for Cout on y (or more precisely on (x1, . . . , xN), where
yi =Cin(xi)).

Algorithm 9 generalizes these observations to decode arbitrary received words. In particular,
it smoothly “interpolates" between the two extreme scenarios considered above.

Note that if y satisfies one of the two extreme scenarios considered earlier, then Algorithm 9
works exactly the same as discussed above.

By our choice of DCout and DCin , it is easy to see that Algorithm 9 runs in polynomial time (in
the final block length). More importantly, we will show that the final (deterministic) version of

179

Algorithm 9 Generalized Minimum Decoder (ver 1)

INPUT: Received word y =
(

y1, · · · , yN

)

∈
[

qn
]N

OUTPUT: Message m′ ∈
[

qk
]K

1: FOR 1 ≤ i ≤ N DO

2: y ′
i
← DCin (yi).

3: wi ← min
(

∆(y ′
i
, yi), d

2

)

.

4: With probability 2wi

d
, set y ′′

i
←?, otherwise set y ′′

i
← x, where y ′

i
=Cin(x).

5: m′ ← DCout (y′′), where y′′ = (y ′′
1 , . . . , y ′′

N).
6: RETURN m′

Algorithm 9 can do unique decoding of Cout ◦Cin up to half of its design distance.
As a first step, we will show that in expectation, Algorithm 9 works.

Lemma 11.3.1. Let y be a received word such that there exists a codeword Cout◦Cin(m) = (c1, . . . ,cN) ∈
[qn]N such that ∆(Cout ◦Cin(m),y) < Dd

2 . Further, if y′′ has e ′ errors and s′ erasures (when com-

pared with Cout ◦Cin(m)), then

E
[

2e ′+ s′
]

< D.

Note that if 2e ′+ s′ < D , then by Theorem 11.2.2, Algorithm 9 will output m. The lemma
above says that in expectation, this is indeed the case.

Proof of Lemma 11.3.1. For every 1 ≤ i ≤ N , define ei =∆(yi ,ci). Note that this implies that

N∑

i=1
ei <

Dd

2
. (11.2)

Next for every 1 ≤ i ≤ N , we define two indicator variables:

X ?
i = 1y ′′

i
=?,

and
X e

i = 1Cin(y ′′
i

) 6=ci and y ′′
i
6=?.

We claim that we are done if we can show that for every 1 ≤ i ≤ N :

E
[

2X e
i +X ?

i

]

≤
2ei

d
. (11.3)

Indeed, by definition we have: e ′ =
∑

i
X e

i
and s′ =

∑

i
X ?

i
. Further, by the linearity of expectation

(Proposition 3.1.2), we get

E
[

2e ′+ s′
]

≤
2

d

∑

i

ei < D,

180

where the inequality follows from (11.2).
To complete the proof, we will prove (11.3) by a case analysis. Towards this end, fix an arbi-

trary 1 ≤ i ≤ N .
Case 1: (ci = y ′

i
) First, we note that if y ′′

i
6=? then since ci = y ′

i
, we have X e

i
= 0. This along with

the fact that Pr[y ′′
i
=?] = 2wi

d
implies

E
[

X ?
i

]

= Pr[X ?
i = 1] =

2wi

d
,

and
E
[

X e
i

]

= Pr[X e
i = 1] = 0.

Further, by definition we have

wi = min

(

∆(y ′
i , yi),

d

2

)

≤∆(y ′
i , yi) =∆(ci , yi) = ei .

The three relations above prove (11.3) for this case.
Case 2: (ci 6= y ′

i
) As in the previous case, we still have

E
[

X ?
i

]

=
2wi

d
.

Now in this case, if an erasure is not declared at position i , then X e
i
= 1. Thus, we have

E
[

X e
i

]

= Pr[X e
i = 1] = 1−

2wi

d
.

Next, we claim that as ci 6= y ′
i
,

ei +wi ≥ d , (11.4)

which implies

E
[

2X e
i +X ?

i

]

= 2−
2wi

d
≤

2ei

d
,

as desired.
To complete the proof, we show (11.4) via yet another case analysis.

Case 2.1: (wi =∆(y ′
i
, yi) < d/2) By definition of ei , we have

ei +wi =∆(yi ,ci)+∆(y ′
i , yi) ≥∆(ci , y ′

i) ≥ d ,

where the first inequality follows from the triangle inequality and the second inequality follows
from the fact that Cin has distance d .
Case 2.2: (wi = d

2 ≤∆(y ′
i
, yi)) As y ′

i
is obtained from MLD, we have

∆(y ′
i , yi) ≤∆(ci , yi).

This along with the assumption on ∆(y ′
i
, yi), we get

ei =∆(ci , yi) ≥∆(y ′
i , yi) ≥

d

2
.

This in turn implies that
ei +wi ≥ d ,

as desired. ✷

181

11.3.2 GMD Algorithm- II

Note that Step 4 in Algorithm 9 uses “fresh" randomness for each i . Next we look at another
randomized version of the GMD algorithm that uses the same randomness for every i . In par-
ticular, consider Algorithm 10.

Algorithm 10 Generalized Minimum Decoder (ver 2)

INPUT: Received word y =
(

y1, · · · , yN

)

∈
[

qn
]N

OUTPUT: Message m′ ∈
[

qk
]K

1: Pick θ ∈ [0,1] uniformly at random.
2: FOR 1 ≤ i ≤ N DO

3: y ′
i
← DCin (yi).

4: wi ← min
(

∆(y ′
i
, yi), d

2

)

.

5: If θ < 2wi

d
, set y ′′

i
←?, otherwise set y ′′

i
← x, where y ′

i
=Cin(x).

6: m′ ← DCout (y′′), where y′′ = (y ′′
1 , . . . , y ′′

N).
7: RETURN m′

We note that in the proof of Lemma 11.3.1, we only use the randomness to show that

Pr
[

y ′′
i =?

]

=
2wi

d
.

In Algorithm 10, we note that

Pr
[

y ′′
i =?

]

= Pr

[

θ ∈
[

0,
2wi

d

)]

=
2wi

d
,

as before (the last equality follows from our choice of θ). One can verify that the proof of
Lemma 11.3.1 can be used to show the following lemma:

Lemma 11.3.2. Let y be a received word such that there exists a codeword Cout◦Cin(m) = (c1, . . . ,cN) ∈
[qn]N such that ∆(Cout ◦Cin(m),y) < Dd

2 . Further, if y′′ has e ′ errors and s′ erasures (when com-

pared with Cout ◦Cin(m)), then

Eθ
[

2e ′+ s′
]

< D.

Next, we will see that Algorithm 10 can be easily “derandomized."

11.3.3 Derandomized GMD algorithm

Lemma 11.3.2 along with the probabilistic method shows that there exists a value θ∗ ∈ [0,1] such
that Algorithm 10 works correctly even if we fix θ to be θ∗ in Step 1. Obviously we can obtain
such a θ∗ by doing an exhaustive search for θ. Unfortunately, there are uncountable choices of
θ because θ ∈ [0,1]. However, this problem can be taken care of by the following discretization
trick.

182

Define Q = {0,1}∪ { 2w1
d

, · · · , 2wN

d
}. Then because for each i , wi = min(∆(y ′

i
, yi),d/2), we have

Q = {0,1}∪ {q1, · · · , qm}

where q1 < q2 < ·· · < qm for some m ≤
⌊

d
2

⌋

. Notice that for every θ ∈ [qi , qi+1), just before Step

6, Algorithm 10 computes the same y′′. (See Figure 11.2 for an illustration as to why this is the
case.)

Everything here is not an erasure

θ

0 q1 q2 qi−1 1qi qi+1

Everything gets ?

Figure 11.2: All values of θ ∈ [qi , qi+1) lead to the same outcome

Thus, we need to cycle through all possible values of θ ∈Q, leading to Algorithm 11.

Algorithm 11 Deterministic Generalized Minimum Decoder‘

INPUT: Received word y =
(

y1, · · · , yN

)

∈
[

qn
]N

OUTPUT: Message m′ ∈
[

qk
]K

1: Q ← { 2w1
d

, · · · , 2wN

d
}∪ {0,1}.

2: FOR θ ∈Q DO

3: FOR 1 ≤ i ≤ N DO

4: y ′
i
← DCin (yi).

5: wi ← min
(

∆(y ′
i
, yi), d

2

)

.

6: If θ < 2wi

d
, set y ′′

i
←?, otherwise set y ′′

i
← x, where y ′

i
=Cin(x).

7: m′
θ
← DCout (y′′), where y′′ = (y ′′

1 , . . . , y ′′
N).

8: RETURN m′
θ∗ for θ∗ = argminθ∈Q ∆

(

Cout ◦Cin
(

m′
θ

)

,y
)

Note that Algorithm 11 is Algorithm 10 repeated |Q| times. Since |Q| is O(n), this implies
that Algorithm 11 runs in polynomial time. This along with Theorem 10.2.1 implies that

Theorem 11.3.3. For every constant rate, there exists an explicit linear binary code on the Zyablov

bound. Further, the code can be decoded up to half of the Zyablov bound in polynomial time.

Note that the above answers Question 10.3.1 in the affirmative.

11.4 Bibliographic Notes

Forney in 1966 designed the Generalized Minimum Distance (or GMD) decoding [22].

183

184

Chapter 12

Efficiently Achieving the Capacity of the

BSCp

Table 12.1 summarizes the main results we have seen so far for (binary codes).

Shannon Hamming
Unique Decoding List Decoding

Capacity 1−H(p) (Thm 6.3.1) ≥ GV (Thm 4.2.1) 1−H(p) (Thm 7.4.1)
≤ MRRW (Sec 8.2)

Explicit Codes ? Zyablov bound (Thm 10.2.1) ?
Efficient Algorithms ? 1

2 · Zyablov bound (Thm 11.3.3) ?

Table 12.1: An overview of the results seen so far

In this chapter, we will tackle the open questions in the first column of Table 12.1. Recall that
there exist linear codes of rate 1−H(p)−ε such that decoding error probability is not more than
2−δn , δ=Θ(ε2) on the BSCp (Theorem 6.3.1 and Exercise 6.3). This led to Question 6.3.1, which
asks if we can achieve the BSCp capacity with explicit codes and efficient decoding algorithms?

12.1 Achieving capacity of BSCp

We will answer Question 6.3.1 in the affirmative by using concatenated codes. The main intu-
ition in using concatenated codes is the following. As in the case of construction of codes on
the Zyablov bound, we will pick the inner code to have the property that we are after: i.e. a
code that achieves the BSCp capacity. (We will again exploit the fact that since the block length
of the inner code is small, we can construct such a code in a brute-force manner.) However,
unlike the case of the Zyablov bound construction, we do not know of an explicit code that is
optimal over say the qSCp channel. The main observation here is that the fact that the BSCp

noise is memory-less can be exploited to pick the outer code that can correct from some small
but constant fraction of worst-case errors.

185

Before delving into the details, we present the main ideas. We will use an outer code Cout that
has rate close to 1 and can correct from some fixed constant (say γ) fraction of worst-case errors.
We pick an inner code Cin that achieves the BSCp capacity with parameters as guaranteed by
Theorem 6.3.1. Since the outer code has rate almost 1, the concatenated code can be made
to have the required rate (since the final rate is the product of the rates of Cout and Cin). For
decoding, we use the natural decoding algorithm for concatenated codes from Algorithm 8.
Assume that each of the inner decoders has a decoding error probability of (about) γ. Then the
intermediate received word y′ has an expected γ fraction of errors (with respect to the outer
codeword of the transmitted message), though we might not have control over where the errors
occur. However, we picked Cout so that it can correct up to γ fraction of worst-case errors. This
shows that everything works in expectation. To make everything work with high probability (i.e.
achieve exponentially small overall decoding error probability), we make use of the fact that
since the noise in BSCp is independent, the decoding error probabilities of each of the inner
decodings is independent and thus, by the Chernoff bound (Theorem 3.1.6), with all but an
exponentially small probability y′ has Θ(γ) fraction of errors, which we correct with the worst-
case error decoder for Cout. See Figure 12.1 for an illustration of the main ideas. Next, we present
the details.

Can correct ≤ γ worst-case errors

m1 m2 mK

Dout

Din Din Din

y ′
1

y1

y ′
2

y2

y ′
N

yN

y′

y

Independent decoding error probability of ≤ γ
2

Figure 12.1: Efficiently achieving capacity of BSCp .

We answer Question 6.3.1 in the affirmative by using a concatenated code Cout◦Cin with the
following properties (where γ > 0 is a parameter that depends only on ε and will be fixed later
on):

(i) Cout: The outer code is a linear [N ,K]2k code with rate R ≥ 1− ε
2 , where k = O(log N).

Further, the outer code has a unique decoding algorithm Dout that can correct at most γ
fraction of worst-case errors in time Tout(N).

(ii) Cin: The inner code is a linear binary [n,k]2 code with a rate of r ≥ 1−H(p)−ε/2. Further,
there is a decoding algorithm Din (which returns the transmitted codeword) that runs in
time Tin(k) and has decoding error probability no more than γ

2 over BSCp .

186

Table 12.2 summarizes the different parameters of Cout and Cin.

Dimension Block q Rate Decoder Decoding Decoding
length time guarantee

Cout K N 2k 1− ε
2 Dout Tout(N) ≤ γ fraction of

worst-case errors
Cin k ≤O(log N) n 2 1−H(p)− ε

2 Din Tin(k) ≤ γ
2 decoding error

probability over BSCp

Table 12.2: Summary of properties of Cout and Cin

Suppose C∗ =Cout ◦Cin. Then, it is easy to check that

R(C∗) = R · r ≥
(

1−
ε

2

)

·
(

1−H(p)−
ε

2

)

≥ 1−H(p)−ε,

as desired.
For the rest of the chapter, we will assume that p is an absolute constant. Note that this

implies that k =Θ(n) and thus, we will use k and n interchangeably in our asymptotic bounds.
Finally, we will use N = nN to denote the block length of C∗.

The decoding algorithm for C∗ that we will use is Algorithm 8, which for concreteness we
reproduce as Algorithm 12.

Algorithm 12 Decoder for efficiently achieving BSCp capacity

INPUT: Received word y =
(

y1, · · · , yN

)

∈
[

qn
]N

OUTPUT: Message m′ ∈
[

qk
]K

1: y′ ←
(

y ′
1, · · · , y ′

N

)

∈
[

qk
]N

where

Cin
(

y ′
i

)

= Din
(

yi

)

1 ≤ i ≤ N .

2: m′ ← Dout
(

y′)

3: RETURN m′

Note that encoding C∗ takes time

O(N 2k2)+O(N kn) ≤O(N 2n2) =O(N 2),

as both the outer and inner codes are linear1. Further, the decoding by Algorithm 12 takes time

N ·Tin(k)+Tout(N) ≤ poly(N),

1Note that encoding the outer code takes O(N 2) operations over Fqk . The term O(N 2k2) then follows from the

fact that each operation over Fqk can be implemented with O(k2) operations over Fq .

187

where the inequality is true as long as

Tout(N) = NO(1) and Tin(k) = 2O(k). (12.1)

Next, we will show that decoding via Algorithm 12 leads to an exponentially small decoding
error probability over BSCp . Further, we will use constructions that we have already seen in this
book to instantiate Cout and Cin with the required properties.

12.2 Decoding Error Probability

We begin by analyzing Algorithm 12.
By the properties of Din, for any fixed i , there is an error at y ′

i
with probability ≤ γ

2 . Each
such error is independent, since errors in BSCp itself are independent by definition. Because of

this, and by linearity of expectation, the expected number of errors in y′ is ≤ γN

2 .
Taken together, those two facts allow us to conclude that, by the (multiplicative) Chernoff

bound (Theorem 3.1.6), the probability that the total number of errors will be more than γN

is at most e− γN
6 . Since the decoder Dout fails only when there are more than γN errors, this is

also the final decoding error probability. Expressed in asymptotic terms, the error probability is

2−Ω(γN

n).

12.3 The Inner Code

We find Cin with the required properties by an exhaustive search among linear codes of di-
mension k with block length n that achieve the BSCp capacity by Shannon’s theorem (Theo-
rem 6.3.1). Recall that for such codes with rate 1− H(p)− ε

2 , the MLD has a decoding error

probability of 2−Θ(ε2n) (Exercise 6.3). Thus, if k is at least Ω

(
log(1

γ)

ε2

)

, Exercise 6.3 implies the exis-

tence of a linear code with decoding error probability at most γ
2 (which is what we need). Thus,

with the restriction on k from the outer code, we have the following restriction on k:

Ω

(
log(1

γ
)

ε2

)

≤ k ≤O
(

log N
)

.

Note, however, that since the proof of Theorem 6.3.1 uses MLD on the inner code and Al-
gorithm 1 is the only known implementation of MLD, we have Tin = 2O(k) (which is what we
needed in (12.1). The construction time is even worse. There are 2O(kn) generator matrices; for
each of these, we must check the error rate for each of 2k possible transmitted codewords, and
for each codeword, computing the decoding error probability requires time 2O(n).2 Thus, the
construction time for Cin is 2O(n2).

2To see why the latter claim is true, note that there are 2n possible received words and given any one of these
received words, one can determine (i) if the MLD produces a decoding error in time 2O(k) and (ii) the probability
that the received word can be realized, given the transmitted codeword in polynomial time.

188

c1 c3 · · ·
cN−1

c2 c4 cN

⇓
c1 c2 c3 c4 · · · cN−1 cN

Figure 12.2: Error Correction cannot decrease during “folding." The example has k = 2 and a
pink cell implies an error.

12.4 The Outer Code

We need an outer code with the required properties. There are several ways to do this.
One option is to set Cout to be a Reed-Solomon code over F2k with k =Θ(log N) and rate 1− ε

2 .
Then the decoding algorithm Dout, could be the error decoding algorithm from Theorem 11.2.2.
Note that for this Dout we can set γ= ε

4 and the decoding time is Tout(N) =O(N 3).
Till now everything looks on track. However, the problem is the construction time for Cin,

which as we saw earlier is 2O(n2). Our choice of n implies that the construction time is 2O(log2 N) ≤
NO(log N), which of course is not polynomial time. Thus, the trick is to find a Cout defined over a

smaller alphabet (certainly no larger than 2O(
p

log N)). This is what we do next.

12.4.1 Using a binary code as the outer code

The main observation is that we can also use an outer code which is some explicit binary linear
code (call it C ′) that lies on the Zyablov bound and can be corrected from errors up to half its
design distance. We have seen that such a code can be constructed in polynomial time (Theo-
rem 11.3.3).

Note that even though C ′ is a binary code, we can think of C ′ as a code over F2k in the obvious
way: every k consecutive bits are considered to be an element in F2k (say via a linear map). Note
that the rate of the code does not change. Further, any decoder for C ′ that corrects bit errors
can be used to correct errors over F2k . In particular, if the algorithm can correct β fraction of
bit errors, then it can correct that same fraction of errors over F2k . To see this, think of the
received word as y ∈ (F2k)N ′/k , where N ′ is the block length of C ′ (as a binary code), which is at
a fractional Hamming distance at most ρ away from c ∈ (F2k)N ′/k . Here c is what once gets by
“folding" consecutive k bits into one symbol in some codeword c′ ∈ C ′. Now consider y′ ∈ FN ′

2 ,
which is just “unfolded" version of y. Now note that each symbol in y that is in error (w.r.t. c)
leads to at most k bit errors in y′ (w.r.t. c′). Thus, in the unfolded version, the total number of
errors is at most

k ·ρ ·
N ′

k
= ρ ·N ′.

(See Figure 12.2 for an illustration for k = 2.) Thus to decode y, one can just “unfold" y to y′ and
use the decoding algorithm for C ′ (which can handle ρ fraction of errors) on y′.

189

We will pick Cout to be C ′ when considered over F2k , where we choose

k =Θ

(
log(1

γ
)

ε2

)

.

Further, Dout is the GMD decoding algorithm (Algorithm 11) for C ′.
Now, to complete the specification of C∗, we relate γ to ε. The Zyablov bound gives δout =

(1−R)H−1(1− r), where R and r are the rates of the outer and inners codes for C ′. Now we can
set 1−R = 2

p
γ (which implies that R = 1−2

p
γ) and H−1(1− r) =p

γ, which implies that r is3

1−O
(p

γ log 1
γ

)

. Since we picked Dout to be the GMD decoding algorithm, it can correct δout
2 = γ

fraction of errors in polynomial time, as desired.

The overall rate of Cout is simply R · r =
(

1−2
p
γ
)

·
(

1−O
(p

γ log 1
γ

))

. This simplifies to 1−

O
(p

γ log
(

1
γ

))

. Recall that we need this to be at least 1− ε
2 . Thus, we would be done here if we

could show that ε is Ω
(p

γ log 1
γ

)

, which would follow by setting

γ= ε3.

12.4.2 Wrapping Up

We now recall the construction, encoding and decoding time complexity for our construction

of C∗. The construction time for Cin is 2O(n2), which substituting for n, is 2
O

(
1
ε4 log2(1

ε

))

. The
construction time for Cout, meanwhile, is only poly(N). Thus, our overall, construction time is

poly(N)+2
O

(
1
ε4 log2(1

ε

))

.
As we have seen in Section 12.1, the encoding time for this code is O(N 2), and the decoding

time is NO(1)+N ·2O(n) = poly(N)+N ·2O
(

1
ε2 log

(1
ε

))

. We also have shown that the decoding error

probability is exponentially small: 2−Ω(γN

n) = 2−Ω(ε6
N). Thus, we have proved the following

result:

Theorem 12.4.1. For every constant p and 0 < ε< 1−H(p), there exists a linear code C∗ of block

length N and rate at least 1−H(p)−ε, such that

(a) C∗ can be constructed in time poly(N)+2O(ε−5);

(b) C∗ can be encoded in time O(N 2); and

(c) There exists a poly(N)+N ·2O(ε−5) time decoding algorithm that has an error probability

of at most 2−Ω(ε6
N) over the BSCp .

3Note that r = 1− H(
p
γ) = 1+p

γ log
p
γ+ (1−p

γ) log(1−p
γ). Noting that log(1−p

γ) = −pγ−Θ(γ), we can
deduce that r = 1−O(

p
γ log(1/γ)).

190

Thus, we have answered in the affirmative Question 6.3.1, which was the central open ques-
tion from Shannon’s work. However, there is a still somewhat unsatisfactory aspect of the result
above. In particular, the exponential dependence on 1/ε in the decoding time complexity is not
nice. This leads to the following question:

Question 12.4.1. Can we bring the high dependence on ε down to poly
(1
ε

)

in the decoding

time complexity?

12.5 Discussion and Bibliographic Notes

Forney answered Question 6.3.1 in the affirmative by using concatenated codes. (As was men-
tioned earlier, this was Forney’s motivation for inventing code concatenation: the implication
for the rate vs. distance question was studied by Zyablov later on.)

We now discuss Question 12.4.1. For the binary erasure channel, the decoding time com-
plexity can be brought down to N ·poly(1

ε) using LDPC codes, specifically a class known as Tor-
nado codes developed by Luby et al. [54]. The question for binary symmetric channels, however,
is still open. Recently there have been some exciting progress on this front by the construction
of the so-called Polar codes.

We conclude by noting an improvement to Theorem 12.4.1. We begin with a theorem due to
Spielman:

Theorem 12.5.1 ([69]). For every small enough β> 0, there exists an explicit Cout of rate 1
1+β and

block length N , which can correct Ω

(

β2

(log 1
β)2

)

errors, and has O(N) encoding and decoding.

Clearly, in terms of time complexity, this is superior to the previous option in Section 12.4.1.
Such codes are called “Expander codes.” One can essentially do the same calculations as in

Section 12.4.1 with γ = Θ

(
ε2

log2(1/ε)

)

.4 However, we obtain an encoding and decoding time of

N ·2poly(1
ε). Thus, even though we obtain an improvement in the time complexities as compared

to Theorem 12.4.1, this does not answer Question 12.4.1.

4This is because we need 1/(1+β) = 1−ε/2, which implies that β=Θ(ε).

191

192

Chapter 13

Efficient Decoding of Reed-Solomon Codes

So far in this book, we have shown how to efficiently decode explicit codes up to half of the
Zyablov bound (Theorem 11.3.3) and how to efficiently achieve the capacity of the BSCp (The-
orem 12.4.1). The proofs of both of these results assumed that one can efficiently do unique
decoding for Reed-Solomon codes up to half its distance (Theorem 11.2.1). In this chapter, we
present such a unique decoding algorithm. Then we will generalize the algorithm to a list de-
coding algorithm that efficiently achieves the Johnson bound (Theorem 7.3.1).

13.1 Unique decoding of Reed-Solomon codes

Consider the [n,k,d = n−k+1]q Reed-Solomon code with evaluation points (α1, · · · ,αn). (Recall

Definition 5.2.1.) Our goal is to describe an algorithm that corrects up to e < n−k+1
2 errors in

polynomial time. Let y =
(

y1, · · · , yn

)

∈ Fn
q be the received word. We will now do a syntactic shift

that will help us better visualize all the decoding algorithms in this chapter better. In particular,
we will also think of y as the set of ordered pairs {(α1, y1), (α2, y2), . . . , (αn , yn)}, that is, we think of
y as a collection of “points" in “2-D space." See Figure 13.1 for an illustration. From now on, we
will switch back and forth between our usual vector interpretation of y and this new geometric
notation.

Further, let us assume that there exists a polynomial P (X) of degree at most k −1 such that
∆

(

y, (P (αi))n
i=1

)

≤ e. (Note that if such a P (X) exists then it is unique.) See Figure 13.2 for an
illustration.

We will use reverse engineering to design a unique decoding algorithm for Reed-Solomon
codes. We will assume that we somehow know P (X) and then prove some identities involving
(the coefficients of) P (X). Then to design the algorithm we will just use the identities and try
to solve for P (X). Towards this end, let us assume that we also magically got our hands on a
polynomial E(X) such that

E (αi) = 0 if and only if yi 6= P (αi) .

E(X) is called an error-locator polynomial. We remark that there exists such a polynomial of

193

−7

αi

2

3

1 3 5

4

1

−1

−2

−3

−4

−2−4−6

−5 −3 −1

2 4 6

n = 14,k = 2,e = 6

−7 7

yi

5

6

7

−5

−6

Figure 13.1: An illustration of a received word for a [14,2] Reed-Solomon code
(we have implicitly embedded the field Fq in the set {−7, . . . ,7}). The evalua-
tions points are (−7,−5,−4,−3,−2,−1,0,1,2,3,4,5,6,7) and the received word is
(−7,5,−4,−3,2,−4,0,1,−2,3,4,−5,−2,7).

degree at most e. In particular, consider the polynomial:

E(X) =
∏

i :yi 6=P (αi)
(X −αi) .

See Figure 13.3 for an illustration of the E(X) corresponding to the received word in Figure 13.1.

Now we claim that for every 1 ≤ i ≤ n,

yi E (αi) = P (αi)E (αi) . (13.1)

To see why (13.1) is true, note that if yi 6= P (αi), then both sides of (13.1) are 0 (as E(αi) = 0).
On the other hand, if yi = P (αi), then (13.1) is obviously true.

All the discussion above does not seem to have made any progress as both E(X) and P (X)
are unknown. Indeed, the task of the decoding algorithm is to find P (X)! Further, if E(X) is
known then one can easily compute P (X) from y (the proof is left as an exercise). However,
note that we can now try and do reverse engineering. If we think of coefficients of P (X) (of
which there are k) and the coefficients of E(X) (of which there are e +1) as variables, then we
have n equations from (13.1) in e +k +1 variables. From our bound on e, this implies we have
more equations than variables. Thus, if we could solve for these unknowns, we would be done.

194

P (X) = X

2

3

1 3 5

4

1

−1

−2

−3

−4

−2−4−6

−5 −3 −1

2 4 6

n = 14,k = 2,e = 6

−7 7

yi

5

6

7

−5

−6

−7

αi

Figure 13.2: An illustration of the closest codeword P (X) = X for the received word from Fig-
ure 13.1. Note that we are considering polynomials of degree 1, which are “lines."

However, there is a catch– these n equations are quadratic equations, which in general are NP-
hard to solve. However, note that for our choice of e, we have e+k−1 ≪ n. Next, we will exploit
this with a trick that is sometimes referred to as linearization. The idea is to introduce new
variables so that we can convert the quadratic equations into linear equations. Care must be
taken so that the number of variables after this linearization step is still smaller than the (now
linear) n equations. Now we are in familiar territory as we know how to solve linear equations
over a field (e.g. by Gaussian elimination). (See section 13.4 for some more discussion on the
hardness of solving quadratic equations and the linearization technique.)

To perform linearization, define N (X)
def= P (X) ·E (X). Note that N (X) is a polynomial of

degree less than or equal to e +k −1. Further, if we can find N (X) and E (X), then we are done.
This is because we can compute P (X) as follows:

P (X) =
N (X)

E (X)
.

The main idea in the Welch-Berlekamp algorithm is to “forget" what N (X) and E(X) are
meant to be (other than the fact that they are degree bounded polynomials).

13.1.1 Welch-Berlekamp Algorithm

Algorithm 13 formally states the Welch-Berlekamp algorithm.
As we have mentioned earlier, computing E(X) is as hard as finding the solution polynomial

P (X). Also in some cases, finding the polynomial N (X) is as hard as finding E(X). E.g., given

195

E(X) is the product of these lines

αi

2

3

1 3 5

4

1

−1

−2

−3

−4

−2−4−6

−5 −3 −1

2 4 6

−7 7

yi

5

6

7

−5

−6

−7

n = 14,k = 2,e = 6

Figure 13.3: An illustration of the the error locator polynomial E(X) = (X +5)(X +2)(X +1)(X −
2)(X − 5)(X − 6) for the received word from Figure 13.1. Note that E(X) is the product of the
green lines.

N (X) and y (such that yi 6= 0 for 1 ≤ i ≤ n) one can find the error locations by checking positions
where N (αi) = 0. While each of the polynomials E(X) , N (X) is hard to find individually, the
main insight in the Welch-Berlekamp algorithm is that computing them together is easier.

Next we analyze the correctness and run time of Algorithm 13.

Correctness of Algorithm 13. Note that if Algorithm 13 does not output fail, then the algo-
rithm produces a correct output. Thus, to prove the correctness of Algorithm 13, we just need
the following result.

Theorem 13.1.1. If (P (αi))n
i=1 is transmitted (where P (X) is a polynomial of degree at most k−1)

and at most e < n−k+1
2 errors occur (i.e. ∆(y, (P (αi))n

i=1) ≤ e), then the Welch-Berlekamp algo-

rithm outputs P (X).

The proof of the theorem above follows from the subsequent claims.

Claim 13.1.2. There exist a pair of polynomials E∗(X) and N∗(X) that satisfy Step 1 such that
N∗(X)
E∗(X) = P (X).

Note that now it suffices to argue that N1(X)
E1(X) =

N2(X)
E2(X) for any pair of solutions ((N1(X),E1(X))

and (N2(X),E2(X)) that satisfy Step 1, since Claim 13.1.2 above can then be used to see that ratio
must be P (X). Indeed, we will show this to be the case:

196

Algorithm 13 Welch-Berlekamp Algorithm

INPUT: n ≥ k ≥ 1, 0 < e < n−k+1
2 and n pairs {(αi , yi)}n

i=1 with αi distinct
OUTPUT: Polynomial P (X) of degree at most k −1 or fail.

1: Compute a non-zero polynomial E(X) of degree exactly e, and a polynomial N (X) of degree
at most e +k −1 such that

yi E(αi) = N (αi) 1 ≤ i ≤ n. (13.2)

2: IF E(X) and N (X) as above do not exist or E(X) does not divide N (X) THEN

3: RETURN fail

4: P (X) ← N (X)
E(X) .

5: IF ∆(y, (P (αi))n
i=1) > e THEN

6: RETURN fail

7: ELSE

8: RETURN P (X)

Claim 13.1.3. If any two distinct solutions (E1(X), N1(X)) 6= (E2(X), N2(X)) satisfy Step 1, then

they will satisfy
N1(X)

E1(X)
=

N2(X)

E2(X)
.

Proof of Claim 13.1.2. We just take E∗(X) to be the error-locating polynomial for P (X) and let
N∗(X) = P (X)E∗(X) where deg(N∗(X)) ≤ deg(P (X))+deg(E∗(X)) ≤ e+k−1. In particular, define
E∗(X) as the following polynomial of degree exactly e:

E∗(X) = X e−∆
(

y,(P (αi))n
i=1

) ∏

1≤i≤n|yi 6=P (αi)
(X −αi). (13.3)

By definition, E∗(X) is a non-zero polynomial of degree e with the following property:

E∗(αi) = 0 iff yi 6= P (αi).

We now argue that E∗(X) and N∗(X) satisfy (13.2). Note that if E∗(αi) = 0, then N∗(αi) =
P (αi)E∗(αi) = yi E∗(αi) = 0. When E∗(αi) 6= 0, we know P (αi) = yi and so we still have P (αi)E∗(αi) =
yi E∗(αi), as desired.

Proof of Claim 13.1.3. Note that the degrees of the polynomials N1(X)E2(X) and N2(X)E1(X)
are at most 2e +k −1. Let us define polynomial R(X) with degree at most 2e +k −1 as follows:

R(X) = N1(X)E2(X)−N2(X)E1(X). (13.4)

Furthermore, from Step 1 we have, for every i ∈ [n] ,

N1(αi) = yi E1(αi) and N2(αi) = yi E2(αi). (13.5)

197

Substituting (13.5) into (13.4) we get for 1 ≤ i ≤ n:

R(αi) = (yi E1(αi))E2(αi)− (yi E2(αi))E1(αi)

= 0.

The polynomial R(X) has n roots and

deg(R(X)) ≤ e +k −1+e

= 2e +k −1

< n,

Where the last inequality follows from the upper bound on e. Since deg(R(X)) < n, by the degree
mantra (Proposition 5.2.3) we have R(X) ≡ 0. This implies that N1(X)E2(X) ≡ N2(X)E1(X). Note
that as E1(X) 6= 0 and E2(X) 6= 0, this implies that N1(X)

E1(X) =
N2(X)
E2(X) , as desired.

Implementation of Algorithm 13. In Step 1, N (X) has e + k unknowns and E(X) has e + 1
unknowns. For each 1 ≤ i ≤ n, the constraint in (13.2) is a linear equation in these unknowns.
Thus, we have a system of n linear equations in 2e +k +1 < n +2 unknowns. By claim 13.1.2,
this system of equations have a solution. The only extra requirement is that the degree of the
polynomial E(X) should be exactly e. We have already shown E(X) in equation (13.3) to satisfy
this requirement. So we add a constraint that the coefficient of X e in E(X) is 1. Therefore, we
have n +1 linear equation in at most n +1 variables, which we can solve in time O(n3), e.g. by
Gaussian elimination.

Finally, note that Step 4 can be implemented in time O(n3) by “long division.” Thus, we have
proved

Theorem 13.1.4. For any [n,k]q Reed-Solomon code, unique decoding can be done in O(n3) time

up to d−1
2 = n−k

2 number of errors.

Recall that the above is a restatement of the error decoding part of Theorem 11.2.1. Thus,
this fills in the final missing piece from the proofs of Theorem 11.3.3 (decoding certain concate-
nated codes up to half of their design distance) and Theorem 12.4.1 (efficiently achieving the
BSCp capacity).

13.2 List Decoding Reed-Solomon Codes

Recall Question 7.4.3, which asks if there is an efficient list decoding algorithm for a code of rate
R > 0 that can correct 1−

p
R fraction of errors. Note that in the question above, explicitness is

not an issue as e.g., a Reed-Solomon code of rate R by the Johnson bound is (1−
p

R,O(n2))-list
decodable (Theorem 7.3.1).

We will study an efficient list decoding algorithm for Reed-Solomon codes that can correct
up to 1−

p
R fraction of errors. To this end, we will present a sequence of algorithms for (list)

decoding Reed-Solomon codes that ultimately will answer Question 7.4.3.

198

Before we talk about the algorithms, we restate the (list) decoding problem for Reed-Solomon
codes. Consider any [n,k]q Reed-Solomon code that has the evaluation set {α1, . . . ,αm}. Below
is a formal definition of the decoding problem for Reed-Solomon codes:

• Input: Received word y = (y1, . . . , yn), yi ∈ Fq and error parameter e = n − t .

• Output: All polynomials P (X) ∈ Fq [X] of degree at most k −1 such that P (αi) = yi for
at least t values of i .

Our main goal of course is to make t as small as possible.

We begin with the unique decoding regime, where t >
n +k

2
. We looked at the Welch-

Berlekamp algorithm in Algorithm 13, which we restate below in a slightly different form (that
will be useful in developing the subsequent list decoding algorithms).

• Step 1: Find polynomials N (X) of degree k +e −1, and E(X) of degree e such that

N (αi) = yi E(αi), for every 1 ≤ i ≤ n

• Step 2: If Y −P (X) divides Q(X ,Y) = Y E(X)−N (X), then output P (X) (assuming∆(y, (P (αi))n
i=1) ≤

e).

Note that Y −P (X) divides Q(X ,Y) in Step 2 above if and only if P (X) = N (X)
E(X) , which is exactly

what Step 4 does in Algorithm 13.

13.2.1 Structure of list decoding algorithms for Reed-Solomon

Note that the Welch-Berlekamp Algorithm has the following general structure:

• Step 1: (Interpolation Step) Find non-zero Q(X ,Y) such that Q(αi , yi) = 0,1 ≤ i ≤ n.

• Step 2: (Root Finding Step) If Y −P (X) is a factor of Q(X ,Y), then output P (X) (assuming
it is close enough to the received word).

In particular, in the Welch-Berlekamp algorithm we have Q(X ,Y) = Y E(X)−N (X) and hence,
Step 2 is easy to implement.

All the list decoding algorithms that we will consider in this chapter will have the above
two-step structure. The algorithms will differ in how exactly Step 1 is implemented. Before we
move on to the details, we make one observation that will effectively “take care of" Step 2 for us.
Note that Step 2 can be implemented if one can factorize the bivariate polynomial Q(X ,Y) (and
then only retain the linear factors of the form Y −P (X)). Fortunately, it is known that factoring
bivariate polynomials can be done in polynomial time (see e.g. [45]). We will not prove this
result in the book but will use this fact as a given.

Finally, to ensure the correctness of the two-step algorithm above for Reed-Solomon codes,
we will need to ensure the following:

199

• Step 1 requires solving for the co-efficients of Q(X ,Y). This can be done as long as the
number of coefficients is greater than the the number of constraints. (The proof of this
fact is left as an exercise.) Also note that this argument is a departure from the correspond-
ing argument for the Welch-Berlekamp algorithm (where the number of coefficients is
upper bounded by the number of constraints).

• In Step 2, to ensure that for every polynomial P (X) that needs to be output Y −P (X) di-
vides Q(X ,Y), we will add restrictions on Q(X ,Y). For example, for the Welch-Berlekamp
algorithm, the constraint is that Q(X ,Y) has to be of the form Y E(X)−N (X), where E(X)
and N (X) are non-zero polynomials of degree e and at most e +k −1 respectively.

Next, we present the first instantiation of the algorithm structure above, which leads us to
our first list decoding algorithm for Reed-Solomon codes.

13.2.2 Algorithm 1

The main insight in the list decoding algorithm that we will see is that if we carefully control the
degree of the polynomial Q(X ,Y), then we can satisfy the required conditions that will allow
us to make sure Step 1 succeeds. Then we will see that the degree restrictions, along with the
degree mantra (Proposition 5.2.3) will allow us to show Step 2 succeeds too. The catch is in
defining the correct notion of degree of a polynomial. We do that next.

First, we recall the definition of maximum degree of a variable.

Definition 13.2.1. degX (Q) is the maximum degree of X in Q(X ,Y). Similarly, degY (Q) is the
maximum degree of Y in Q(X ,Y)

For example, for Q(X ,Y) = X 2Y 3 + X 4Y 2 degX (Q) = 4 and degY (Q) = 3. Given degX (Q) = a

and degY (Q) = b, we can write
Q(X ,Y) =

∑

0≤i≤a,
0≤ j≤b

ci j X i Y j ,

where the coefficients ci j ∈ Fq . Note that the number of coefficients is equal to (a +1)(b +1).
The main idea in the first list decoding algorithm for Reed-Solomon code is to place bounds

on degX (Q) and degY (Q) for Step 1. The bounds are chosen so that there are enough variables
to guarantee the existence of a Q(X ,Y) with the required properties. We will then use these
bound along with the degree mantra (Proposition 5.2.3) to argue that Step 2 works. Algorithm 14
presents the details. Note that the algorithm generalizes the Welch-Berlekamp algorithm (and
follows the two step skeleton outlined above).

Correctness of Algorithm 14. To ensure the correctness of Step 1, we will need to ensure that
the number of coefficients for Q(X ,Y) (which is (ℓ+1)(n/ℓ+1)) is larger than the number of
constraints in (13.6 (which is n). Indeed,

(ℓ+1) ·
(n

ℓ
+1

)

> ℓ ·
n

ℓ
= n.

200

Algorithm 14 The First List Decoding Algorithm for Reed-Solomon Codes
INPUT: n ≥ k ≥ 1, ℓ≥ 1, e = n − t and n pairs {(αi , yi)}n

i=1
OUTPUT: (Possibly empty) list of polynomials P (X) of degree at most k −1

1: Find a non-zero Q(X ,Y) with degX (Q) ≤ ℓ,degY (Q) ≤
n

ℓ
such that

Q(αi , yi) = 0,1 ≤ i ≤ n. (13.6)

2: Ł ←;
3: FOR every factor Y −P (X) of Q(X ,Y) DO

4: IF ∆(y, (P (αi))n
i=1) ≤ e and deg(P) ≤ k −1 THEN

5: Add P (X) to Ł.

6: RETURN Ł

To argue that the final Ł in Step 6 contains all the polynomials P (X) that need to be output.
In other words, we need to show that if P (X) of degree≤ k−1 agrees with Y in at least t positions,
then Y −P (X) divides Q(X ,Y). Towards this end, we define

R(X)
def= Q(X ,P (X)).

Note that Y −P (X) divides Q(X ,Y) if and only if R(X) ≡ 0. Thus, we need to show R(X) ≡ 0. For
the sake of contradiction, assume that R(X) 6≡ 0. Note that

deg(R) ≤ degX (Q)+deg(P) ·degY (Q) (13.7)

≤ ℓ+
n(k −1)

ℓ
. (13.8)

On the other hand, if P (αi) = yi then (13.6) implies that

Q(αi , yi) =Q(αi ,P (αi)) = 0.

Thus, αi is a root of R(X). In other words R has at least t roots. Note that the degree mantra
(Proposition 5.2.3) this will lead to a contradiction if t > deg(R), which will be true if

t > ℓ+
n(k −1)

ℓ
.

If we pick ℓ=
p

n(k −1), we will have t > 2
p

n(k −1). Thus, we have shown

Theorem 13.2.1. Algorithm 14 can list decode Reed-Solomon codes of rate R from 1−2
p

R frac-

tion of errors. Further, the algorithm can be implemented in polynomial time.

The claim on the efficient run time follows as Step 1 can be implemented by Gaussian elim-
ination and for Step 3, all the factors of Q(X ,Y) (and in particular all linear factors of the form
Y −P (X)) can be computed using e.g. the algorithm from [45].

The bound 1−2
p

R is better than the unique decoding bound of 1−R
2 for R < 0.07. This is

still far from the 1−
p

R fraction of errors guaranteed by the Johnson bound. See Figure 13.2.2
for an illustration.

201

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R

δ

Unique Decoding bound
Johnson bound

Algorithm 1

Figure 13.4: The tradeoff between rate R and the fraction of errors that can be corrected by
Algorithm 14.

13.2.3 Algorithm 2

To motivate the next algorithm, recall that in Algorithm 14, in order to prove that the root

finding step (Steps 3-6 in Algorithm 14) works, we defined a polynomial R(X)
def= Q(X ,P (X)).

In particular, this implied that deg(R) ≤ degX (Q)+ (k − 1) ·degY (Q) (and we had to select t >
degX (Q)+ (k −1) ·degY (Q)). One shortcoming of this approach is that the maximum degree of
X and Y might not occur in the same term. For example, in the polynomial X 2Y 3 + X 4Y 2, the
maximum X and Y degrees do not occur in the same monomial. The main insight in the new
algorithm is to use a more “balanced" notion of degree of Q(X ,Y):

Definition 13.2.2. The (1, w) weighted degree of the monomial X i Y j is i + w j . Further, the
(1, w)-weighted degree of Q(X ,Y) (or just its (1, w) degree) is the maximum (1, w) weighted
degree of its monomials.

For example, the (1,2)-degree of the polynomial X Y 3+X 4Y is max(1+3 ·2,4+2 ·1) = 7. Also
note that the (1,1)-degree of a bivariate polynomial Q(X ,Y) is its total degree (or the “usual"
definition of degree of a bivariate polynomial). Finally, we will use the following simple lemma
(whose proof we leave as an exercise):

Lemma 13.2.2. Let Q(X ,Y) be a bivariate polynomial of (1, w) degree D. Let P (X) be a polyno-

mial such that deg(P) ≤ w. Then we have

deg(Q(X ,P (X))) ≤ D.

202

Note that a bivariate polynomial Q(X ,Y) of (1, w) degree at most D can be represented as
follows:

Q(X ,Y)
def=

∑

i+w j≤D
i , j≥0

ci , j X i Y j ,

where ci , j ∈ Fq .
The new algorithm is basically the same as Algorithm 14, except that in the interpolation

step, we compute a bivariate polynomial of bounded (1,k −1) degree. Before we state the pre-
cise algorithm, we will present the algorithm via an example. Consider the received word in
Figure 13.5.

6

yi

αi

2

3

1 3 5

n = 14,k = 2,e = 9

4

1

−1

−2

−3

−4

−2−4−6

−5 −3 −1

2 4

Figure 13.5: An illustration of a received word for the [14,2] Reed-Solomon code from Fig-
ure 13.1 (where again we have implicitly embedded the field Fq in the set {−7, . . . ,7}). Here we
have considered e = 9 errors which is more than what Algorithm 13 can handle. In this case, we
are looking for lines that pass through at least 5 points.

Now we want to interpolate a bivariate polynomial Q(X ,Y) with a (1,1) degree of 4 that
“passes" through all the 2-D points corresponding to the received word from Figure 13.5. Fig-
ure 13.6 shows such an example.

Finally, we want to factorize all the linear factors Y −P (X) of the Q(X ,Y) from Figure 13.6.
Figure 13.7 shows the two polynomials X and −X such that Y − X and Y + X are factors of
Q(X ,Y) from Figure 13.6.

We now precisely state the new list decoding algorithm in Algorithm 15.

Proof of Correctness of Algorithm 15. As in the case of Algorithm 14, to prove the correctness
of Algorithm 15, we need to do the following:

203

6

yi

αi

2

3

1 3 5

L2(X ,Y) = Y −X

E(X ,Y) = Y 2/16+X 2/49−1

Q(X ,Y) = L1(X ,Y) ·L2(X ,Y) ·E(X ,Y)

n = 14,k = 2,e = 9

L1(X ,Y) = Y +X

4

1

−1

−2

−3

−4

−2−4−6

−5 −3 −1

2 4

Figure 13.6: An interpolating polynomial Q(X ,Y) for the received word in Figure 13.5.

6

yi

αi

2

3

1 3 5

L2(X ,Y) = Y −X

E(X ,Y) = Y 2/16+X 2/49−1

Q(X ,Y) = L1(X ,Y) ·L2(X ,Y) ·E(X ,Y)

n = 14,k = 2,e = 9

L1(X ,Y) = Y +X

4

1

−1

−2

−3

−4

−2−4−6

−5 −3 −1

2 4

Figure 13.7: The two polynomials that need to be output are shown in blue.

• (Interpolation Step) Ensure that the number of coefficients of Q(X ,Y) is strictly greater
than n.

• (Root Finding Step) Let R(X)
def= Q(X ,P (X)). We want to show that if P (αi) ≥ yi for at least

t values of i , then R(X) ≡ 0.

To begin with, we argue why we can prove the correctness of the root finding step. Note that
since Q(X ,Y) has (1,k −1) degree at most D , Lemma 13.2.2 implies that

deg(R) ≤ D.

Then using the same argument as we used for the correctness of the root finding step of Algo-
rithm 14, we can ensure R(X) ≡ 0 if we pick

t > D.

204

Algorithm 15 The Second List Decoding Algorithm for Reed-Solomon Codes
INPUT: n ≥ k ≥ 1, D ≥ 1, e = n − t and n pairs {(αi , yi)}n

i=1
OUTPUT: (Possibly empty) list of polynomials P (X) of degree at most k −1

1: Find a non-zero Q(X ,Y) with (1,k −1) degree at most D , such that

Q(αi , yi) = 0,1 ≤ i ≤ n. (13.9)

2: Ł ←;
3: FOR every factor Y −P (X) of Q(X ,Y) DO

4: IF ∆(y, (P (αi))n
i=1) ≤ e and deg(P) ≤ k −1 THEN

5: Add P (X) to Ł.

6: RETURN Ł

Thus, we would like to pick D to be as small as possible. On the other hand, Step 1 will need D

to be large enough (so that the number of variables is more than the number of constraints in
(13.9). Towards that end, let the number of coefficients of Q(X ,Y) be

N =
∣
∣
{

(i , j)|i + (k −1) j ≤ D, i , j ∈Z+}∣
∣

To bound N , we first note that in the definition above, j ≤
⌊

D
k−1

⌋

. (For notational convenience,

define ℓ=
⌊

D
k−1

⌋

.) Consider the following sequence of relationships

N =
ℓ∑

j=1

D−(k−1) j∑

i=0
1

=
ℓ∑

j=0
(D − (k −1) j +1)

=
ℓ∑

j=0
(D +1)− (k −1)

ℓ∑

j=0
j

= (D +1)(ℓ+1)−
(k −1)ℓ(ℓ+1)

2

=
ℓ+1

2
(2D +2− (k −1)ℓ)

≥
(
ℓ+1

2

)

(D +2) (13.10)

≥
D(D +2)

2(k −1)
. (13.11)

In the above, (13.10) follows from the fact that ℓ≤ D
k−1 and (13.11) follows from the fact that

D
k−1 −1 ≤ ℓ.

205

Thus, the interpolation step succeeds (i.e. there exists a non-zero Q(X ,Y) with the required
properties) if

D(D +2)

2(k −1)
> n.

The choice
D =

⌈√

2(k −1)n
⌉

suffices by the following argument:

D(D +2)

2(k −1)
>

D2

2(k −1)
≥

2(k −1)n

2(k −1)
= n.

Thus for the root finding step to work, we need t >
⌈p

2(k −1)n
⌉

, which implies the following
result:

Theorem 13.2.3. Algorithm 2 can list decode Reed-Solomon codes of rate R from up to 1−
p

2R

fraction of errors. Further, the algorithm runs in polynomial time.

Algorithm 2 runs in polynomial time as Step 1 can be implemented using Gaussian elimi-
nation (and the fact that the number of coefficients is O(n)) while the root finding step can be
implemented by any polynomial time algorithm to factorize bivariate polynomials. Further, we
note that 1−

p
2R beats the unique decoding bound of (1−R)/2 for R < 1/3. See Figure 13.2.3

for an illustration.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R

δ

Unique Decoding bound
Johnson bound

Algorithm 1
Algorithm 2

Figure 13.8: The tradeoff between rate R and the fraction of errors that can be corrected by
Algorithm 14 and Algorithm 15.

206

13.2.4 Algorithm 3

Finally, we present the list decoding algorithm for Reed-Solomon codes, which can correct 1−p
R fraction of errors. The main idea is to add more restrictions on Q(X ,Y) (in addition to its

(1,k −1)-degree being at most D). This change will have the following implications:

• The number of constraints will increase but the number of coefficients will remain the
same. This seems to be bad as this results in an increase in D (which in turn would result
in an increase in t).

• However, this change will also increases the number of roots of R(X) and this gain in the
number of roots more than compensates for the increase in D .

In particular, the constraint is as follows. For some integer parameter r ≥ 1, we will insist on
Q(X ,Y) having r roots at (αi , yi),1 ≤ i ≤ n.

To motivate the definition of multiplicity of a root of a bivariate polynomial, let us consider
the following simplified examples. In Figure 13.9 the curve Q(X ,Y) = Y −X passes through the

X

Y

(0,0)

Y −X

Figure 13.9: Multiplicity of 1

origin once and has no term of degree 0.
In Figure 13.10, the curve Q(X ,Y) = (Y − X)(Y + X) passes though the origin twice and has

no term with degree at most 1.
In Figure 13.11, the curve Q(X ,Y) = (Y −X)(Y +X)(Y −2X) passes through the origin thrice

and has no term with degree at most 2. More generally, if r lines pass through the origin, then
note that the curve corresponding to their product has no term with degree at most r −1. This
leads to the following more general definition:

Definition 13.2.3. Q(X ,Y) has r roots at (0,0) if Q(X ,Y) doesn’t have any monomial with degree
at most r −1.

207

Y +X

X

Y

(0,0)

Y −X

Figure 13.10: Multiplicity of 2

Y −2X

X

Y

(0,0)

Y −X
Y +X

Figure 13.11: Multiplicity of 3

The definition of a root with multiplicity r at a more general point follows from a simple
translation:

Definition 13.2.4. Q(X ,Y) has r roots at (α,β) if Qα,β(X ,Y)
def= Q(x+α, y+β) has r roots at (0,0).

Before we state the precise algorithm, we will present the algorithm with an example. Con-
sider the received word in Figure 13.12.

Now we want to interpolate a bivariate polynomial Q(X ,Y) with (1,1) degree 5 that “passes
twice" through all the 2-D points corresponding to the received word from Figure 13.12. Fig-
ure 13.13 shows such an example.

Finally, we want to factorize all the linear factors Y −P (X) of the Q(X ,Y) from Figure 13.13.
Figure 13.14 shows the five polynomials of degree one are factors of Q(X ,Y) from Figure 13.13.

208

n = 10,k = 2,e = 6

yi

αi

−1

−5

−7−9 1 2 5 8 11

Figure 13.12: An illustration of a received word for the [10,2] Reed-Solomon code (where we
have implicitly embedded the field Fq in the set {−9, . . . ,11}). Here we have considered e = 6
errors which is more than what Algorithm 15 can decode. In this case, we are looking for lines
that pass through at least 4 points.

n = 10,k = 2,e = 6

yi

αi

−1

−5

−7−9 1 2 5 8 11

Figure 13.13: An interpolating polynomial Q(X ,Y) for the received word in Figure 13.12.

(In fact, Q(X ,Y) exactly decomposes into the five lines.)
Algorithm 16 formally states the algorithm.

Correctness of Algorithm 16. To prove the correctness of Algorithm 16, we will need the fol-
lowing two lemmas (we defer the proofs of the lemmas above to Section 13.2.4):

Lemma 13.2.4. The constraints in (13.12) imply
(r+1

2

)

constraints for each i on the coefficients of

Q(X ,Y).

209

n = 10,k = 2,e = 6

yi

αi

−1

−5

−7−9 1 2 5 8 11

Figure 13.14: The five polynomials that need to be output are shown in blue.

Algorithm 16 The Third List Decoding Algorithm for Reed-Solomon Codes
INPUT: n ≥ k ≥ 1, D ≥ 1, r ≥ 1, e = n − t and n pairs {(αi , yi)}n

i=1
OUTPUT: (Possibly empty) list of polynomials P (X) of degree at most k −1

1: Find a non-zero Q(X ,Y) with (1,k −1) degree at most D , such that

Q(αi , yi) = 0, with multiplicity r for every 1 ≤ i ≤ n. (13.12)

2: Ł ←;
3: FOR every factor Y −P (X) of Q(X ,Y) DO

4: IF ∆(y, (P (αi))n
i=1) ≤ e and deg(P) ≤ k −1 THEN

5: Add P (X) to Ł.

6: RETURN Ł

Lemma 13.2.5. R(X)
def= Q(X ,P (X)) has r roots for every i such that P (αi) = yi . In other words,

(X −αi)r divides R(X).

Using arguments similar to those used for proving the correctness of Algorithm 15, to argue
the correctness of the interpolations step we will need

D(D +2)

2(k −1)
> n

(

r +1

2

)

,

where the LHS is an upper bound on the number of coefficients of Q(X ,Y) as before from
(13.11) and the RHS follows from Lemma 13.2.4. We note that the choice

D =
⌈√

(k −1)nr (r −1)
⌉

210

works. Thus, we have shown the correctness of Step 1.
For the correctness of the root finding step, we need to show that the number of roots of

R(X) (which by Lemma 13.2.5 is at least r t) is strictly bigger than the degree of R(X), which
from Lemma 13.2.2 is D . That is we would be fine we if have,

tr > D,

which is the same as

t >
D

r
,

which in turn will follow if we pick

t =
⌈√

(k −1)n

(

1−
1

r

)⌉

.

If we pick r = 2(k −1)n, then we will need

t >
⌈√

(k −1)n −
1

2

⌉

>
⌈√

(k −1)n
⌉

,

where the last inequality follows because of the fact that t is an integer. Thus, we have shown

Theorem 13.2.6. Algorithm 16 can list decode Reed-Solomon codes of rate R from up to 1−
p

R

fraction of errors. Further, the algorithm runs in polynomial time.

The claim on the run time follows from the same argument that was used to argue the poly-
nomial running time of Algorithm 15. Thus, Theorem 13.2.6 shows that Reed-Solomon codes
can be efficiently decoded up to the Johnson bound. For an illustration of fraction of errors
correctable by the three list decoding algorithms we have seen, see Figure 13.2.3.

A natural question to ask is if Reed-Solomon codes of rate R can be list decoded beyond
1−

p
R fraction of errors. The answer is still not known:

Open Question 13.2.1. Given a Reed-Solomon code of rate R, can it be efficiently list decoded

beyond 1−
p

R fraction of errors?

Recall that to complete the proof of Theorem 13.2.6, we still need to prove Lemmas 13.2.4
and 13.2.5, which we do next.

Proof of key lemmas

Proof of Lemma 13.2.4. Let
Q(X ,Y) =

∑

i , j
i+(k−1) j≤D

ci , j X i Y j

211

and
Qα,β(X ,Y) =Q(X +α,Y +β) =

∑

i , j

c
α,β
i , j

X i Y j .

We will show that

(i) c
α,β
i , j

are homogeneous linear combinations of ci , j ’s.

(ii) If Qα,β(X ,Y) has no monomial with degree < r , then that implies
(r+1

2

)

constraints on

c
α,β
i , j

’s.

Note that (i) and (ii) prove the lemma. To prove (i), note that by the definition:

Qα,β(X ,Y) =
∑

i , j

c
α,β
i , j

X i Y j (13.13)

=
∑

i ′, j ′

i ′+(k−1) j ′≤D

ci ′, j ′(X +α)i ′(Y +β) j ′ (13.14)

Note that, if i > i ′ or j > j ′, then c
α,β
i , j

doesn’t depend on c i ′, j ′ . By comparing coefficients of X i Y j

from (13.13) and (13.14), we obtain

c
α,β
i , j

=
∑

i ′>i
j ′> j

ci ′, j ′

(

i ′

i

)(

j ′

j

)

αiβ j ,

which proves (i). To prove (ii), recall that by definition Qα,β(X ,Y) has no monomial of degree

< r . In other words, we need to have constraints c
α,β
i , j

= 0 if i + j ≤ r −1. The number of such
constraints is

|{(i , j)|i + j ≤ r −1, i , j ∈Z≥0}| =
(

r +1

2

)

,

where the equality follows from the following argument. Note that for every fixed value of 0 ≤
j ≤ r −1, i can take r − j values. Thus, we have that the number of constraints is

r−1∑

j=0
r − j =

r∑

ℓ=1

ℓ=
(

r +1

2

)

,

as desired.

We now re-state Lemma 13.2.5 more precisely and then prove it.

Lemma 13.2.7. Let Q(X ,Y) be computed by Step 1 in Algorithm 16. Let P (X) be a polynomial

of degree ≤ k −1, such that P (αi) = yi for at least t > D
r

many values of i , then Y −P (X) divides

Q(X ,Y).

212

Proof. Define

R(X)
def= Q(X ,P (X)).

As usual, to prove the lemma, we will show that R(X) ≡ 0. To do this, we will use the following
claim.

Claim 13.2.8. If P (αi) = yi , then (X −αi)r divides R(X), that is αi is a root of R(X) with multi-

plicity r .

Note that by definition of Q(X ,Y) and P (X), R(X) has degree≤ D . Assuming the above claim
is correct, R(X) has at least t ·r roots. Therefore, by the degree mantra (Proposition 5.2.3), R(X)
is a zero polynomial as t · r > D . We will now prove Claim 13.2.8. Define

Pαi ,yi
(X)

def= P (X +αi)− yi , (13.15)

and

Rαi ,yi
(X)

def= R(X +αi) (13.16)

=Q(X +αi ,P (X +αi)) (13.17)

=Q(X +αi ,Pαi ,yi
(X)+ yi) (13.18)

=Qαi ,yi
(X ,Pαi ,yi

(X)), (13.19)

where (13.17), (13.18) and (13.19) follow from the definitions of R(X), Pαi ,yi
(X) and Qαi ,yi

(X ,Y)
respectively.

By (13.16) if Rαi ,yi
(0) = 0, then R(αi) = 0. So, if X divides Rαi ,yi

(X), then X −αi divides R(X).
(This follows from a similar argument that we used to prove Proposition 5.2.3.) Similarly, if X r

divides Rαi ,yi
(X), then (X −αi)r divides R(X). Thus, to prove the lemma, we will show that X r

divides Rαi ,yi
(X). Since P (αi) = yi when αi agrees with yi , we have Pαi ,yi

(0) = 0. Therefore, X is
a root of Pαi ,yi

(X), that is, Pαi ,yi
(X) = X ·g (X) for some polynomial g (X) of degree at most k−1.

We can rewrite

Rαi ,yi
(X) =

∑

i ′, j ′
c
αi ,yi

i ′, j ′ X i ′(Pαi ,yi
(X)) j ′ =

∑

i ′, j ′
c
αi ,yi

i ′, j ′ X i ′(X g (X)) j ′ .

Now for every i ′, j ′ such that c
αi ,yi

i ′, j ′ 6= 0, we have i ′+ j ′ ≥ r as Qαi ,yi
(X ,Y) has no monomial of

degree < r . Thus X r divides Rαi ,yi
(X), since Rαi ,yi

(x) has no non-zero monomial X ℓ for any
ℓ< r .

13.3 Extensions

We now make some observations about Algorithm 16. In particular, the list decoding algorithm
is general enough to solve more general problems than just list decoding. In this section, we
present an overview of these extensions.

213

Recall that the constraint (13.12) states that Q(X ,Y) has r ≥ 0 roots at (αi , yi), 1 ≤ i ≤ n.
However, our analysis did not explicitly use the fact that the multiplicity is same for every i . In
particular, given non-zero integer multiplicities wi ≥ 0, 1 ≤ i ≤ n, Algorithm 16 can be general-
ized to output all polynomials P (X) of degree at most k −1, such that

∑

i :P (αi)=yi

wi >

√
√
√
√(k −1)n

n∑

i=0

(

wi +1

2

)

.

(We leave the proof as an exercise.) Note that till now we have seen the special case wi = r ,
1 ≤ i ≤ n.

Further, we claim that the αi ’s need not be distinct for the all of the previous arguments to
go through. In particular, one can generalize Algorithm 16 even further to prove the following
(the proof is left as an exercise):

Theorem 13.3.1. Given integer weights wi ,α for every 1 ≤ i ≤ n and α ∈ F, in polynomial time

one can output all P (X) of degree at most k −1 such that

∑

i

wi ,P (αi) >

√
√
√
√(k −1)n

n∑

i=0

∑

α∈F

(

wi ,α+1

2

)

.

This will be useful to solve the following generalization of list decoding called soft decoding.

Definition 13.3.1. Under soft decoding problem, the decoder is given as input a set of non-
negative weights wi ,d (1 ≤ i ≤ n,α ∈ Fq) and a threshold W ≥ 0. The soft decoder needs to output
all codewords (c1,c2, . . . ,cn) in q-ary code of block length n that satisfy:

n∑

i=1
wi ,ci

≥W.

Note that Theorem 13.3.1 solve the soft decoding problem with

W =

√
√
√
√(k −1)n

n∑

i=0

∑

α∈F

(

wi ,α+1

2

)

.

Consider the following special case of soft decoding where wi ,yi
= 1 and wi ,α = 0 for α ∈ F \

{yi } (1 ≤ i ≤ n). Note that this is exactly the list decoding problem with the received word
(y1, . . . , yn). Thus, list decoding is indeed a special case of soft decoding. Soft decoding has
practical applications in settings where the channel is analog. In such a situation, the “quan-
tizer” might not be able to pinpoint a received symbol yi with 100% accuracy. Instead, it can
use the weight wi ,α to denote its confidence level that i th received symbol was α.

Finally, we consider a special case of soft called list recovery, which has applications in de-
signing list decoding algorithms for concatenated codes.

214

Definition 13.3.2 (List Recovery). Given Si ⊆ Fq , 1 ≤ i ≤ n where |Si | ≤ ℓ, output all [n,k]q

codewords (c1, . . . ,cn) such that ci ∈ Si for at least t values of i . If for every valid input the
number of such codewords is at most L, then the corresponding code is called (1− t/n,ℓ,L)-
list recoverable.

We leave the proof that list decoding is a special case of soft decoding as an exercise. Finally,
we claim that Theorem 13.3.1 implies the following result for list recovery (the proof is left as an
exercise):

Theorem 13.3.2. Given t >
p

(k −1)ℓn, the list recovery problem with agreement parameter t for

[n,k]q Reed-Solomon codes can be solved in polynomial time.

13.4 Bibliographic Notes

In 1960, before polynomial time complexity was regarded as an acceptable notion of efficiency,
Peterson designed an O(N 3) time algorithm for the unique decoding of Reed-Solomon codes [60].
This algorithm was the first efficient algorithm for unique decoding of Reed-Solomon codes.
The Berlekamp-Massey algorithm, which used shift registers for multiplication, was even more
efficient, achieving a computational complexity of O

(

N 2
)

. Currently, an even more efficient al-
gorithm, with a computational complexity of O

(

N poly(log N)
)

, is known. This algorithm is the
topic of one of the research survey reports for the course this semester.

The Welch-Berlekamp algorithm, covered under US Patent [77], has a running time com-
plexity of O

(

N 3
)

. We will follow a description of the Welch-Berlekamp algorithm provided by
Gemmell and Sudan in [23].

Håstad, Philips and Safra showed that solving a system of quadratic equations (even those
without any square terms like we have in (13.1)) over any filed Fq is NP-hard [41]. (In fact, it is
even hard to approximately solve this problem: i.e. where on tries to compute an assignment
that satisfies as many equations as possible.) Linearization is a trick that has been used many
times in theoretical computer science and cryptography. See this blog post by Dick Lipton for
more on this.

Algorithm 15 is due to Sudan [71] and Algorithm 16 is due to Guruswami and Sudan [37].
It is natural to ask whether Theorem 13.3.2 is tight for list recovery, i.e. generalize Open

Question 13.2.1 to list recovery. It was shown by Guruswami and Rudra that Theorem 13.3.2 is
indeed the best possible list recovery result for Reed-Solomon codes [32]. Thus, any algorithm
that answers Open Question 13.2.1 in some sense has to exploit the fact that in the list decoding
problem, the αi ’s are distinct.

215

http://rjlipton.wordpress.com/2010/12/13/making-a-heuristic-into-a-theorem/

216

Chapter 14

Efficiently Achieving List Decoding Capacity

In the previous chapters, we have seen these results related to list decoding:

• Reed-Solomon codes of rate R > 0 can be list-decoded in polynomial time from 1−
p

R

errors (Theorem 13.2.6). This is the best algorithmic list decoding result we have seen so
far.

• There exist codes of rate R > 0 that are
(

1−R −ε,O
(1
ε

))

-list decodable for q ≥ 2Ω(1
ε) (and

in particular for q = poly(n)) (Theorem 7.4.1 and Proposition 3.3.2). This of course is the
best possible combinatorial result.

Note that there is a gap between the algorithmic result and the best possible combinatorial
result. This leads to the following natural question:

Question 14.0.1. Are there explicit codes of rate R > 0 that can be list-decoded in polynomial

time from 1−R −ε fraction of errors for q ≤ pol y(n)?

In this chapter, we will answer Question 14.0.1 in the affirmative.

14.1 Folded Reed-Solomon Codes

We will now introduce a new type of code called the Folded Reed-Solomon codes. These codes
are constructed by combining every m consecutive symbols of a regular Reed-Solomon code
into one symbol from a larger alphabet. Note that we have already seen such a folding trick
when we instantiated the outer code in the concatenated code that allowed us to efficiently
achieve the BSCp capacity (Section 12.4.1). For a Reed-Solomon code that maps Fk

q → Fn
q , the

corresponding Folded Reed-Solomon code will map Fk
q → Fn/m

qm . We will analyze Folded Reed-

Solomon codes that are derived from Reed-Solomon codes with evaluation {1,γ,γ2,γ3, . . . ,γn−1},
where γ is the generator of F∗q and n ≤ q −1. Note that in the Reed-Solomon code, a message is
encoded as in Figure 14.1.

217

f (1) f (γ) f (γ2) f (γ3) · · · f (γn−2) f (γn−1)

Figure 14.1: Encoding f (X) of degree≤ k−1 and coefficients in Fq corresponding to the symbols
in the message.

For m = 2, the conversion from Reed-Solomon to Folded Reed-Solomon can be visualized
as in Figure 14.2 (where we assume n is even).

f (1) f (γ) f (γ2) f (γ3) · · · f (γn−2) f (γn−1)

⇓
f (1) f (γ2) · · ·

f (γn−2)

f (γ) f (γ3) f (γn−1)

Figure 14.2: Folded Reed-Solomon code for m = 2

For general m ≥ 1, this transformation will be as in Figure 14.3 (where we assume that m

divides n).

f (1) f (γ) f (γ2) f (γ3) · · · f (γn−2) f (γn−1)

⇓
f (1) f (γm) f (γ2m)

· · ·

f (γn−m)

f (γ) f (γm+1) f (γ2m+1) f (γn−m+1)

...
...

...
...

f (γm−1) f (γ2m−1) f (γ3m−1) f (γn−1)

Figure 14.3: Folded Reed-Solomon code for general m ≥ 1

More formally, here is the definition of folded Reed-Solomon codes:

Definition 14.1.1 (Folded Reed-Solomon Code). The m-folded version of an [n,k]q Reed-Solomon
code C (with evaluation points {1,γ, . . . ,γn−1}), call it C ′, is a code of block length N = n/m over
Fqm , where n ≤ q −1. The encoding of a message f (X), a polynomial over Fq of degree at most
k −1, has as its j ’th symbol, for 0 ≤ j < n/m, the m-tuple

(

f
(

γ j m
)

, f
(

γ j m+1
)

, · · · , f
(

γ j m+m−1
))

.
In other words, the codewords of C ′ are in one-one correspondence with those of the Reed-
Solomon code C and are obtained by bundling together consecutive m-tuple of symbols in
codewords of C .

218

14.1.1 The Intuition Behind Folded Reed-Solomon Codes

We first make the simple observation that the folding trick above cannot decrease the list de-
codability of the code. (We have already seen this argument earlier in Section 12.4.1.)

Claim 14.1.1. If the Reed-Solomon code can be list-decoded from ρ fraction of errors, then the

corresponding folded Reed-Solomon code with folding parameter m can also be list-decoded from

ρ fraction of errors.

Proof. The idea is simple: If the Reed-Solomon code can be list decoded from ρ fraction of
errors (by say an algorithm A), the Folded Reed-Solomon code can be list decoded by “unfold-
ing" the received word and then running A on the unfolded received word and returning the
resulting set of messages. Algorithm 17 has a more precise statement.

Algorithm 17 Decoding Folded Reed-Solomon Codes by Unfolding

INPUT: y = ((y1,1, . . . , y1,m), . . . , (yn/m,1, . . . , yn/m,m)) ∈ Fn/m
qm

OUTPUT: A list of messages in Fk
q

1: y′ ← (y1,1, . . . , y1,m , . . . , yn/m,1, . . . , yn/m,m) ∈ Fn
q .

2: RETURN A (y′)

The reason why Algorithm 17 works is simple. Let m ∈ Fk
q be a message. Let RS(m) and

FRS(m) be the corresponding Reed-Solomon and folded Reed-Solomon codewords. Now for
every i ∈ [n/m], if FRS(m)i 6= (yi ,1, . . . , yi ,n/m) then in the worst-case for every j ∈ [n/m], RS(m)(i−1)n/m+ j 6=
yi , j : i.e. one symbol disagreement over Fqm can lead to at most m disagreements over Fq . See
Figure 14.4 for an illustration.

f (1) f (γ2) · · ·
f (γn−2)

f (γ) f (γ3) f (γn−1)

⇓
f (1) f (γ) f (γ2) f (γ3) · · · f (γn−2) f (γn−1)

Figure 14.4: Error pattern after unfolding. A pink cell means an error: for the Reed-Solomon
code it is for RS(m) with y′ and for folded Reed-Solomon code it is for FRS(m) with y

This implies that for any m ∈ Fk
q if ∆(y,FRS(m)) ≤ ρ · n

m
, then ∆(y′,RS(m)) ≤ m ·ρ · n

m
= ρ ·n,

which by the properties of algorithm A implies that Step 2 will output m, as desired.

The intuition for a strict improvement by using Folded Reed-Solomon codes is that if the
fraction of errors due to folding increases beyond what it can list-decode from, that error pat-
tern does not need to be handled and can be ignored. For example, suppose a Reed-Solomon

219

f (1) f (γ) f (γ2) f (γ3) · · · f (γn−2) f (γn−1)

⇓
f (1) f (γ2) · · ·

f (γn−2)

f (γ) f (γ3) f (γn−1)

Figure 14.5: An error pattern after folding. The pink cells denotes the location of errors

code that can be list-decoded from up to 1
2 fraction of errors is folded into a Folded Reed-

Solomon code with m = 2. Now consider the error pattern in Figure 14.5.

The error pattern for Reed-Solomon code has 1
2 fraction of errors, so any list decoding al-

gorithm must be able to list-decode from this error pattern. However, for the Folded Reed-
Solomon code the error pattern has 1 fraction of errors which is too high for the code to list-
decode from. Thus, this “folded" error pattern case can be discarded from the ones that a list
decoding algorithm for folded Reed-Solomon code needs to consider. This is of course one
example– however, it turns out that this folding operation actually rules out a lot of error pat-
terns that a list decoding algorithm for folded Reed-Solomon code needs to handle (even be-
yond the current best 1−

p
R bound for Reed-Solomon codes). Put another way, an algorithm

for folded Reed-Solomon codes has to solve the list decoding problem for the Reed-Solomon
codes where the error patterns are “bunched" together (technically they’re called bursty er-
rors). Of course, converting this intuition into a theorem takes more work and is the subject
of this chapter.

Wait a second... The above argument has a potential hole– what if we take the argument to
the extreme and "cheat" by setting m = n where any error pattern for the Reed-Solomon code
will result in an error pattern with 100% errors for the Folded Reed-Solomon code: thus, we
will only need to solve the problem of error detection for Reed-Solomon codes (which we can
easily solve for any linear code and in particular for Reed-Solomon codes)? It is a valid concern
but we will “close the loophole" by only using a constant m as the folding parameter. This
will still keep q to be polynomially large in n and thus, we would still be on track to answer
Question 14.0.1. Further, if we insist on smaller list size (e.g. one independent of n), then we can
use code concatenation to achieve capacity achieving results for codes over smaller alphabets.
(See Section 14.4 for more.)

General Codes. We would like to point out that the folding argument used above is not specific
to Reed-Solomon codes. In particular, the argument for the reduction in the number of error
patterns holds for any code. In fact, one can prove that for general random codes, with high
probability, folding does strictly improve the list decoding capabilities of the original code. (The
proof is left as an exercise.)

220

14.2 List Decoding Folded Reed-Solomon Codes: I

We begin with an algorithm for list decoding folded Reed-Solomon codes that works with agree-
ment t ∼ mRN . Note that this is a factor m larger than the RN agreement we ultimately want.
In the next section, we will see how to knock off the factor of m.

Before we state the algorithm, we formally (re)state the problem we want to solve:

• Input: An agreement parameter 0 ≤ t ≤ N and the received word:

y =

y0 ym

· · ·
yn−m

...
...

...
ym−1 y2m−1 yn−1

 ∈ Fm×N

q , N =
n

m

• Output: Return all polynomials f (X) ∈ Fq [X] of degree at most k −1 such that for at
least t values of 0 ≤ i < N

f
(

γmi
)

...
f
(

γm(i+1)−1
)

=

ymi
...

ym(i+1)−1

 (14.1)

The algorithm that we will study is a generalization of the Welch-Berlekamp algorithm (Al-
gorithm 13). However unlike the previous list decoding algorithms for Reed-Solomon codes
(Algorithms 14, 15 and 16), this new algorithm has more similarities with the Welch-Berlekamp
algorithm. In particular, for m = 1, the new algorithm is exactly the Welch-Berlekamp algo-
rithm. Here are the new ideas in the algorithm for the two-step framework that we have seen in
the previous chapter:

• Step 1: We interpolate using (m+1)-variate polynomial, Q(X ,Y1, . . . ,Ym), where degree of
each variable Yi is exactly one. In particular, for m = 1, this interpolation polynomial is
exactly the one used in the Welch-Berlekamp algorithm.

• Step 2: As we have done so far, in this step, we output all "roots" of Q. Two remarks are in
order. First, unlike Algorithms 14, 15 and 16, the roots f (X) are no longer simpler linear
factors Y − f (X), so one cannot use a factorization algorithm to factorize Q(X ,Y1, . . . ,Ym).
Second, the new insight in this algorithm, is to show that all the roots form an (affine)
subspace,1 which we can use to compute the roots.

Algorithm 18 has the details.

1An affine subspace of Fk
q is a set {v+u|u ∈ S}, where S ⊆ Fk

q is a linear subspace and v ∈ Fk
q .

221

Algorithm 18 The First List Decoding Algorithm for Folded Reed-Solomon Codes
INPUT: An agreement parameter 0 ≤ t ≤ N , parameter D ≥ 1 and the received word:

y =

y0 ym

· · ·
yn−m

...
...

...
ym−1 y2m−1 yn−1

 ∈ Fm×N

q , N =
n

m

OUTPUT: All polynomials f (X) ∈ Fq [X] of degree at most k −1 such that for at least t values of
0 ≤ i < N

f
(

γmi
)

...
f
(

γm(i+1)−1
)

=

ymi
...

ym(i+1)−1

 (14.2)

1: Compute a non-zero Q(X ,Y1, . . . ,Ym) where

Q(X ,Y1, . . . ,Ym) = A0(X)+ A1(X)Y1 + A2(X)Y2 +·· ·+ Am(X)Ym

with deg(A0) ≤ D +k −1 and deg(A j) ≤ D for 1 ≤ j ≤ m such that

Q(γmi , ymi , · · · , ym(i+1)−1) = 0, ∀0 ≤ i < N (14.3)

2: Ł ←;
3: FOR every f (X) ∈ Fq [X] such that Q(X , f (X), f (γX), f (γ2X), . . . , f (γm−1X)) = 0 DO

4: IF deg(f) ≤ k −1 and f (X) satisfies (14.2) for at least t values of i THEN

5: Add f (X) to Ł.

6: RETURN Ł

Correctness of Algorithm 18. In this section, we will only concentrate on the correctness of
the algorithm and analyze its error correction capabilities. We will defer the analysis of the
algorithm (and in particular, proving a bound on the number of polynomials that are output by
Step 6) till the next section.

We first begin with the claim that there always exists a non-zero choice for Q in Step 1 using
the same arguments that we have used to prove the correctness of Algorithms 15 and 16:

Claim 14.2.1. If (m +1)(D +1)+k−1 > N , then there exists a non-zero Q (X ,Y1, ...Ym) that satis-

fies the required properties of Step 1.

Proof. As in the proof of correctness of Algorithms 14, 15 and 16, we will think of the constraints
in (14.3) as linear equations. The variables are the coefficients of Ai (X) for 0 ≤ i ≤ m. With the
stipulated degree constraints on the Ai (X)’s, note that the number of variables participating in
(14.3) is

D +k +m(D +1) = (m +1)(D +1)+k −1.

222

The number of equations is N . Thus, the condition in the claim implies that we have strictly
more variables then equations and thus, there exists a non-zero Q with the required properties.

Next, we argue that the root finding step works (again using an argument very similar to
those that we have seen for Algorithms 14, 15 and 16):

Claim 14.2.2. If t > D+k−1, then all polynomial f (X) ∈ Fq [X] of degree at most k−1 that agree

with the received word in at least t positions is returned by Step 6.

Proof. Define the univariate polynomial

R (X) =Q
(

X , f (X) , f
(

γX
)

, f
(

γm−1X
))

.

Note that due to the degree constraints on the Ai (X)’s and f (X), we have

deg(R) ≤ D +k −1,

since deg(f (γi X)) = deg(f (X)). On the other hand, for every 0 ≤ i < N where (14.1) is satisfied
we have

R
(

γmi
)

=Q
(

γmi , ymi , . . . , ym(i+1)−1

)

= 0,

where the first equality follows from (14.1), while the second equality follows from (14.3). Thus
R(X) has at least t roots. Thus, the condition in the claim implies that R(X) has more roots then
its degree and thus, by the degree mantra (Proposition 5.2.3) R(X) ≡ 0, as desired.

Note that Claims 14.2.1 and 14.2.2 prove the correctness of the algorithm. Next we analyze
the fraction of errors the algorithm can correct. Note that the condition in Claim 14.2.1 is satis-
fied if we pick

D =
⌊

N −k +1

m +1

⌋

.

This in turn implies that the condition in Claim 14.2.2 is satisfied if

t >
N −k +1

m +1
+k −1 =

N +m(k −1)

m +1
.

Thus, the above would be satisfied if

t ≥
N

m +1
+

mk

m +1
= N

(
1

m +1
+mR

(m

m +1

))

,

where the equality follows from the fact that k = mRN .
Note that when m = 1, the above bound exactly recovers the bound for the Welch-Berlekamp

algorithm (Theorem 13.1.4). Thus, we have shown that

Theorem 14.2.3. Algorithm 18 can list decode folded Reed-Solomon code with folding parameter

m ≥ 1 and rate R up to m
m+1 (1−mR) fraction of errors.

223

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R

δ

m=1
m=2
m=2
m=4

Johnson bound

Figure 14.6: The tradeoff between rate R and the fraction of errors that can be corrected by
Algorithm 18 for folding parameter m = 1,2,3 and 4. The Johnson bound is also plotted for
comparison. Also note that the bound for m = 1 is the Unique decoding bound achieved by
Algorithm 13.

See Figure 14.2 for an illustration of the tradeoff for m = 1,2,3,4.
Note that if we can replace the mR factor in the bound from Theorem 14.2.3 by just R then

we can approach the list decoding capacity bound of 1−R. (In particular, we would be able
to correct 1−R − ε fraction of errors if we pick m = O(1/ε).) Further, we need to analyze the
number of polynomials output by the root finding step of the algorithm (and then analyze the
runtime of the algorithm). In the next section, we show how we can “knock-off" the extra factor
m (and we will also bound the list size).

14.3 List Decoding Folded Reed-Solomon Codes: II

In this section, we will present the final version of the algorithm that will allow us to answer
Question 14.0.1 in the affirmative. We start off with the new idea that allows us to knock off the
factor of m. (It would be helpful to keep the proof of Claim 14.2.2 in mind.)

To illustrate the idea let us consider the folding parameter to be m = 3. Let f (X) be a poly-
nomial of degree at most k −1 that needs to be output and let 0 ≤ i < N be a position where it
agrees with the received word. (See Figure 14.7 for an illustration.)

The idea is to “exploit" this agreement over one F3
q symbol and convert it into two agree-

ments over Fq2 . (See Figure 14.8 for an illustration.)

224

f (γ3i) f (γ3i+1) f (γ3i+2)

y3i y3i+1 y3i+2

Figure 14.7: An agreement in position i .

f (γ3i) f (γ3i+1) f (γ3i+1) f (γ3i+2)

y3i y3i+1 y3i+1 y3i+2

Figure 14.8: More agreement with a sliding window of size 2.

Thus, in the proof of Claim 14.2.2, for each agreement we can now get two roots for the
polynomial R(X). In general for an agreement over one Fqm symbols translates into m − s +1
agreement over Fs

q for any 1 ≤ s ≤ m (by “sliding a window" of size s over the m symbols from
Fq). Thus, in this new idea the agreement is m− s+1 times more than before which leads to the
mR term in Theorem 14.2.3 going down to mR

m−s+1 . Then making s smaller than m but still large
enough we can get down the relative agreement to R + ε, as desired. There is another change
that needs to be done to make the argument go through: the interpolation polynomial Q now
has to be (s +1)-variate instead of the earlier (m +1)-variate polynomial. Algorithm 19 has the
details.

Correctness of Algorithm 19. Next, we analyze the correctness of Algorithm 19 as well as com-
pute its list decoding error bound. We begin with the result showing that there exists a Q with
the required properties for Step 1.

Lemma 14.3.1. If D ≥
⌊

N (m−s+1)−k+1
s+1

⌋

, then there exists a non-zero polynomial Q(X ,Y1, ...,Ys)

that satisfies Step 1 of the above algorithm.

Proof. Let us consider all coefficients of all polynomials Ai as variables. Then the number of
variables will be

D +k + s(D +1) = (s +1)(D +1)+k −1.

On the other hand, the number of constraints in (14.5), i.e. the number of equations when
all coefficients of all polynomials Ai are considered variables) will be N (m − s +1).

Note that if we have more variables than equations, then there exists a non-zero Q that
satisfies the required properties of Step 1. Thus, we would be done if we have:

(s +1)(D +1)+k −1 > N (m − s +1),

which is equivalent to:

D >
N (m − s +1)−k +1

s +1
−1.

The choice of D in the statement of the claim satisfies the condition above, which complete the
proof.

225

Algorithm 19 The Second List Decoding Algorithm for Folded Reed-Solomon Codes
INPUT: An agreement parameter 0 ≤ t ≤ N , parameter D ≥ 1 and the received word:

y =

y0 ym

· · ·
yn−m

...
...

...
ym−1 y2m−1 yn−1

 ∈ Fm×N

q , N =
n

m

OUTPUT: All polynomials f (X) ∈ Fq [X] of degree at most k −1 such that for at least t values of
0 ≤ i < N

f
(

γmi
)

...
f
(

γm(i+1)−1
)

=

ymi
...

ym(i+1)−1

 (14.4)

1: Compute non-zero polynomial Q(X ,Y1, ..,Ys) as follows:

Q(X ,Y1, ..,Ys) = A0(X)+ A1(X)Y1 + A2(X)Y2 + ..+ As(X)Ys ,

with deg[A0] ≤ D +k −1 and deg[Ai] ≤ D for every 1 ≤ i ≤ s such that for all 0 ≤ i < N and
0 ≤ j ≤ m − s, we have

Q(γi m+ j , yi m+ j , ..., yi m+ j+s−1) = 0. (14.5)

2: Ł ←;
3: FOR every f (X) ∈ Fq [X] such that

Q
(

X , f (X), f
(

γX
)

, f
(

γ2X
)

, . . . , f
(

γs−1X
))

≡ 0 (14.6)

DO

4: IF deg(f) ≤ k −1 and f (X) satisfies (14.2) for at least t values of i THEN

5: Add f (X) to Ł.

6: RETURN Ł

Next we argue that the root finding step works.

Lemma 14.3.2. If t > D+k−1
m−s+1 , then every polynomial f (X) that needs to be output satisfies (14.6).

Proof. Consider the polynomial R(X) =Q
(

X , f (X), f
(

γX
)

, ..., f
(

γs−1X
))

. Because the degree of
f
(

γℓX
)

(for every 0 ≤ ℓ≤ s −1) is at most k −1,

deg(R) ≤ D +k −1. (14.7)

Let f(X) be one of the polynomials of degree at most k −1 that needs to be output, and f (X)
agrees with the received word at column i for some 0 ≤ i < N , that is:

226

f
(

γmi
)

f
(

γmi+1
)

·
·
·

f
(

γm(i+1)−1
)

=

ymi

ymi+1

·
·
·

ym(i+1)−1

,

then for all 0 ≤ j ≤ m − s, we have:

R
(

γmi+ j
)

=Q
(

γmi+ j , f
(

γmi+ j
)

, f
(

γmi+1+ j
)

, ..., f
(

γmi+s−1+ j
))

=Q
(

γmi+ j , ymi+ j , ymi+1+ j , ..., ymi+s−1+ j

)

= 0.

In the above, the first equality follows as f (X) agrees with y in column i while the second equal-
ity follows from (14.5). Thus, the number of roots of R(X) is at least

t (m − s +1) > D +k −1 ≥ deg(R),

where the first inequality follows from the assumption in the claim and the second inequality
follows from (14.7). Hence, by the degree mantra R(X) ≡ 0, which shows that f (X) satisfies
(14.6), as desired.

14.3.1 Error Correction Capability

Now we analyze the the fraction of errors the algorithm above can handle. (We will come back
to the thorny issue of proving a bound on the output list size for the root finding step in Sec-
tion 14.3.2.)

The argument for the fraction of errors follows the by now standard route. To satisfy the
constraint in Lemma 14.3.1, we pick

D =
⌊

N (m − s +1)−k +1

s +1

⌋

.

This along with the constraint in Lemma 14.3.2, implies that the algorithm works as long as

t >
⌊

D +k −1

m − s +1

⌋

.

The above is satisfied if we choose

t >
N (m−s+1)−k+1

s+1 +k −1

m − s +1
=

N (m − s +1)−k +1+ (k −1)(s +1)

(m − s +1)(s +1)
=

N (m − s +1)+ s(k −1)

(s +1)(m − s +1)
.

Thus, we would be fine if we pick

t >
N

s +1
+

s

s +1
·

k

m − s +1
= N

(
1

s +1
+

(s

s +1

)(m

m − s +1

)

·R

)

,

where the equality follows from the fact that k = mRN . This implies the following result:

227

Theorem 14.3.3. Algorithm 19 can list decode folded Reed-Solomon code with folding parameter

m ≥ 1 and rate R up to s
s+1 (1−mR/(m − s +1)) fraction of errors.

See Figure 14.3.1 for an illustration of the bound above.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R

δ

m=6,s=6
m=9, s=6

m=12, s=6
m=15, s=6

Johnson bound

Figure 14.9: The tradeoff between rate R and the fraction of errors that can be corrected by
Algorithm 19 for s = 6 and folding parameter m = 6,9,12 and 15. The Johnson bound is also
plotted for comparison.

14.3.2 Bounding the Output List Size

We finally address the question of bounding the output list size in the root finding step of the
algorithm. We will present a proof that will immediately lead to an algorithm to implement the
root finding step. We will show that there are at most q s−1 possible solutions for the root finding
step.

The main idea is the following: think of the coefficients of the output polynomial f (X) as
variables. Then the constraint (14.6) implies D+k linear equations on these k variables. It turns
out that if one picks only k out of these D+k constraints, then the corresponding constraint ma-
trix has rank at least k − s +1, which leads to the claimed bound. Finally, the claim on the rank
of the constraint matrix follows by observing (and this is the crucial insight) that the constraint
matrix is upper triangular. Further, the diagonal elements are evaluation of a non-zero polyno-
mial of degree at most s − 1 in k distinct elements. By the degree mantra (Proposition 5.2.3),
this polynomial can have at most s−1 roots, which implies that at least k− s+1 elements of the

228

=

B(1)
B(γ)

B(γ2)
B(γ3)

B(γk−2)
B(γk−1)

0

×

f0

f1

fk−1

fk−2

fk−3

fk−4

−a0,k−1

−a0,k−2

−a0,3

−a0,2

−a0,1

−a0,0

Figure 14.10: The system of linear equations with the variables f0, . . . , fk−1 forming the coeffi-
cients of the polynomial f (X) =

∑k−1
i=0 fi X i that we want to output. The constants a j ,0 are ob-

tained from the interpolating polynomial from Step 1. B(X) is a non-zero polynomial of degree
at most s −1.

diagonal are non-zero, which then implies the claim. See Figure 14.10 for an illustration of the
upper triangular system of linear equations.

Next, we present the argument above in full detail. (Note that the constraint on (14.8) is the
same as the one in (14.6) because of the constraint on the structure of Q imposed by Step 1.)

Lemma 14.3.4. There are at most q s−1 solutions to f0, f1, .., fk−1 (where f (X) = f0 + f1X + ...+
fk−1X k−1) to the equations

A0(X)+ A1(X) f (X)+ A2(X) f
(

γX
)

+ ...+ As(X) f
(

γs−1X
)

≡ 0 (14.8)

Proof. First we assume that X does not divide all of the polynomials A0, A1, ..., As . Then it im-
plies that there exists i∗ > 0 such that the constant term of the polynomial Ai∗(X) is not zero.
(Because otherwise, since X |A1(X), ..., As(X), by (14.8), we have X divides A0(X) and hence X

divide all the Ai (X) polynomials, which contradicts the assumption.)
To facilitate the proof, we define few auxiliary variables ai j such that

Ai (X) =
D+k−1∑

j=0
ai j X j for every 0 ≤ i ≤ s,

and define the following univariate polynomial:

B(X) = a1,0 +a2,0X +a3,0X 2 + ...+as,0X s−1. (14.9)

Notice that ai∗,0 6= 0, so B(X) is non-zero polynomial. And because degree of B(X) is at most
s −1, by the degree mantra (Proposition 5.2.3), B(X) has at most s −1 roots. Next, we claim the
following:

229

Claim 14.3.5. For every 0 ≤ j ≤ k −1:

• If B(γ j) 6= 0, then f j is uniquely determined by f j−1, f j−2, . . . , f0.

• If B(γ j) = 0, then f j is unconstrained, i.e. f j can take any of the q values in Fq .

We defer the proof of the claim above for now. Suppose that the above claim is correct. Then
as γ is a generator of Fq , 1,γ,γ2, ...,γk−1 are distinct (since k −1 ≤ q −2). Further, by the degree
mantra (Proposition 5.2.3) at most s − 1 of these elements are roots of the polynomial B(X).
Therefore by Claim 14.3.5, the number of solutions to f0, f1, ..., fk−1 is at most q s−1. 2

We are almost done except we need to remove our earlier assumption that X does not divide
every Ai . Towards this end, we essentially just factor out the largest common power of X from
all of the Ai ’s, and proceed with the reduced polynomial. Let l ≥ 0 be the largest l such that
Ai (X) = X l A′

i
(X) for 0 ≤ i ≤ s; then X does not divide all of A′

i
(X) and we have:

X l
(

A′
0(X)+ A′

1(X) f (X)+·· ·+ A′
s(X) f (γs−1X)

)

≡ 0.

Thus we can do the entire argument above by replacing Ai (X) with A′
i
(X) since the above con-

straint implies that A′
i
(X)’s also satisfy (14.8).

Next we prove Claim 14.3.5.

Proof of Claim 14.3.5. Recall that we can assume that X does not divide all of {A0(X), . . . , As(X)}.
Let C (X) = A0(X)+A1(X) f (X)+·· ·+As f

(

γs−1X
)

. Recall that we have C (X) ≡ 0. If we expand
out each polynomial multiplication, we have:

C (X) =a0,0 +a0,1X +·· ·+a0,D+k−1X D+k−1

+
(

a1,0 +a1,1X +·· ·+a1,D+k−1X D+k−1
)(

f0 + f1X + f2X 2 +·· ·+ fk−1X k−1
)

+
(

a2,0 +a2,1X +·· ·+a2,D+k−1X D+k−1
)(

f0 + f1γX + f2γ
2X 2 +·· ·+ fk−1γ

k−1X k−1
)

...

+
(

as,0 +as,1X +·· ·+as,D+k−1X D+k−1
)(

f0 + f1γ
s−1X + f2γ

2(s−1)X 2 +·· ·+ fk−1γ
(k−1)(s−1)X k−1

)

(14.10)

Now if we collect terms of the same degree, we will have a polynomial of the form:

C (X) = c0 + c1X + c2X 2 +·· ·+ cD+k−1X D+k−1.

2Build a “decision tree" with f0 as the root and f j in the j th level: each edge is labeled by the assigned value to
the parent node variable. For any internal node in the j th level, if B(γ j) 6= 0, then the node has a single child with
the edge taking the unique value promised by Claim 14.3.5. Otherwise the node has q children with q different
labels from Fq . By Claim 14.3.5, the number of solutions to f (X) is upper bounded by the number of nodes in the
kth level in the decision tree, which by the fact that B has at most s −1 roots is upper bounded by q s−1.

230

So we have D+k linear equations in variables f0, . . . , fk−1, and we are seeking those solutions
such that c j = 0 for every 0 ≤ j ≤ D +k −1. We will only consider the 0 ≤ j ≤ k −1 equations. We

first look at the equation for j = 0: c0 = 0. This implies the following equalities:

0 = a0,0 + f0a1,0 + f0a2,0 +·· ·+ f0as,0 (14.11)

0 = a0,0 + f0
(

a1,0 +a2,0 +·· ·+as,0
)

(14.12)

0 = a0,0 + f0B(1). (14.13)

In the above (14.11) follows from (14.10), (14.12) follows by simple manipulation while (14.13)
follows from the definition of B(X) in (14.9).

Now, we have two possible cases:

• Case 1: B(1) 6= 0. In this case, (14.13) implies that f0 =
−a0,0
B(1) . In particular, f0 is fixed.

• Case 2: B(1) = 0. In this case f0 has no constraint (and hence can take on any of the q

values in Fq).

Now consider the equation for j = 1: c1 = 0. Using the same argument as we did for j = 0,
we obtain the following sequence of equalities:

0 = a0,1 + f1a1,0 + f0a1,1 + f1a2,0γ+ f0a2,1 +·· ·+ f1as,0γ
s−1 + f0as,1

0 = a0,1 + f1
(

a1,0 +a2,0γ+·· ·+as,0γ
s−1)+ f0

(
s∑

l=1

al ,1

)

0 = a0,1 + f1B(γ)+ f0b(1)
0 (14.14)

where b(1)
0 =

∑s
l=1 al ,1 is a constant. We have two possible cases:

• Case 1: B(γ) 6= 0. In this case, by (14.14), we have f1 = −a0,1− f0b(1)
0

B(γ) and there is a unique
choice for f1 given fixed f0.

• Case 2: B(γ) = 0. In this case, f1 is unconstrained.

Now consider the case of arbitrary j : c j = 0. Again using similar arguments as above, we get:

0 = a0, j + f j (a1,0 +a2,0γ
j +a3,0γ

2 j +·· ·+as,0γ
j (s−1))

+ f j−1(a1,1 +a2,1γ
j−1 +a3,1γ

2(j−1) +·· ·+as,1γ
(j−1)(s−1))

...

+ f1(a1, j−1 +a2, j−1γ+a3, j−1γ
2 +·· ·+as, j−1γ

s−1)

+ f0(a1, j +a2, j +a3, j +·· ·+as, j)

0 = a0, j + f j B(γ j)+
j−1∑

l=0

fl b
(j)
l

(14.15)

where b
(j)
l

=
∑s

ι=1 aι, j−l ·γl (ι−1) are constants for 0 ≤ j ≤ k −1.
We have two possible cases:

231

• Case 1: B(γ j) 6= 0. In this case, by (14.15), we have

f j =
−a0, j −

∑ j−1
l=0 fl b

(j)
l

B(γ j)
(14.16)

and there is a unique choice for f j given fixed f0, . . . , f j−1.

• Case 2: B(γ j) = 0. In this case f j is unconstrained.

This completes the proof.

We now revisit the proof above and make some algorithmic observations. First, we note that
to compute all the tuples (f0, . . . , fk−1) that satisfy (14.8) one needs to solve the linear equations
(14.15) for j = 0, . . . ,k −1. One can state this system of linear equation as (see also Figure 14.10)

C ·

f0
...

fk−1

=

−a0,k−1
...

−a0,0

 ,

where C is a k ×k upper triangular matrix. Further each entry in C is either a 0 or B(γ j) or b
(j)
l

–
each of which can be computed in O(s log s) operations over Fq . Thus, we can setup this system
of equations in O

(

s log sk2
)

operations over Fq .
Next, we make the observation that all the solutions to (14.8) form an affine subspace. Let

0 ≤ d ≤ s − 1 denote the number of roots of B(X) in {1,γ, . . . ,γk−1}. Then since there will be
d unconstrained variables among f0, . . . , fk−1 (one of every j such that B(γ j) = 0), it is not too

hard to see that all the solutions will be in the set
{

M ·x+z|x ∈ Fd
q

}

, for some k×d matrix M and

some z ∈ Fk
q . Indeed every x ∈ Fd

q corresponds to an assignment to the d unconstrained variables
among f0, . . . , f j . The matrix M and the vector z are determined by the equations in (14.16).
Further, since C is upper triangular, both M and z can be computed with O

(

k2
)

operations over
Fq .

The discussion above implies the following:

Corollary 14.3.6. The set of solutions to (14.8) are contained in an affine subspace
{

M ·x+z|x ∈ Fd
q

}

for some 0 ≤ d ≤ s−1 and M ∈ Fk×d
q and z ∈ Fk

q . Further, M and z can be computed from the poly-

nomials A0(X), . . . , As(X) with O(s log sk2) operations over Fq .

14.3.3 Algorithm Implementation and Runtime Analysis

In this sub-section, we discuss how both the interpolation and root finding steps of the algo-
rithm can be implemented and analyze the run time of each step.

Step 1 involves solving N m linear equation in O(N m) variables and can e.g. be solved by
Gaussian elimination in O((N m)3) operations over Fq . This is similar to what we have seen for
Algorithms 14, 15 and 16. However, the fact that the interpolation polynomial has total degree

232

of one in the variables Y1, . . . ,Ys implies a much faster algorithm. In particular, one can perform
the interpolation in O(N m log2(N m) loglog(N m)) operations over Fq .

The root finding step involves computing all the “roots" of Q. The proof of Lemma 14.3.4
actually suggests Algorithm 20.

Algorithm 20 The Root Finding Algorithm for Algorithm 19
INPUT: A0(X), . . . , As(X)
OUTPUT: All polynomials f (X) of degree at most k −1 that satisfy (14.8)

1: Compute ℓ such that X ℓ is the largest common power of X among A0(X), . . . , As(X).
2: FOR every 0 ≤ i ≤ s DO

3: Ai (X) ← Ai (X)
X ℓ .

4: Compute B(X) according to (14.9)
5: Compute d , z and M such that the solutions to the k linear system of equations in (14.15)

lie in the set
{

M ·x+z|x ∈ Fd
q

}

.
6: Ł ←;
7: FOR every x ∈ Fd

q DO

8: (f0, . . . , fk−1) ← M ·x+z.
9: f (X) ←

∑k−1
i=0 fi ·X i .

10: IF f (X) satisfies (14.8) THEN

11: Add f (X) to Ł.

12: RETURN Ł

Next, we analyze the run time of the algorithm. Throughout, we will assume that all polyno-
mials are represented in their standard coefficient form.

Step 1 just involves figuring out the smallest power of X in each Ai (X) that has a non-zero
coefficient from which one can compute the value of ℓ. This can be done with O(D +k + s(D +
1)) = O(N m) operations over Fq . Further, given the value of ℓ one just needs to “shift" all the
coefficients in each of the Ai (X)’s to the right by ℓ, which again can be done with O(N m) oper-
ations over Fq .

Now we move to the root finding step. The run time actually depends on what it means to
“solve" the linear system. If one is happy with a succinct description of a set of possible solution
that contains the actual output then one can halt Algorithm 20 after Step 5 and Corollary 14.3.6
implies that this step can be implemented in O

(

s log sk2
)

= O
(

s log s(N m)2
)

operations over
Fq . However, if one wants the actual set of polynomials that need to be output, then the only
known option so far is to check all the q s−1 potential solutions as in Steps 7-11. (However, we’ll
see a twist in Section 14.4.) The latter would imply a total of O(s log s(N m)2)+O(q s−1 · (N m)2)
operations over Fq .

Thus, we have the following result:

Lemma 14.3.7. With O(s log s(N m)2) operations over Fq , the algorithm above can return an

affine subspace of dimension s − 1 that contains all the polynomials of degree at most k − 1

233

that need to be output. Further, the exact set of solution can be computed in with additional

O(q s−1 · (N m)2) operations over Fq .

14.3.4 Wrapping Up

By Theorem 14.3.3, we know that we can list decode a folded Reed-Solomon code with folding
parameter m ≥ 1 up to

s

s +1
·
(

1−
m

m − s +1
·R

)

(14.17)

fraction of errors for any 1 ≤ s ≤ m.
To obtain our desired bound 1−R −ε fraction of errors, we instantiate the parameter s and

m such that
s

s +1
≥ 1−ε and

m

m − s +1
≤ 1+ε. (14.18)

It is easy to check that one can choose

s =Θ(1/ε) and m =Θ(1/ε2)

such that the bounds in (14.18) are satisfied. Using the bounds from (14.18) in (14.17) implies
that the algorithm can handle at least

(1−ε)(1− (1+ε)R) = 1−ε−R +ε2R > 1−R −ε

fraction of errors, as desired.
We are almost done since Lemma 14.3.7 shows that the run time of the algorithm is qO(s).

The only thing we need to choose is q : for the final result we pick q to be the smallest power
of 2 that is larger than N m + 1. Then the discussion above along with Lemma 14.3.7 implies
the following result (the claim on strong explicitness follows from the fact that Reed-Solomon
codes are strongly explicit):

Theorem 14.3.8. There exist strongly explicit folded Reed-Solomon codes of rate R that for large

enough block length N can be list decoded from 1−R −ε fraction of errors (for any small enough

ε> 0) in time
(

N
ε

)O(1/ε)
. The worst-case list size is

(
N
ε

)O(1/ε)
and the alphabet size is

(
N
ε

)O(1/ε2)
.

14.4 Bibliographic Notes and Discussion

There was no improvement to the Guruswami-Sudan result (Theorem 13.2.6) for about seven
years till Parvaresh and Vardy showed that “Correlated" Reed-Solomon codes can be list-decoded

up to 1 − (mR)
1

m+1 fraction of errors for m ≥ 1 [58]. Note that for m = 1, correlated Reed-
Solomon codes are equivalent to Reed-Solomon codes and the result of Parvaresh and Vardy re-
covers Theorem 13.2.6. Immediately, after that Guruswami and Rudra [33] showed that Folded
Reed-Solomon codes can achieve the list-decoding capacity of 1 − R − ε and hence, answer

234

Question 14.0.1 in the affirmative. Guruswami [28] reproved this result but with a much sim-
pler proof. In this chapter, we studied the proof due to Guruswami. Guruswami in [28] cred-
its Salil Vadhan for the the interpolation step. An algorithm presented in Brander’s thesis [4]
shows that for the special interpolation in Algorithm 19, one can perform the interpolation in
O(N m log2(N m) loglog(N m)) operations over Fq . The idea of using the “sliding window" for list
decoding Folded Reed-Solomon codes is originally due to Guruswami and Rudra [32].

The bound of q s−1 on the list size for folded Reed-Solomon codes was first proven in [32] by
roughly the following argument. One reduced the problem of finding roots to finding roots of a
univariate polynomial related to Q over Fqk . (Note that each polynomial in Fq [X] of degree at
most k−1 has a one to one correspondence with elements of Fqk – see e.g. Theorem 11.2.1.) The

list size bound follows from the fact that this new univariate polynomial had degree q s−1. Thus,
implementing the algorithm entails running a root finding algorithm over a big extension field,
which in practice has terrible performance.

Discussion. For constant ε, Theorem 14.3.8 answers Question 14.0.1 in the affirmative. How-
ever, from a practical point of view, there are three issues with the result: alphabet, list size and
run time. Below we tackle each of these issues.

Large Alphabet. Recall that one only needs an alphabet of size 2O(1/ε) to be able to list de-
code from 1−R −ε fraction of errors, which is independent of N . It turns out that combining
Theorem 14.3.8 along with code concatenation and expanders allows us to construct codes over
alphabets of size roughly 2O(1/ε4) [32]. (The idea of using expanders and code concatenation was
not new to [32]: the connection was exploited in earlier work by Guruswami and Indyk [31].)

The above however, does not answer the question of achieving list decoding capacity for
fixed q , say e.g. q = 2. We know that there exists binary code of rate R that are (H−1(1−R −
ε),O(1/ε))-list decodable codes (see Theorem 7.4.1). The best known explicit codes with effi-
cient list decoding algorithms are those achieved by concatenating folded Reed-Solomon codes
with suitable inner codes achieve the so called Blokh-Zyablov bound [34]. However, the tradeoff
is far from the list decoding capacity. As one sample point, consider the case when we want to
list decode from 1

2 −ε fraction of errors. Then the result of [34] gives codes of rate Θ(ε3) while
the codes on list decoding capacity has rate Ω(ε2). The following fundamental question is still
very much wide open:

Open Question 14.4.1. Do there exist explicit binary codes with rate R that can be list de-

coded from H−1(1−R −ε) fraction of errors with polynomial list decoding algorithms?

The above question is open even if we drop the requirement on efficient list decoding al-
gorithm or we only ask for a code that can list decode from 1/2−ε fraction of errors with rate
Ω(εa) for some a < 3. It is known (combinatorially) that concatenated codes can achieve the list
decoding capacity but the result is via a souped up random coding argument and does not give
much information about an efficient decoding algorithm [35].

235

List Size. It is natural to wonder if the bound on the list size in Lemma 14.3.4 above can be
improved as that would show that folded Reed-Solomon codes can be list decoded up to the list
decoding capacity but with a smaller output list size than Theorem 14.3.8. Guruswami showed
that in its full generality the bound cannot be improved [28]. In particular, he exhibits explicit
polynomials A0(X), . . . , As(X) such that there are at least q s−2 solutions for f (X) that satisfy
(14.8). However, these Ai (X)’s are not known to be the output for an actual interpolation in-
stance. In other words, the following question is still open:

Open Question 14.4.2. Can folded Reed-Solomon codes of rate R be list decoded from 1−
R−ε fraction of errors with list size f (1/ε)·N c for some increasing function f (·) and absolute

constant c?

Even the question above with N (1/ε)o(1)
is still open.

However, if one is willing to consider codes other than folded Reed-Solomon codes in or-
der to answer to achieve list decoding capacity with smaller list size (perhaps with one only
dependent on ε), then there is good news. Guruswami in the same paper that presented the
algorithm in this chapter also present a randomized construction of codes of rate R that are
(1−R −ε,O(1/ε2))-list decodable codes [28]. This is of course worse than what we know from
the probabilistic method. However, the good thing about the construction of Guruswami comes
with an O(N /ε)O(1/ε)-list decoding algorithm.

Next we briefly mention the key ingredient in the result above. To see the potential for im-
provement consider Corollary 14.3.6. The main observation is that all the potential solutions
lie in an affine subspace of dimension s − 1. The key idea in [28] was use the folded Reed-
Solomon encoding for a special subset of the message space Fk

q . Call a subspace S ⊆ Fk
q to be a

(q,k,ε,ℓ,L)-subspace evasive subset if

1. |S| ≥ qk(1−ε); and

2. For any (affine) subspace T ⊆ Fk
q of dimension ℓ, we have |S ∩T | ≤ L.

The code in [28], applies the folded Reed-Solomon encoding on a
(

q,k, s,O
(

s2
))

-subspace eva-
sive subset (such a subset can be shown to exist via the probabilistic method). The reason why
this sub-code of folded Reed-Solomon code works is as follows: Condition (1) ensures that the
new code has rate at least R(1−ε), where R is the rate of the original folded Reed-Solomon code
and condition (2) ensures that the number of output polynomial in the root finding step of the
algorithm we considered in the last section is at most L. (This is because by Corollary 14.3.6 the
output message space is an affine subspace of dimension s −1 in Fk

Q . However, in the new code

by condition 2, there can be at most O
(

s2
)

output solutions.)
The result above however, has two shortcomings: (i) the code is no longer explicit and (ii)

even though the worst case list size is O
(

1
ε2

)

, it was not know how to obtain this output without

listing all the q s−1 possibilities and pruning them against S. The latter meant that the decoding
runtime did not improve over the one achieved in Theorem 14.3.8.

236

Large Runtime. We finally address the question of the high run time of all the list decoding
algorithms so far. Dvir and Lovett [16], presented a construction of an explicit (q,k,ε, s, sO(s))-
subspace evasive subset S∗. More interestingly, given any affine subspace T of dimension at
most s, it can compute S∩T in time proportional to the output size. Thus, this result along with
the discussion above implies the following result:

Theorem 14.4.1. There exist strongly explicit codes of rate R that for large enough block length N

can be list decoded from 1−R−ε fraction of errors (for any small enough ε> 0) in time O

((
N
ε2

)2
)

+
(1
ε

)O(1/ε)
. The worst-case list size is

(1
ε

)O(1/ε)
and the alphabet size is

(
N
ε

)O(1/ε2)
.

The above answers Question 14.0.1 pretty satisfactorily. However, to obtain a completely
satisfactory answer one would have to solve the following open question:

Open Question 14.4.3. Are there explicit codes of rate R > 0 that are
(

1−R −ε, (1/ε)O(1)
)

-list

decodable that can be list-decoded in time poly(N ,1/ε) over alphabet of size q ≤ pol y(n)?

The above question, without the requirement of explicitness, has been answered by Gu-
ruswami and Xing [38].

237

238

Part V

The Applications

239

Chapter 15

Cutting Data Down to Size: Hashing

In this chapter, we will study hashing, which is a method to compute a small digest of data
that can be used as a surrogate to later perform quick checks on the data. We begin with brief
descriptions of three practical applications where hashing is useful. We then formally state
the definition of hash functions that are needed in these applications (the so called “universal"
hash functions). Next, we will show how in some sense good hashing functions and good codes
are equivalent. Finally, we will see how hashing can solve a problem motivated by outsourced
storage in the “cloud."

15.1 Why Should You Care About Hashing?

Hashing is one of the most widely used objects in computer science. In this section, we outline
three practical applications that heavily use hashing. While describing the applications, we will
also highlight the properties of hash functions that these applications need.

Before we delve into the applications, let us first formally define a hash function.

Definition 15.1.1 (Hash Function). Given a domain D and a range Σ, (typically, with |Σ| < |D|),
a hash function is a map

h : D→Σ.

Of course, the definition above is too general and we will later specify properties that will
make the definition more interesting.

Integrity Checks on Routers. Routers on the Internet process a lot of packets in a very small
amount of time. Among other tasks, router has to perform an “integrity check" on the packet
to make sure that the packet it is processing is not corrupted. Since the packet has well defined
fields, the router could check if all the field have valid entries. However, it is possible that one of
the valid entry could be turned into another valid entry. However, the packet as a whole could
still be invalid.

If you have progressed so far in the book, you will recognize that the above is the error detec-
tion problem and we know how to do error detection (see e.g., Proposition 2.3.3). However, the

241

algorithms that we have seen in this book are too slow to implement in routers. Hence, Internet
protocols use a hash function on a domain D that encodes all the information that needs to go
into a packet. Thus, given an x ∈D, the packet is the pair (x,h(x)). The sender sends the packet
(x,h(x)) and the receiver gets (x′, y). In order to check if any errors occurred during transmis-
sion, the receiver checks if h(x′) = y . If the check fails, the receiver asks for a re-transmission
otherwise it assumes there were no errors during transmission. There are two requirements
from the hash function: (i) It should be super efficient to compute h(x) given x and (ii) h should
avoid “collisions," i.e. if x 6= x′, then h(x) 6= h(x′).1

Integrity Checks in Cloud Storage. Say, you (as a client) have data x ∈ D that you want to
outsource x to a cloud storage provider. Of course once you “ship" off x to the cloud, you do not
want to store it locally. However, you do not quite trust the cloud either. If you do not audit the
cloud storage server in any way, then nothing stops the storage provider from throwing away
x and send you some other data x′ when you ask for x. The problem of designing an auditing
protocol that can verify whether the server has the data x is called the data possession problem.

We consider two scenarios. In the first scenario, you access the data pretty frequently during
“normal" operation. In such cases, here is a simple check you can perform. When you ship off
x to the cloud, compute z = h(x) and store it. Later when you access x and the storage provider
send you x′, you compute h(x′) and check if it is the same as the stored h(x). This is exactly the
same solution as the one for packet verification mentioned above.

Now consider the scenario, where the cloud is used as an archival storage. In such a case,
one needs an “auditing" process to ensure that the server is indeed storing x (or is storing some
massaged version from which it can compute x– e.g. the storage provider can compress x). One
can always ask the storage provider to send back x and then use the scheme above. However,
if x is meant to be archived in the cloud, it would be better to resolve the following question:

Question 15.1.1. Is there an auditing protocol with small client-server communicationa,

which if the server passes then the client should be able to certain (with some high confidence)

that the server is indeed storing x?

aIn particular, we rule out solutions where the server sends x to the client.

We will see later how this problem can be solved using hashing.

Fast Table Lookup. One of the most common operations on databases is the following. As-
sume there is a table with entries from D. One would like to decide on a data structure to store

1Note that in the above example, one could have x 6= x′ and h(x) 6= h(x′) but it is still possible that y = h(x′) and
hence the corrupted packet (x′, y) would pass the check above. Our understanding is that such occurrences are
rare.

242

the table so that later on given an element x ∈ D, one would quickly like to decide whether x is
in the table or now.

Let us formalize the problem a bit: assume that the table needs to store N values a1, . . . , aN ∈
D. Then later given x ∈ D one needs to decide if x = ai for some i . Here is one simple solution:
sort the n elements in an array T and given x ∈ D use binary search to check if x is in T or not.
This solution uses Θ(N) amounts of storage and searching for x takes Θ(log N) time. Further,
the pre-processing time (i.e. time taken to build the array T) is Θ(N log N). The space usage of
this scheme is of course optimal but one would like the lookup to be faster: ideally we should
be able to perform the search in O(1) time. Also it would be nice to get the pre-processing time
closer to the optimal O(N). Further, this scheme is very bad for dynamic data: inserting an item
to and deleting an item from T takes Θ(N) time in the worst-case.

Now consider the following solution: build a boolean array B with one entry for each z ∈D

and set B [ai] = 1 for every i ∈ [N] (and every other entry is 0).2 Then searching for x is easy: just
lookup B [x] and check if B [x] 6= 0. Further, this data structure can easily handle addition and
deletion of elements (by incrementing and decrementing the corresponding entry of B respec-
tively). However, the amount of storage and pre-processing time are both Θ (|D|), which can be
much much bigger than the optimal O(N). This is definitely true for tables stored in real life
databases. This leads to the following question:

Question 15.1.2. Is there a data structure that supports searching, insertion and deletion in

O(1) time but only needs O(N) space and O(N) pre-processing time?

We will see later how to solve this problem with hashing.

15.2 Avoiding Hash Collisions

One of the properties that we needed in the applications outlined in the previous section was
that the hash function h : D → Σ should avoid collisions. That is, given x 6= y ∈ D, we want
h(x) 6= h(y). However, since we have assumed that |Σ| < |D|, this is clearly impossible. A simple
counting argument shows that there will exist an x 6= y ∈D such that h(x) = h(y). There are two
ways to overcome this hurdle.

The first is to define a cryptographic collision resistant hash function h, i.e. even though
there exists collisions for the hash function h, it is computationally hard for an adversary to
compute x 6= y such that h(x) = h(y).3 This approach is out of the scope of this book and hence,
we will not pursue this solution.

2If one wants to handle duplicates, one could store the number of occurrences of y in B [y].
3This is a very informal definition. Typically, an adversary is modeled as a randomized polynomial time algo-

rithm and there are different variants on whether the adversary is given h(x) or x (or both). Also there are variants
where one assumes a distribution on x. Finally, there are no unconditionally collision resistant hash function but
there exists provably collision resistant hash function under standard cryptographic assumptions: e.g. factoring is
hard.

243

The second workaround is to define a family of hash functions and then argue that the prob-
ability of collision is small for a hash function chosen randomly from the family. More formally,
we define a hash family:

Definition 15.2.1 (Hash Family). Given D,Σ and an integer m ≥ 1, a hash family H is a set
{h1, . . . ,hm} such that for each i ∈ [m],

hi : D→Σ.

Next we define the notion of (almost) universal hash function (family).

Definition 15.2.2 (Almost Universal Hash Family). A hash family H = {h1, . . . ,hm} defined over
the domain D and range Σ is said to be ε-almost universal hash function (family) for some 0 <
ε≤ 1 if for every x 6= y ∈D,

Pr
i

[

hi (x) = hi (y)
]

≤ ε,

where in the above i is chosen uniformly at random from [m].

We will show in the next section that ε-almost universal hash functions are equivalent to
codes with (large enough) distance. In the rest of the section, we outline how these hash families
provides satisfactory solutions to the problems considered in the previous section.

Integrity Checks. For the integrity check problem, one pick random i ∈ [m] and chooses hi ∈
H , where H is an ε-almost universal hash function. Thus, for any x 6= y , we’re guaranteed
with probability at least 1−ε (over the random choice of i) that hi (x) 6= hi (y). Thus, this gives a
randomized solution to the integrity checking problem in routers and cloud storage (where we
consider the first scenario in which the cloud is asked to return the original data in its entirety).

It is not clear whether such hash functions can present a protocol that answers Question 15.1.1.
There is a very natural protocol to consider though. When the client ships off data x to the cloud,
it picks a random hash function hi ∈ H , where again H is an ε-universal hash function, and
computes hi (x). Then it stores hi (x) and ships off x to the cloud. Later on, when the client wants
to audit, it asks the cloud to send hi (x) back to it. Then if the cloud returns with z, the client
checks if z = hi (x). If so, it assumes that the storage provider is indeed storing x and otherwise
it concludes that the cloud is not storing x.

Note that it is crucial that the hash function be chosen randomly: if the client picks a de-
terministic hash function h, then the cloud can store h(x) and throw away x because it knows
that the client is only going to ask for h(x). Intuitively, the above protocol might work since the
random index i ∈ [m] is not known to the cloud till the client asks for hi (x), it seems “unlikely"
that the cloud can compute hi (x) without storing x. We will see later how the coding view of
almost universal hash functions can make this intuition rigorous.

Fast Table Lookup. We now return to Question 15.1.2. The basic idea is simple: we will mod-
ify the earlier solution that maintained an entry for each element in the domain D. The new
solution will be to keep an entry for all possible hash values (instead of all entries in D).

244

More formally, let H = {h1, . . . ,hm} be an ε-almost hash family with domain D and range
Σ. Next we build an array of link list with one entry in the array for each value v ∈ Σ. We pick a
random hash function hi ∈H . Then for each a j (j ∈ [N]) we add it to the link list corresponding
to hi (a j). Now to determine whether x = a j for some j , we scan the link list corresponding to
hi (x) and check if x is in the list or not. Before we analyze the space and time complexity of
this data structure, we point out that insertion and deletion are fairly easy. For inserting an
element x, we compute hi (x) and add x to the link list corresponding to hi (x). For deletion, we
first perform the search algorithm and then remove x from the list corresponding to hi (x), if it
is present. It is easy to check that the algorithms are correct.

Next we analyze the space complexity. Note that for a table with N elements, we will use
up O(N) space in the linked lists and the array is of size O(|Σ|). That is, the total space usage is
O(N +|Σ|). Thus, if we can pick |Σ| = O(N), then we would match the optimal O(N) bound for
space.

Now we analyze the time complexity of the various operations. We first note that insertion is
O(1) time (assuming computing the hash value takes O(1) time). Note that this also implies that
the pre-processing time is O(N + |Σ|), which matches the optimal O(N) bound for |Σ| ≤ O(N).
Second, for deletion, the time taken after performing the search algorithm is O(1), assuming
the lists as stored as doubly linked lists. (Recall that deleting an item from a doubly linked list if
one has a pointer to the entry can be done in O(1) time.)

Finally, we consider the search algorithm. Again assuming that computing a hash value
takes O(1) time, the time complexity of the algorithm to search for x is dominated by size of the
list corresponding to hi (x). In other words, the time complexity is determined by the number
of a j that collide with x, i.e., hi (x) = hi (a j). We bound this size by the following simple observa-
tion.

Claim 15.2.1. Let H = {h1, . . . ,hm} with domain D and range Σ be an ε-almost universal hash

family. Then the following is true for any (distinct) x, a1, a2, . . . , aN ∈D:

Ei

[

|{a j |hi (x) = hi (a j)}|
]

≤ ε ·N ,

where the expectation is taken over a uniformly random choice of i ∈ [m].

Proof. Fix a j ∈ [N]. Then by definition of an ε-almost universal hash family, we have that

Pr
i

[hi (x) = hi (a j)] ≤ ε.

Note that we want to bound E

[
∑N

j=1 1hi (a j)=hi (x)

]

. The probability bound above along with the

linearity of expectation (Proposition 3.1.2) and Lemma 3.1.1 completes the proof.

The above discussion then implies the following:

Proposition 15.2.2. Given an O
(1

N

)

-almost universal hash family with domain D and range Σ

such that |Σ| =O(N), there exists a randomized data structure that given N elements a1, . . . , aN ∈
D, supports searching, insertion and deletion in expected O(1) time while using O(N) space in the

worst-case.

245

Thus, Proposition 15.2.2 answers Question 15.1.2 in the affirmative if we can answer the
following question in the affirmative:

Question 15.2.1. Given a domain D and an integer N ≥ 1, does there exist an O
(1

N

)

-almost

universal hash function with domain D and a range Σ such that |Σ| =O(N)?

We will answer the question above (spoiler alert!) in the affirmative in the next section.

15.3 Almost Universal Hash Function Families and Codes

In this section, we will present a very strong connection between almost universal hash families
and codes with good distance: in fact, we will show that they are in fact equivalent.

We first begin by noting that any hash family has a very natural code associated with it and
that every code has a very natural hash family associated with it.

Definition 15.3.1. Given a hash family H = {h1, . . . ,hn} where for each i ∈ [n], hi : D→ Σ, con-
sider the following associated code

CH : D→Σ
n ,

where for any x ∈D, we have

CH (x) = (h1(x),h2(x), . . . ,hn(x)) .

The connection also goes the other way. That is, given an (n,k)Σ code C , we call the associated
hash family HC = {h1, . . . ,hn), where for every i ∈ [n],

hi : Σk →Σ

such that for every x ∈Σ
k and i ∈ [n],

hi (x) =C (x)i .

Next we show that an ε-almost universal hash family is equivalent to a code with good dis-
tance.

Proposition 15.3.1. Let H = {h1, . . . ,hn} be an ε-almost universal hash function, then the code

CH has distance at least (1− ε)n. On the other hand if C is an (n,k,δn)-code, then HC is a

(1−δ)-almost universal hash function.

Proof. We will only prove the first claim. The proof of the second claim is essentially identical
and is left as an exercise.

Let H = {h1, . . . ,hn} be an ε-almost universal hash function. Now fix arbitrary x 6= y ∈ D.
Then by definition of CH , we have

{i |hi (x) = hi (y)} = {i |CH (x)i =CH (y)i }.

246

This implies that

Pr
i

[

hi (x) = hi (y)
]

=
|{i |hi (x) = hi (y)}|

n
=

n −∆(CH (x),CH (y))

n
= 1−

∆(CH (x),CH (y))

n
,

where the second equality follows from the definition of the Hamming distance. By the defi-
nition of ε-almost universal hash family the above probability is upper bounded by ε, which
implies that

∆(CH (x),CH (y)) ≥ n(1−ε).

Since the choice of x and y was arbitrary, this implies that CH has distance at least n(1−ε) as
desired.

15.3.1 The Polynomial Hash Function

We now consider the hash family corresponding to a Reed-Solomon code. In particular, let C

be a [q,k, q −k +1]q Reed-Solomon code. By Proposition 15.3.1, the hash family HC is an k−1
q

-
almost universal hash family– this hash family in the literature is called the polynomial hash.
Thus, if we pick q to be the smallest power of 2 larger than N and pick k =O(1), then this leads
to an O(1/N)-universal hash family that satisfies all the required properties in Question 15.2.1.

Note that the above implies that |D| = NO(1). One might wonder if we can get an O(1/N)-
almost universal hash family with the domain size being Nω(1). We leave the resolution of this
question as an exercise.

15.4 Data Possession Problem

In this section, we return to Question 15.1.1. Next we formalize the protocol for the data pos-
session problem that we outlined in Section 15.2. Algorithm 21 presents the pre-processing
step.

Algorithm 21 Pre-Processing for Data Possession Verification
INPUT: Data x ∈D, hash family H = {h1, . . . ,hm} over domain D

1: Client computes an index i for x.
2: Client picks a random j ∈ [m].
3: Client computes z ← h j (x) and stores (i , j , z).
4: Client sends x to the server.

Algorithm 22 formally states the verification protocol. Note that if the server has stored x

(or is able to re-compute x from what it had stored), then it can pass the protocol by returning
a ← h j (x). Thus, for the remainder of the section, we will consider the case when the server
tries to cheat. We will show that if the server is able to pass the protocol in Algorithm 22 with
high enough probability, then the server indeed has stored x.

247

Algorithm 22 Verification for Data Possession Verification
INPUT: Index i of data x ∈D

OUTPUT: 1 if Server has x and 0 otherwise

1: Client sends a challenge (i , j) to the server.
2: Client receives an answer a.
3: IF a = z THEN

4: RETURN 1
5: ELSE

6: RETURN 0

Before we formally prove the result, we state our assumptions on what the server can and
cannot do. We assume that the server follows the following general protocol. First, when the
server receives x, it does performs some computation (that terminates) on x to produce y and
then it stores y. (E.g., the server could store y = x or y could be a compressed version of x.)
Then when it receives the challenge (i , j) for x, it uses another algorithm A and returns the
answers a ←A (y, j). We assume that A always terminates on any input.4 Note that the server
is allowed to use arbitrary (but finite) amount of time to compute its answer. Next, we will prove
that under these assumptions, the server cannot cheat with too high a probability.

Theorem 15.4.1. Assume that the hash family H is an ε-almost universal hash family. Then if

the server passes the protocol in Algorithm 22 with probability > 1
2 +

ε
2 , then the server has enough

information to recreate x.

Proof. To prove the claim, we present an algorithm that can compute x from y. (Note that we do
not need this algorithm to be efficient: it just needs to terminate with x.) In particular, consider
Algorithm 23.

Algorithm 23 Decompression Algorithm
INPUT: A ,y

OUTPUT: x′

1: z ←
(

A (y, j)
)

j∈[m].

2: Run the MLD algorithm (Algorithm 1) for CH on z and let CH (x′) be its output.
3: RETURN x′

To complete the proof, we will show that x′ = x. Towards this end we claim that ∆(z,CH (x)) <
m
2 · (1−ε). Assuming this is true, we complete the proof. Note that Proposition 15.3.1 implies

that CH has distance at least m(1−ε). Thus, Proposition 1.4.1 (in particular, its proof) implies
that Algorithm 1 will return CH (x) and thus, x′ = x, as desired.

4We have stated the algorithm to be independent of y and j but that need not be the case. However later in the
section, we will need the assumption that A is independent of y and j , so we will keep it that way.

248

Finally, we argue that ∆(z,CH (x)) < m(1− ε)/2. To see this note that if the server passes

the protocol in Algorithm 22 (i.e. the client outputs 1), then it has to be the case that z j
def=

A (y, j) = h j (x). Recall that by definition of CH , h j (x) = CH (x) j and that the server passes the
protocol with probability > 1/2+ε/2. Since j is chosen uniformly from [m], this implies that for
> m(1/2+ε/2) positions j , z j =CH (x) j , which then implies the claim.

15.4.1 Driving Down the Cheating Probability

One of the unsatisfying aspects of Theorem 15.4.1 is that the probability of catching a “cheating"
server is strictly less than 50%.5 It is of course desirable to drive this up as close to 100% as possi-
ble. One way to obtain this would be to “repeat" the protocol: i.e. the client can choose multiple
random hashes and store the corresponding values (in Algorithm 21) and (in Algorithm 22) asks
the server to send back all the hash values and accepts if and only if all the returned answers
match with the stored hash values. This however, comes at a cost: the client has to store more
hash values (and also the communication cost between the client and the server goes up ac-
cordingly.)

Next we argue using list decoding that the protocol in Algorithm 21 and 22 (without any
modification) gives a more powerful guarantee than the one in Theorem 15.4.1. To see why list
decoding might buy us something, let us look back at Algorithm 23. In particular, consider Step
2: since we run MLD, we can only guarantee unique decoding up to half the (relative) distance
of CH . This in turn leads to the bound of 1/2+ ε/2 in Theorem 15.4.1. We have seen that list
decoding allows us to go beyond half the distance number of errors. So maybe, running a list
decoding algorithm instead of MLD in Step 2 of Algorithms 23 would help us get better results.
There are two potential issues that we’ll need to tackle:

• We will need a general bound that shows that list decoding (arbitrarily) close to 100% is
possible for any CH for an ε-almost universal hash family; and

• Even if the above is possible, what will we do when a list decoding algorithm returns a list

of possible data?

We will get around the first concern by using the Johnson bound 7.3.1. To get around the second
issue we will indirectly use “side information" (like we mentioned in Section 7.2). For the latter,
we will need the notion of Kolmogorov complexity, which captures the amount of information
content in any given string. For our purposes, the following informal description is enough:

Definition 15.4.1. Given a string x, its Kolmogorov complexity, denoted by K (x) is the mini-
mum of |y|+|D|, where D is a decompression algorithm that on input y outputs x (where |x| and
|D| are the length of x and (a description of) D in bits).

Informally, K (x) is the amount of information that can be obtained algorithmically from x.
Kolmogorov complexity is a fascinating topic that it outside the scope of this book. Here we will

5Note that Theorem 15.4.1 states that a server that cannot recreate x can pass the test with probablity at most
1/2+ε/2. In other words, the probability that such a server is caught is at most 1/2−ε/2 < 1/2.

249

only need to use the definition of K (x). We are now ready to prove the following list decoding
counterpart of Theorem 15.4.1:

Theorem 15.4.2. Assume that the hash family H is an ε-almost universal hash family. Then if

the server passes the protocol in Algorithm 22 with probability >
p
ε, then the amount of infor-

mation server has stored for x is at least K (x)−O(log |x|).

We note that the above is not a strict generalization of Theorem 15.4.1, as even though
probability of catching a cheating server has gone up our guarantee is weaker. Unlike Theo-
rem 15.4.1, where we can guarantee that the server can re-create x, here we can only guarantee
“storage enforceability"– i.e. we can only force a server to store close to K (x) amounts of mem-
ory.

Proof of Theorem 15.4.2. Here is the main idea of the proof. We first assume for the sake of
contradiction that |y| <K (x)−O(log(|x|)). Then using we construct a decompression algorithm
D that on given input y and O(log(|x|)) extra information (or “advice"), outputs x. Then we will
show this overall contradicts the definition of K (x) (as this gives an overall smaller description
of x).

Before we state the decompression algorithm, we recall some facts. First note that CH by
Proposition 15.3.1 is a q-ary code (with |Σ| = q) with distance m(1−ε). Further, by the Johnson
bound (Theorem 7.3.1), CH is a (1−

p
ε,L)-list decodable, where

L ≤ qm2. (15.1)

Next, in Algorithm 24, we present a decompression algorithm that can compute x from y

and an advice string a ∈ [L]. (As before, we do not need this algorithm to be efficient: it just
needs to terminate with x.)

Algorithm 24 Decompression Algorithm Using List Decoding
INPUT: A ,y, a

OUTPUT: x

1: z ←
(

A (y, j)
)

j∈[m].
2: L ←;.
3: FOR x′ ∈D DO

4: IF ∆(CH (x′),z) ≤ (1−
p
ε)m THEN

5: Add x′ to L

6: RETURN The ath element in L

To complete the proof, we claim that there exists a choice of a ∈ [L] such that Algorithm 24
outputs x. Note that this implies that (y, a) along with Algorithm 24 gives a complete description
of x. Now note that Algorithm 24 can be described in O(1) bits. This implies that the size of this
description is |y|+ logL +O(1), which by Definition 15.4.1 has to be at least K (x). This implies
that

|y| ≥K (x)−|a|−O(1) =K (x)− logL−O(1) ≥K (x)−O(log |x|),

250

where the last inequality follows from (15.1).
Next, we argue the existence of an appropriate a ∈ [L]. Towards this end we claim that

∆(z,CH (x)) < m(1−
p
ε). Note that this implies that x ∈ L . Since |L | ≤ L, then we can just

assign a to be the index of x in L . Finally, we argue that ∆(z,CH (x)) < m(1−
p
ε). To see this

note that if the server passes the protocol in Algorithm 22 (i.e. the client outputs 1), then it has

to be the case that z j
def= A (y, j) = h j (x). Recall that by definition of CH , h j (x) = CH (x) j and

that the server passes the protocol with probability >
p
ε. Since j is chosen uniformly from [m],

this implies that for > m
p
ε positions j , z j =CH (x) j , which then implies the claim.

15.5 Bibliographic Notes

Universal hash functions were defined in the seminal paper of Carter and Wegman [6]. Almost
universal hash function family was defined by Stinson [70].

Kolmogorov complexity was defined by Kolmogorov [48]. For a thorough treatment see the
textbook by Li and Vitányi [52].

251

252

Chapter 16

Securing Your Fingerprints: Fuzzy Vaults

String-based passwords are the dominant mode of authentication in today’s information-reliant
world. Indeed, all of us use passwords on a regular basis to authenticate ourselves in almost any
online activity. Strings have become widespread due to several nice mathematical properties.
First, matching two strings (that is, checking if two strings are exactly the same) is computation-
ally very fast (and easy). Second, and more importantly, there exist secure hash functions that
map a string x to another string h(x) such that, given h(x), determining x is hard. Furthermore,
since h(x) is itself a string, we can check if a claimed password y is the same as the original
string x by comparing h(y) and h(x), which (as we just observed) is easy to do. This implies
that the server performing the authentification only needs to store the hashes h(x) of the orig-
inal passwords. Hence, even if the list of hashed passwords were compromised, the passwords
themselves would remain secure.

The above scheme is perfect as long as the passwords x are “random enough," and this can
be achieved if the passwords were generated randomly by some automated process. However,
in real life passwords are generated by humans and are not really random. (One of the most
quoted facts is that the most commonly used password is the string “password" itself.) Further,
we tend to forget passwords, which has lead to the near ubiquity of “Forgot passwords" links in
places where we need to login.

One alternative that has been gaining traction in the last decade or so is to use a user’s fin-
gerprint as their password. The big advantage is that it is hard to “forget" one’s fingerprint. In
this chapter, we will look at the issues in using fingerprints as passwords and see how Reed-
Solomon codes can help.

16.1 Some quick background on fingerprints

For the time being let us assume that we can somehow convert a fingerprint (image) some-
how to a string f . (We will see more details on this shortly.) Then we have the following naive
solution:

253

Naive Solution. Use any off-the-shelf hash function h for strings and then store h(f) instead
of f .

To see the issues with the naive solution, we first need to know a little bit about how fin-
gerprints are stored. The standard way to store a fingerprint is as a collection of triples, called
minutia. Each minutia point is located where one ridge splits into two, or where one ridge ends.
The i th minutia is the triple (xi , yi ,θi), where xi and yi are the x and y coordinates of a point on
the finger, and θi indicates the direction of the ridge that created the minutia point relative to
the plane.

The main issue with our naive solution is that two fingerprint readings will never be exactly
the same, even if the same finger is used. For any two fingerprint readings, the following issues
may produce errors:

1. Translation and rotation, even when using the same finger.

2. Varying pressure.

3. Each reading may not completely overlap with the ideal fingerprint region (i.e., the finger
may be slightly tilted).

4. The minutia are not ordered, so they form a set instead of a vector. Of course one can
sort the set to produce a string, but in conjunction with the earlier issue (especially those
involving rotation and translation) this implies that the values of (xi , yi ,θi) by themselves
are not that important. Furthermore the fact that two readings might not have complete
overlap means that we are interested in matching readings that have significant overlap,
so it turns out that the set notation is deal to theoretically deal with the issues.

Figure 16.1: The minutia are unordered and form a set, not a vector.

254

We can now see that the naive solution is inadequate. Even if we could somehow correct
the first three issues, existing hash functions for strings require a vector, not a set, so our naive
solution will fail.

Remark 16.1.1. The four problems that came up in our naive solution will come up in any so-
lution we propose. Technology has not yet developed to the point where we can securely elimi-
nate these issues, which is why there are no prevalent secure commercial systems that safeguard
secrets using fingerprints. (The reason government agencies, such as the police or FBI, use fin-
gerprinting is because there is an inherent trust that the government will keep your data secure,
even when it does not apply a good hash function to it.)

Thus, what we are looking for are secure hash functions designed to handle the additional
challenges posed by fingerprints. We would like to mention that for fingerprints to replace
strings as passwords, the hash function needs to satisfy both of these properties simultane-

ously: (i) we should be able to match hashes from the “same" fingerprint and (ii) an adversary
should not be able to “break" the hash function.

16.2 The Fuzzy Vault Problem

We begin with the fuzzy vault problem, which is slightly different from the one we have been
studying so far. Say you have a secret string, s, and you want to store it in a secure way. Instead
of using a password, you want to use your fingerprint, f , to “lock" the secret s. You want the
locked version of your secret to have two properties:

1. You should be able to “unlock" the locked version of s

2. No one else should be able to “unlock" s

We claim that if we can solve the above problem, then we can solve the problem of designing a
secure hash function for fingerprints. We leave the details as an exercise. (Hint: pick s at random
and then in addition to the locked version of s also store h(s), where h is an off-the-shelf secure
hash function for strings.)

We will now formalize the fuzzy vault problem.

16.2.1 Formal Problem Statement

The first thing we need to do is quantize the measurements of the minutia. We cannot be
infinitely precise in our measurements anyways, so let us assume that all quantized minutia,
(xi , yi ,θi), can be embedded into Fq for some large enough prime power q . Theoretically, this
can also help to correct the first two issues from our naive solution. We could go through all pos-
sible values in Fq to get rid of translation and rotation errors (e.g.. for every (∆x,∆y,∆z) ∈ Fq , we
rotate and translate each minutia (xi , yi , zi) to (xi +∆x, yi +∆y, zi +∆z)). 1 We can also do some

1To be more precise we first perform the translation and rotation over the reals and then quantize and map to
the appropriate Fq value.

255

local error correction to a quantized value to mitigate the effect of varying pressure. We stress
that going over all possible shifts is not a practical solution, but theoretically this can still lead
to a polynomial-time solution.

We now formally define our problem, which primarily captures issues 3 and 4. (Below for
any integers t ≥ 1,

(Fq

t

)

denotes the set of all subsets of Fq of size exactly t .) The following are the
components of the problem:

• Integers k ≥ 1, n ≥ t ≥ 1

• Secret s ∈ Fk
q

• Fingerprint f ∈
(

Fq

t

)

• LOCK : Fk
q ×

(

Fq

t

)

→
(

Fq

n

)

• UNLOCK :

(

Fq

t

)

×
(

Fq

n

)

→ Fk
q

The goal of the problem is to define the functions LOCK and UNLOCK such that they satisfy
these two properties (for some c < t):

1. (c-completeness.) For any f , f ′ ∈
(Fq

t

)

such that | f − f ′| ≤ c, the following should hold:

UNLOCK
(

LOCK(s, f), f ′)= s.

2. (Soundness.) It should be “hard" for an adversary to get s from LOCK(s, f). (The notion of
“hard" will be more formally defined later.)

Note that the completeness property corresponds to the matching property we need from
our hash function, while the soundness property corresponds to the security property of the
hash function.

16.2.2 Two Futile Attempts

We begin with two attempts at designing the LOCK and UNLOCK functions, which will not work.
However, later we will see how we can combine both to get our final solution.

For this section, unless mentioned otherwise, we will assume that the original fingerprint f

is given by the set {α1, . . . ,αt }.

256

Attempt 1. We begin with a scheme that focuses on the soundness property. A very simple
idea, which is what we will start off with, would be to just add n − t random values to f to
get our vault. The intuition, which can be made precise, is that an adversary just looking at the
vault will just see random points and will not be able to recover f from the random set of points.
The catch of course that this scheme has terrible completeness. In particular, if we get a match
between a value in the second fingerprint f ′ and the vault, we have no way to know whether
the match is to one of the original values in f or if the match is with one of the random “chaff"
points there were added earlier.

Attempt 2. Next, we specify a scheme that has good completeness (but has pretty bad sound-
ness).

We begin with the LOCK function:

LOCK2(s, f) = {(α1,Ps(α1)), . . . , (αt ,Ps(αt))},

where Ps(X) =
∑k−1

i=0 s·X
i and recall f = {α1, . . . ,αt }. (Note that we have n = t .)

The main intuition behind LOCK2 is the following. Given another fingerprint f ′ = {β1, . . . ,βt }
such that it is close enough to f , i.e. | f \ f ′| ≤ c, for every value in f ∩ f ′, we will know the
corresponding Ps value and thus, we can use the fact that we can decode Reed-Solomon codes
from erasures to recover the secret s. We formally present UNLOCK2 as Algorithm 25.

Algorithm 25 UNLOCK2

INPUT: Vault {(α1, y1), . . . , (αt , yt)} = LOCK(s, f) and another fingerprint f ′ = {β1, . . . ,βt }
OUTPUT: s if | f \ f ′| ≤ c

1: FOR i = 1, . . . , t DO

2: IF there exists a j ∈ [t] such that αi =β j THEN

3: z j ← yi

4: ELSE

5: z j ←?

6: z ← (z1, . . . , zt)
7: Run Algorithm from Theorem 11.2.1 to correct z from erasures for RS codes with evaluation

points {β1, . . . ,βt } and output resulting message as s.

The following result is fairly simple to argue.

Lemma 16.2.1. The pair (LOCK2, UNLOCK2) of functions is (t −k)-complete. Further, both func-

tions can be implemented in polynomial time.

Proof. Let us assume | f \ f ′| ≤ t −k. Now as both f and f ′ have exactly t values, this means that
z has at most t −k erasures. Thus, by Theorem 11.2.1, Step 6 will output s and UNLOCK2 can
be implemented in polynomial time. Further, the claim on the polynomial run time of LOCK2

follows from the fact that one can do encoding of Reed-Solomon code in polynomial time.

257

Unfortunately, (LOCK2, UNLOCK2) pair has terrible soundness. This is because the vault {(α1, y1), . . . , (αt , yt)}
has f in the first component in each pair. This an adversary can just read off those values and
present f ′ = {α1, . . . ,αt }, which would imply that UNLOCK2(LOCK2(s, f), f ′) = s, which means
that the vault would be “broken."

16.3 The Final Fuzzy Vault

So far we have seen two attempts: one that (intuitively) has very good soundness but no com-
pleteness and another which has good completeness but terrible soundness. It is natural to
consider if we can combine both of these attempts and get the best of both worlds. Indeed, it
turns we can easily combine both of our previous attempts to get the final fuzzy vault.

Algorithm 26 presents the new LOCK3 function.

Algorithm 26 LOCK3

INPUT: Fingerprint f = {α1, . . . ,αt } and secret s = (s0, . . . , sk−1) ∈ Fk
q

OUTPUT: Vault with f locking s

1: R,T ←;
2: Ps(X) ←

∑k−1
i=0 si ·X i

3: FOR i = 1, . . . , t DO

4: T ← T ∪ {αi }

5: FOR i = t +1, . . . ,n DO

6: αi be a random element from Fq \ T

7: T ← T ∪ {αi }

8: FOR every α ∈ T DO

9: γ be a random element from Fq \ Ps(α)
10: R ← R ∪ {(α,γ)}

11: Randomly permute R

12: RETURN R

Algorithm 27 presents the new UNLOCK3 function.
The following result is a simple generalization of Lemma 16.2.1.

Lemma 16.3.1. The pair (LOCK3, UNLOCK3) of functions is (t−k)/2-complete. Further, both func-

tions can be implemented in polynomial time.

Proof. Let us assume | f \ f ′| ≤ (t −k)/2. Now as both f and f ′ have exactly t values, it implies
that | f ∩ f ′| ≥ (t +k)/2. Further for each j ∈ [t] such that β j ∈ f ∩ f ′, we have that z j = Ps(β j).
In other words, this means that z has at most (t −k)/2 errors.2 Thus, by Theorem 11.2.2, Step 6
will output s and UNLOCK3 can be implemented in polynomial time. Further, the claim on the
polynomial run time of LOCK3 follows from the fact that one can do encoding of Reed-Solomon
code in polynomial time.

2To be more precise if z has e errors and s erasures w.r.t. the codeword corresponding to s, then 2e + s ≤ t −k.

258

Algorithm 27 UNLOCK2

INPUT: Vault {(α1, y1), . . . , (αn , yn)} = LOCK(s, f) and another fingerprint f ′ = {β1, . . . ,βt }
OUTPUT: s if | f \ f ′| ≤ c

1: FOR i = 1, . . . , t DO

2: IF there exists a j ∈ [n] such that αi =β j THEN

3: z j ← yi

4: ELSE

5: z j ←?

6: z ← (z1, . . . , zt)
7: Run Algorithm from Theorem 11.2.2 to correct z from errors and erasures for RS codes with

evaluation points {β1, . . . ,βt } and output resulting message as s.

16.3.1 Soundness

To avoid getting into too much technical details, we will present a high level argument for why
the proposed fuzzy vault scheme has good soundness. Given a vault {(α1, y1), . . . , (αn , yn)} =
LOCK3(s, f), we know that there are exactly t values (i.e. those α j ∈ f) such that the polynomial
Ps(X) agrees with the vault on exactly those t points. Thus, an intuitive way to argue the sound-
ness of the vault would be to argue that there exists a lot other secrets s′ ∈ Fk

q such that Ps′(X)
also agrees with the vault in exactly t positions. (One can formalize this intuition and argue that
the vault satisfies a more formal definition of soundness but we will skip those details.)

We will formalize the above argument by proving a slightly different result (and we will leave
the final proof as an exercise).

Lemma 16.3.2. Let V = {(x1, y1), . . . , (xn , yn) be n independent random points from Fq×Fq . Then,

in expectation, there are at least 1
3 ·qk ·

(
n
qt

)t
polynomials P (X) of degree at most k −1 such that

for exactly t values of j ∈ [n], we have P (x j) = y j .

Proof. Consider a fixed polynomial P (X) and a j ∈ [n]. Then for any x j ∈ Fq , the probability that
for a random y j ∈ Fq , P (x j) = y j is exactly 1/q . Further, these probabilities are all independent.
This implies that the probability that P (X) agrees with V in exactly t positions is given by

(

n

t

)

·
(

1

q

)t

·
(

1−
1

q

)n−t

≥
1

3

(
n

qt

)t

.

Since there are qk such polynomials, the claimed result follows.

We note that there are two aspects of the above lemma that are not satisfactory. (i) The result
above is for a vault V with completely random points whereas we would like to prove a similar
result but with V = LOCK3(s, f) and (ii) Instead of a bound in expectation, we would like to prove
a similar exponential lower bound but with high probability. We leave the proof that these can
be done as an exercise. (Hint: Use the “Inverse Markov Inequality.")

259

16.4 Bibliographic Notes

The fuzzy vault presented in this chapter is due to Juels and Sudan [43]. The “inverse Markov
inequality" first appeared in Dumer et al. [15].

260

Chapter 17

Finding Defectives: Group Testing

Consider the following situation that arises very frequently in biological screens. Say there are N

individuals and the objective of the study is to identify the individuals with a certain “biomarker"
that could e.g. indicate that the individual has some specific disease or is at risk for a certain
health condition. The naive way to do this would be to test each person individually, that is:

1. Draw sample (e.g. a blood or DNA sample) from a given individual,

2. Perform required tests, then

3. Determine presence or absence of the biomarker.

This method of one test per person will gives us a total of N tests for a total of N individuals.
Say we had more than 70−75% of the population infected. At such large numbers, the use of
the method of individual testing is reasonable. However, our goal is to achieve effective testing
in the more likely scenario where it doesn’t make sense to test 100,000 people to get just (say)
10 positives.

The feasibility of a more effective testing scheme hinges on the following property. We can
combine blood samples and test a combined sample together to check if at least one individual
has the biomarker.

The main question in group testing is the following: If we have a very large number of items
to test, and we know that only certain few will turn out positive, what is a nice and efficient way
of performing the tests?

17.1 Formalization of the problem

We now formalize the group testing problem. The input to the problem consists of the follow-
ing:

• The total number of individuals: N .

• An upper bound on the number of infected individuals d .

261

• The input can be described as a vector x = (x1, x2, ..., xn) where xi = 1 if individual i has
the biomarker, else xi = 0.

Note that w t (x) ≤ d . More importantly, notice that the vector x is an implicit input since we
do not know the positions of 1s in the input. The only way to find out is to run the tests. Now,
we will formalize the notion of a test.

A query/test S is a subset of [N]. The answer to the query S ⊆ [N] is defined as follows:

A(S) =
{

1 if
∑

i∈S

xi ≥ 1;

0 otherwise.

Note that the answer to the S is the logical-OR of all bits in S, i.e. A(S) =∨

i∈S xi .
The goal of the problem is to compute x and minimize the number of tests required to de-

termine x.

Testing methods. There is another aspect of the problem that we need specify. In particular,
we might need to restrict how the tests interact with each other. Below are two commons ways
to carry out tests:

1. Adaptive group testing is where we test a given subset of items, get the answer and base
our further tests on the outcome of the previous set of tests and their answers.

2. Non-Adaptive group testing on the other hand is when all our tests are set even before we
perform our first test. That is, all our tests are decided a priori.

Non-adaptive group testing is crucial for many applications. This is because the individuals
could be geographically spread pretty far out. Due to this, adaptive group testing will require
a very high degree of co-ordination between the different groups. This might actually increase
the cost of the process.

Notation. We will also need notation to denote the minimum number of tests needed in group
testing. Towards this end, we present the following two definitions.

Definition 17.1.1 (t (d , N)). Given a subset of N items with d defects represented as x ∈ {0,1}N ,
the minimum number of non-adaptive tests that one would have to make is defined as t (d , N).

Definition 17.1.2. t a(d , N) : Given a set of N items with d defects, t a(d , N) is defined as the
number of adaptive tests that one would have to make to detect all the defective items.

The obvious questions are to prove bounds on t (d , N) and t a(d , N):

Question 17.1.1. Prove asymptotically tight bounds on t (d , N).

262

Question 17.1.2. Prove asymptotically tight bounds on t a(d , N).

We begin with some simple bounds:

Proposition 17.1.1. For every 1 ≤ d ≤ N , we have

1 ≤ t a(d , N) ≤ t (d , N) ≤ N .

Proof. The last inequality follows from the naive scheme of testing all individuals with singleton
tests while the first inequality is trivial. The reason for t a(d , N) ≤ t (d , N) is due to the fact that
any non-adaptive test can be performed by an adaptive test by running all of the tests in the
first step of the adaptive test. Adaptive tests can be faster than non-adaptive tests since the test
can be changed after certain things are discovered.

Representing the set of tests as a matrix. It turns out that is is useful to represent a non-
adaptive group testing scheme as a matrix. Next, we outline the natural such representation.
For, S ⊆ [N], define χS ∈ {0,1}N such that i ∈ S if and only if χS(i) = 1. Consider a non-adaptive
group testing scheme with t test S1, . . . ,St . The corresponding matrix M is a t ×N matrix where
the i th row is χSi

. (Note that the trivial solution of testing each individual as a singleton set
would just be the N ×N identity matrix.) In other words, M = {Mi j }i∈[t], j∈[N] such that Mi j = 1
if j ∈ Si and Mi j = 0 otherwise.

If we assume that multiplication is logical AND (
∧

) and addition is logical OR (
∨

), then we
have M × x = r where r ∈ {0,1}t is the vector of the answers to the t tests. We will denote this
operation as M ⊙x. To think of this in terms of testing, it is helpful to visualize the matrix-vector
multiplication. Here, r will have a 1 in position i if and only if there was a 1 in that position in
both M and x i.e. if that person was tested with that particular group and if he tested out to be
positive.

Thus, our goal is to get to compute x from M ⊙x with as small a t as possible.

17.2 Bounds on t a(d , N)

In this section, we will explore lower and upper bounds on t a(d , N) with the ultimate objective
of answering Question 17.1.2.

We begin with a lower bound that follows from a simple counting argument.

Proposition 17.2.1. For every 1 ≤ d ≤ N ,

t a(d , N) ≥ d log
N

d
.

Proof. Fix any valid adaptive group testing scheme with t tests. Observe that if x 6= y ∈ {0,1}N ,
with w t (x), w t (y) ≤ d then r(x) 6= r(y), where r(x) denotes the result vector for running the tests
on x and similarly for r(y). The reason for this is because two valid inputs cannot give the same

263

result. If this were the case and the results of the tests gave r(x) = r(y) then it would not be
possible to distinguish between x and y.

The above observation implies that total number of distinct test results is the number dis-
tinct binary vectors with Hamming weight at most d , i.e. V ol2(d , N). On the other hand, the
number of possible distinct t-bit vectors is at most 2t , which with the previous argument im-
plies that

2t ≥V ol2(d , N)

and hence, it implies that
t ≥ logV ol2(d , N).

Recall that

V ol2(d , N) ≥
(

N

d

)

≥
(

N

d

)d

,

where the first inequality follows from (3.23) and the second inequality follows from Lemma B.1.1.
So t ≥ d log(N /d), as desired.

It turns out that t a(d , N) is also O
(

d log
(

N
d

))

. (See Exercise 17.1.) This along with Propo-

sition 17.2.1 implies that t a(d , N) = Θ
(

d log
(

N
d

))

, which answers Question 17.1.2. The upper
bound on t a(d , N) follows from an adaptive group testing scheme and hence does not say
anything meaningful for Question 17.1.1. (Indeed, we will see later that t (d , N) cannot be
O(d log(N /d)).) Next, we switch gears to talk about non-adaptive group testing.

17.3 Bounds on t (d , N)

We begin with the simplest case of d = 1. In this case it is instructive to recall our goal. We want
to define a matrix M such that given any x with w t (x) ≤ 1, we should be able to compute x from
M ⊙ x. In particular, let us consider the case when x = ei for some i ∈ [N]. Note that in this
case M ⊙x = M i , where M i is the i th column of M . Hence we should design M such that M i

uniquely defined i . We have already encountered a similar situation before in Section 2.6 when
trying to decode the Hamming code. It turns out that is suffices to pick M as the parity check
matrix of a Hamming code. In particular, we can prove the following result:

Proposition 17.3.1. t (1, N) ≤ ⌈log(N +1)⌉+1

Proof. We prove the upper bound by exhibiting a matrix that can handle non adaptive group
testing for d = 1. The group test matrix M is the parity check matrix for [2m −1,2m −m −1,3]2,
i.e. Hm where the i -th column is the binary representation of i (recall Section 2.4). This works
because when performing Hm⊙x = r, if w t (v) ≤ 1 then r will correspond to the binary represen-
tation of i . Further, note that if w t (x) = 0, then r = 0, which is exactly x. Hence, M ⊙x uniquely
identifies x when w t (x) ≤ 1, as desired.

If N 6= 2m − 1 for any m, the matrix Hm corresponding to the m such that 2m−1 − 1 < N <
2m − 1 can be used by adding 0s to the end of x. By doing this, decoding is "trivial" for both
cases since the binary representation is given for the location. So the number of tests is at most
⌈log(N +1)⌉+1, which completes the proof.

264

Note that Propositions 17.1.1 and 17.2.1 imply that t (d , N) ≥ log N , which with the above
result implies that t (1, N) =Θ(log N). This answers Question 17.1.1 for the case of d = 1. We will
see later that such a tight answer is not known for larger d . However, at the very least we should
try and extend Proposition 17.3.1 for larger values of d . In particular,

Question 17.3.1. Prove asymptotic upper bounds on t (d , N) that hold for every 1 < d ≤ N .

We would like to point out something that was implicitly used in the proof of Proposi-
tion 17.3.1. In particular, we used the implicitly understanding that a non-adaptive group test-
ing matrix M should have the property that given any x ∈ {0,1}N such that w t (x) ≤ d , the result
vector M ⊙ x should uniquely determine x. This notion is formally captured in the following
definition of non-adaptive group testing matrix:

Definition 17.3.1. A t×N matrix M is d-separable if and only if for every S1 6= S2 ⊆ [N] such that
|S1|, |S2| ≤ d , we have

⋃

j∈S1

M j 6=
⋃

i∈S2

M i .

In the above we think of a columns M i ∈ {0,1}t as a subset of [t] and for the rest of this
chapter we will use both views of the columns of a group testing matrix. Finally, note that the
above definition is indeed equivalent to our earlier informal definition since for any x ∈ {0,1}N

with w t (x) ≤ d , the vector M ⊙x when thought of as its equivalent subset of [t] is exactly the set
∪i∈S M i , where S is the support of x, i.e. S = {i |xi = 1}.

Like in the coding setting, where we cared about the run time of the decoding algorithm,
we also care about the time complexity of the decoding problem (given M ⊙x compute x) for
group testing. We will now look at the obvious decoding algorithm for d-separable matrices:
just check all possible sets that could form the support of x. Algorithm 28 has the details.

Algorithm 28 Decoder for Separable Matrices
INPUT: Result vector r and d-separable matrix M

OUTPUT: x if r = M ⊙x else Fail

1: R ← {i |ri = 1}.
2: FOR Every T ⊆ [N] such that |T | ≤ d DO

3: ST ←∪i∈T M i

4: IF R = ST THEN

5: x ← (x1, . . . , xN) ∈ {0,1}N such that xi = 1 if and only i ∈ T .
6: RETURN x

7: RETURN Fail

The correctness of Algorithm 28 follows from Definition 17.3.1. Further, it is easy to check
that this algorithm will run in NΘ(d) time, which is not efficient for even moderately large d .
This naturally leads to the following question:

265

Question 17.3.2. Do there exists d-separable matrices that can be efficient decoded?

We would like to remark here that the matrices that we seek in the answer to Question 17.3.2
should have small number of tests (as otherwise the identity matrix answers the question in the
affirmative).

17.3.1 Disjunct Matrices

We now define a stronger notion of group testing matrices that have a more efficient decoding
algorithm than d-separable matrices.

Definition 17.3.2. A t ×N matrix M is d-disjunct if and only if for every S ⊂ [N] with |S| ≤ d and
for every j ∉ S, there exist an i ∈ [t] such that Mi j = 1 but for all k ∈ S, Mi k = 0. Or equivalently

M j 6⊆
⋃

k∈S

M k .

For an illustration of the definition, see Figure 17.3.2.

j

i

S

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17.1: Pick a subset S (not necessarily contiguous). Then pick a column j that is not
present in S. There will always be i such that row i has a 1 in column j and all zeros in S.

Next we argue that disjunctness is a sufficient condition for separability.

Lemma 17.3.2. Any d-disjunct matrix is also d-separable.

Proof. For contradiction, assume M is d-disjunct but not d-separable. Since M is not d-separable,
then union of two subset S 6= T ⊂ [N] of size at most d each are the same; i.e.

⋃

k∈S

M k =
⋃

k∈T

M k .

Since S 6= T , there exists j ∈ T \ S. But we have

266

M j ⊆
⋃

k∈T

M k =
⋃

k∈S

M k ,

where the last equality follows from the previous equality. However, since by definition j 6∈ S,
the above contradicts the fact that M is d-disjunct.

In fact, it turns out that disjunctness is also almost a necessary condition: see Exercise 17.2.
Next, we show the real gain of moving to the notion of disjunctness from the notion of sep-

arability.

Lemma 17.3.3. There exists a O(tN) time decoding algorithm for any t × N matrix that is d-

disjunct.

Proof. The proof follows from the following two observations.
First, say we have a matrix M and a vector x and r = M ⊙x such that ri = 1. Then there exists

a column j in matrix that made it possible i.e. if ri = 1, then there exists a j such that Mi j = 1
and x j = 1.

Second, let T be a subset and j be a column not in T where T = {ℓ | xℓ = 1} and |T | ≤ d .
Consider the i th row such that T has all zeros in the i th row, then ri = 0. Conversely, if ri = 0,
then for every j ∈ [N] such that Mi j = 1, it has to be the case that x j = 0. This naturally leads to
the decoding algorithm in Algorithm 29.

The correctness of Algorithm 29 follows from the above observation and it can be checked
that the algorithm runs in time O(t N)– see Exercise 17.3.

Algorithm 29 Naive Decoder for Disjunct Matrices
INPUT: Result vector r and d-disjunct matrix M

OUTPUT: x if M ⊙x = r else Fail

1: Initialize x ∈ {0,1}N to be the all ones vector
2: FOR every i ∈ [t] DO

3: IF ri = 0 THEN

4: FOR Every j ∈ [N] DO

5: IF Mi j = 1 THEN

6: x j ← 0

7: IF M ⊙x = r THEN

8: RETURN x

9: ELSE

10: RETURN Fail

Modulo the task of exhibiting the existence of d-disjunct matrices, Lemmas 17.3.3 and 17.3.2
answer Question 17.3.2 in the affirmative. Next, we will tackle the following question:

267

Question 17.3.3. Design d-disjunct matrices with few rows.

As we will see shortly answering the above question will make connection to coding theory
becomes even more explicit.

17.4 Coding Theory and Disjunct Matrices

In this section, we present the connection between coding theory and disjunct matrices with
the final goal of answering Question 17.3.3. First, we present a sufficient condition for a matrix
to be d-disjunct.

Lemma 17.4.1. Let 1 ≤ d ≤ N be an integer and M be a t ×N matrix, such that

(i) For every j ∈ [N], the j th column has at least wmin ones in it, i.e.
∣
∣M j

∣
∣≥ wmin and

(ii) For every i 6= j ∈ [N], the i and j ’th columns have at most amax ones in common, i.e.
∣
∣M i ∩M j

∣
∣≤ amax

for some integers amax ≤ wmin ≤ t . Then M is a
⌊

wmin−1
amax

⌋

-disjunct.

Proof. For notational convenience, define d =
⌊

wmin−1
amax

⌋

. Fix an arbitrary S ⊂ [N] such that |S| ≤
d and a j 6∈ S. Note we have to show that

M j 6⊆ ∪i∈S M i ,

or equivalently

M j 6⊆ ∪i∈S

(

M i ∩M j
)

.

We will prove the above by showing that
∣
∣
∣M j \∪i∈S

(

M i ∩M j
)∣
∣
∣> 0.

Indeed, consider the following sequence of relationships:
∣
∣
∣M j \∪i∈S

(

M i ∩M j
)∣
∣
∣=

∣
∣
∣M j

∣
∣
∣−

∣
∣
∣∪i∈S

(

M i ∩M j
)∣
∣
∣

≥
∣
∣
∣M j

∣
∣
∣−

∑

i∈S

∣
∣
∣

(

M i ∩M j
)∣
∣
∣ (17.1)

≥ wmin −|S| ·amax (17.2)

≥ wmin −d ·amax (17.3)

≥ wmin −
wmin −1

amax
·amax (17.4)

= 1.

268

In the above, (17.1) follows from the fact that size of the union of sets is at most the sum of
their sizes. (17.2) follows from the definitions of wmin and amax. (17.3) follows from the fact that
|S| ≤ d while (17.4) follows from the definition of d . The proof is complete.

Next, we present a simple way to convert a code into a matrix. Let C ⊆ [q]t be a code such
that C = {c1, . . . ,cN }. Then consider the matrix MC whose i ’th column is ci , i.e.

MC =

↑ ↑ ↑
c1 c2 · · · cn

↓ ↓ ↓

 .

Thus, by Lemma 17.4.1, to construct an
⌊

wmin−1
amax

⌋

-disjunct matrix, it is enough to design a

binary code C∗ ⊆ {0,1}t such that (i) for every c ∈C∗, w t (c) ≥ wmin and (ii) for every c1 6= c2 ∈C∗,
we have |{i |c1

i
= c2

i
= 1}| ≤ amax. Next, we look at the construction of such a code.

17.4.1 Kautz-Singleton Construction

In this section, we will prove the following result:

Theorem 17.4.2. For every integer d ≥ 1 and large enough N ≥ d, there exists a t ×N matrix is

d-disjunct where t =O
(

d 2
(

logd N
)2

)

.

Note that the above result answers Question 17.3.3. It turns out that one can do a bit better:
see Exercise 17.4.

Towards this end, we will now study a construction of C∗ as in the previous section due to
Kautz and Singleton. As we have already seen in Chapter 10, concatenated codes are a way
to design binary codes. For our construction of C∗, we will also use code concatenation. In
particular, we will pick C∗ =Cout ◦Cin, where Cout is a [q,k, q −k +1]q Reed-Solomon code (see
Chapter 5) while the inner code Cin : Fq → {0,1}q is defined as follows. For any i ∈ Fq , define
Cin(i) = ei . Note that MCin is the identity matrix and that N = qk and t = q2.

Example 17.4.3. Let k = 1 and q = 3. Note that by our choice of [3,1]3 Reed-Solomon codes, we

have Cout = {(0,0,0), (1,1,1), (2,2,2)}. In other words,

MCout =

0 1 2
0 1 2
0 1 2

 .

Then the construction of MC∗ can be visualized as in Figure 17.4.3.

Next, we instantiate parameters in the Kautz-Singleton construction to prove Theorem 17.4.2.

Proof of Theorem 17.4.2. We first analyze the construction to determine the parameters wmin

and amax. Then we pick the parameters q and k in terms of d to complete the proof.
Recall that N = qk and t = q2. It is easy to check that every column of MC∗ has exactly q

ones in it. In other words, wmin = q . Next, we estimate amax.

269

0 1 2
0 1 2
0 1 2

MCout

◦

0 0 1
0 1 0
1 0 0

MCin

→

0 0 1
0 1 0
1 0 0
0 0 1
0 1 0
1 0 0
0 0 1
0 1 0
1 0 0

MC∗

Figure 17.2: Construction of the final matrix MC∗ from MCout and MCin from Example 17.4.3.
The rows in MC∗ that correspond to the same row in MCout have the same color.

Divide the rows into q sized chunks, and index the t = q2 rows by pairs in [q]× [q]. Recall
that each column in MC∗ corresponds to a codeword in C∗. For notational convenience, we
will use M for MC∗ . Note that for any row (i , j) ∈ [q]× [q] and a column index ℓ ∈ [N], we have
M(i , j),ℓ = 1 if and only if cℓ(j) = j (where we use some fixed bijection between Fq and [q] and
cℓ is the ℓ’th codeword in Cout). In other words, the number of rows where the ℓ1th and ℓ2th
columns both have a one is exactly the number of positions where cℓ1 and cℓ2 agree, which is
exactly q −∆(cℓ1 ,cℓ2). Since Cout is a [q,k, q −k +1]q code, the number of rows where any two
columns agree is at most k −1. In other words, amax = k −1.1

Lemma 17.4.1 implies that MC∗ is d-disjunct if we pick

d =
⌊

q −1

k −1

⌋

.

Thus, we pick q and k such that the above is satisfied. Note that we have q = O(kd). Further,
since we have N = qk , we have

k = logq N .

This implies that q =O(d · logq N), or q log q =O(d log N). In other words we have

q =O(d logd N).

Recalling that t = q2 completes the proof.

An inspection of the proof of Theorem 17.4.2 shows that we only used the distance of the
Reed-Solomon code and in particular, any Cout with large enough distance suffices. In particu-
lar, if we pick Cout to be a random code over an appropriate sized alphabet then one can obtain
t = O(d 2 log N). (See Exercise 17.5 for more on this.) Note that this bound is incomparable to
the bound in Theorem 17.4.2. It turns out that these two are the best known upper bounds on
t (d , N). In particular,

1The equality is obtained due to columns that corresponds to codewords that agree in exactly k −1 positions.

270

Open Question 17.4.1. Can we beat the upper bound of O
(

d 2 ·min
(

log(N /d), log2
d N

))

on

t (d , N)?

It turns out that the quadratic dependence on d in the upper bounds is tight. In fact it is
known that t (d , N) ≥Ω(d 2 logd N). (See Exercises 17.7 and 17.8.)

Next, we present an application of group testing in the field of data stream algorithms, which
in turn will bring out another facet of the connection between coding theory and group testing.

17.5 An Application in Data Stream Algorithms

Let us consider the problem of tracking updates on stock trades. Given a set of trades (i1,u1), · · · ,
(im ,um), where i j is the stock id for the j th trade, u j is the amount of the stocks in the j th trade.
The problem is to keep track of the top d stocks. Such a problem is also called hot items/ heavy
hitters problem.

Let N be the total number of stocks in the market. This problem could be solved in O(m)+
O(N log N) ≈O(m) time and O(N) space by setting a O(N) size buffer to record the total number
of trading for each stock and then sort the buffer later. However, m could be of the order of
millions for one minute’s trading, e.g. in the first minute of April 19, 2010, there are 8077600
stocks were traded. Taking the huge amount of trades into consideration, such an algorithm is
not practical.

A more practical model of efficient algorithms in this context is one of data stream algo-

rithm, which is defined as follows.

Definition 17.5.1. A data stream algorithm has four requirements listed below:

1. The algorithm should make one sequential pass over the input.

2. The algorithm should use poly-log space. (In particular, it cannot store the entire input.)

3. The algorithm should have poly-log update time, i.e. whenever a new item appears, the
algorithm should be able to update its internal state in poly-log time.

4. The algorithm should have poly-log reporting time, i.e. at any point of time the algorithm
should be able to return the required answers in poly-log time.

Thus, ideally we would like to design a data stream algorithm to solve the hot items problem
that we discussed earlier. Next, we formally define the hot items problem. We begin with the
definition of frequencies of each stock:

Definition 17.5.2. Let fℓ denote the total count for the stock idℓ. Initially fℓ = 0, given (ℓ,uℓ), fℓ ←
fℓ+uℓ.

Next, we define the hot items problem.

271

Definition 17.5.3 (Hot Items Problem). Given N different items, for m input pairs of data (iℓ,uℓ)
for 1 ≤ ℓ ≤ m, where iℓ ∈ [N] indicates the item index and uℓ indicates corresponding count.
The problem requires updating the count fℓ(1 ≤ ℓ ≤ m) for each item, and to output all item

indices j such that f j >
∑N

ℓ=1 uℓ

d
. (Any such item is called a hot item.)

Note that there can be at most d hot items. In this chapter, we will mostly think of d as
O(log N). Hot items problem is also called heavy hitters problems. We state the result below
without proof:

Theorem 17.5.1. Computing hot items exactly by a deterministic one pass algorithm needs Ω(n)
space (even with exponential time).

This theorem means that we cannot solve the hot items problem in poly-log space as we
want. However, we could try to find solutions for problems around this. The first one is to
output an approximate solution, which will output a set that contains all hot items and some
non-hot items. For this solution, we want to make sure that the size of the output set is not too
large (e.g. outputting [N] is not a sensible solution).

Another solution is to make some assumptions on the input. For example, we can assume
Zipf-like distribution of the input data, which means only a few items appear frequently. More
specifically, we can assume heavy-tail distribution on the input data, i.e.:

∑

ℓ:not hot

fℓ ≤
m

d
. (17.5)

This is reasonable for many applications, such as hot stock finding, where only a few of them
have large frequency. Next, we will explore the connection between group testing and hot items
problem based on this assumption.

17.5.1 Connection to Group Testing

Let us recall the naive solution that does not lead to a data stream algorithm: for each item
j ∈ [N], we maintain the actual count of number of trades for stock j . In other words, at any
point of time, if C j is the count for stock j , we have C j = f j . Another way to represent this is if
M is the N ×N identity matrix, then we maintain the vector of counts via M · f, where f is the
vector of the frequencies of the items. Paralleling the story in group testing where we replace
the identity matrix with a matrix with fewer rows, a natural idea here would be to replace M

by matrix with fewer rows that utilizes the fact that there can be at most d hot items. Next, we
show that this idea works if the heavy tail distribution holds. In particular, we will reduce the
hot items problem to the group testing problem.

We now show how we solve the hot items problem from Definition 17.5.3. Let M be an t ×N

matrix that is d-disjunct. We maintain counters C1, . . . ,Ct , where each Ci is the total count of
any item that is present in the i th row. We also maintain the total number of items m seen so far.
Algorithm 30 and Algorithm 31 present the initialization and update algorithms. The reporting
algorithm then needs to solve the following problem: at any point of time, given the counts
C1, . . . ,Ct and m output the at most d hot items.

272

Algorithm 30 Initialization
OUTPUT: Initialize the counters

1: m ← 0
2: FOR every j ∈ [t] DO

3: C j ← 0

Algorithm 31 Update
INPUT: Input pair (i ,u), i ∈ [N] and u ∈Z

OUTPUT: Update the Counters

1: m ← m +1,
2: FOR every j ∈ [t] DO

3: IF Mi j = 1 THEN

4: C j ←C j +u

Next, we reduce the problem of reporting hot items to the decoding problem of group test-
ing. The reduction essentially follows from the following observations.

Observation 17.5.2. If j is a hot item and Mi j = 1, then Ci > m
d

.

Proof. Let i ∈ [t] be such that Mi j = 1. Then note that at any point of time,

Ci =
∑

k:Mi k=1

fk ≥ f j .2

Since j is a hot item, we have f j > m
d

, which completes the proof.

Observation 17.5.3. For any 1 ≤ i ≤ t , if all j with Mi j = 1 are not hot items, then we have Ci ≤ m
d

.

Proof. Fix an ∈ [t] such that every j ∈ [N] such that Mi j = 1 is not a hot item. Then by the same
argument as in proof of Observation 17.5.2, we have

Ci =
∑

k:Mi k=1

fk .

The proof then follows by the choice of i and (17.5).

Armed with these observations, we now present the reduction. Define x = (x1, x2, . . . , xN) ∈
{0,1}N with x j = 1 if and only if j is a hot item, and r = (r1,r2, . . . ,rt) ∈ {0,1}t with ri = 1 if and

2The equality follows e.g. by applying induction on Algorithm 31.

273

only if Ci > m
d

, we will have ri = ∨ j :Mi j=1x j . The latter claim follows from Observations 17.5.2
and 17.5.3 above. This means we have:

M ⊙x = r. (17.6)

Note that by definition, w t (x) < d . Thus reporting the hot items is the same as decoding to
compute x given M and r, which successfully changes the hot items problem into group testing
problem. Algorithm 32 has the formal specification of this algorithm.

Algorithm 32 Report Heavy Items
INPUT: Counters m and C1, . . . ,Ct

OUTPUT: Output the heavy items

1: FOR every j ∈ [t] DO

2: IF Ct > m
d

THEN

3: r j ← 1
4: ELSE

5: r j ← 0

6: Let x be the result of decoding (for group testing) r

7: RETURN {i |xi = 1}

Next, we will design and analyze the algorithm above and check if the conditions in Defini-
tion 17.5.1 are met.

Analysis of the Algorithm

In this part, we will review the requirements on data stream algorithm one by one and check
if the algorithm for the hot items problem based on group testing satisfies them. In particular,
we will need to pick M and the decoding algorithm. We will pick M to be the d-disjunct matrix
from Theorem 17.4.2.

1. One-pass requirement

If we use non-adaptive group testing, the algorithm for the hot items problem above can
be implemented in one pass, which means each input is visited only once. (If adaptive
group testing is used, the algorithm is no longer one pass, therefore we choose non-
adaptive group testing.) We note that by definition, our choice of M satisfies this con-
dition.

2. Poly-log space requirement

In the algorithm, we have to maintain the counters Ci and m. The maximum value for
them is mN , thus we can represent each counter in O(log N + logm) bits. This means
we need O((log N +logm)t)bits to maintain the counters. Theorem 17.4.2 implies that t =
O(d 2 log2

d N). Thus, the total space we need to maintain the counters is O(d 2 log2
d N (log N+

logm)).

274

On the other hand, if we need to store the matrix M , we will need Ω(t N) space. Therefore,
poly-log space requirement can be achieved only if matrix M is not stored directly. (We
will tackle this issues in the next point.)

3. Poly-log update time

As mentioned in the previous part, we cannot store the matrix M directly in order to have
poly-log space. Since RS code is strongly explicit (see Exercise 6.9), we do not need to
explicitly store M (we just need to store the parameters of the code Cout and Cin, which can
be done in poly-log space). In the following, we will argue that the runtime of Algorithm 31
is O(t ×polylog t). It is easy to check the claimed time bound is correct as long as we can
perform the check in Step 3 in polylog(t) time. In particular, we would be done if given
j ∈ [N], we can compute the column M j in O(t ×polylog t) time. Next, we argue that the
latter claim is correct.

Recall that M = MC∗ , with C∗ = Cout ◦Cin, where Cout is a
[

q,k, q −k +1
]

q RS code and
Cin chosen such that MCin is the q × q identity matrix. Recall that codewords of C∗ are
columns of the matrix M , and we have n = qk , t = q2.

Since every column of M corresponds to a codeword of C∗, we can think of j equiva-
lently as a message m ∈ Fq

k . In particular, M j then corresponds to the codeword Cout(m).
On the other hand, the column M j can be partitioned into q chunks, each chunk is of
length q . Notice that (Cout(m))i1 = i2 if and only if the i1th chunk has 1 on its i2th po-
sition and 0 on other positions (recall the definition of Cin). Therefore, we can compute
M j by computing Cout(m). Because Cout is a linear code, Cout(m) can be computed in
O(q2×polylog q) time,3 implies that M j can be computed in O(q2×polylog q) time. Since
we have t = q2, the update process can be finished with O(t ×polylog t) time. (We do not
need Cout to be strongly explicit: as long as Cout is linear the arguments so far work just as
well.)

4. Reporting time

It is easy to check that the run time of Algorithm 32 is dominated by Step 6. So far, the only
decoding algorithm for M that we have seen is Algorithm 29, which runs in time Ω(t N),
which does not satisfy the required reporting time requirement. In Exercise 17.11, we
show that using the fact that Cout is the Reed-Solomon code, one can solve the decoding
problem in poly(t).

Thus, we have argued that

Theorem 17.5.4. There exists a data streaming algorithm that computes d hot items with one

pass, O(t log N) space for t =O(d 2 log2
d N), O(tpolylog t) update time and poly(t) reporting time.

3This follows from Proposition 2.3.2 and the fact that Cout is strongly explicit

275

17.6 Summary of best known bounds

We conclude the chapter by collecting the best known bounds on both adaptive and non-
adaptive group testing. First, we know the correct bound on the best possible number of adap-
tive tests:

Theorem 17.6.1.

t a(d , N) =Θ
(

d log(N /d)
)

.

The upper bound follows from Exercise 17.1 while the lower bound follows from Proposi-
tion 17.2.1.

There is a gap between the best known upper and lower bound on the number of non-
adaptive tests:

Theorem 17.6.2.

Ω
(

d 2 logd N
)

≤ t (d , N) ≤O
(

d 2 min
(

log(N /d), log2
d N

))

.

The upper bounds follow from Theorem 17.4.2 and Exercise 17.5 while the lower bound
follows from Exercise 17.8.

Finally, note that Theorem 17.6.1 and 17.6.2 imply that there is a gap between the minimum
number of tests needed for adaptive and non-adaptive group testing:

Corollary 17.6.3.
t (d , N)

t a(d , N)
≥Ω

(
d

logd

)

.

17.7 Exercises

Exercise 17.1 (Upper bound on t a(d , N)). In this problem we will show that t a(d , N) =O(d log(N /d)).
We begin by trying to prove a weaker bound of O(d log N):

• Show that one can identify at least one i such that xi = 1 (or report none exist) with
O(log N) adaptive tests.

(Hint: Use binary search.)

• Using the scheme above argue that one can compute x with O(w t (x)·log N) adaptive tests.
Conclude that t a(d , N) ≤O(d log N).

Next we argue that we can tighten the bound to the optimal bound of O(d log(N /d)):

• Argue that any scheme that computes x ∈ {0,1}N with O(w t (x) · log N) adaptive tests can
be used to compute x with O(d log(N /d)) adaptive tests where w t (x) ≤ d .

• Conclude that t a(d , N) ≤O(d log(N /d)).

276

Exercise 17.2. Show that every d-separable matrix is also (d −1)-disjunct.

Exercise 17.3. Prove that Algorithm 29 is correct and runs in time O(t N).

Exercise 17.4. For every integer d ≥ 1 and large enough integer N ≥ d show that there exists a
d-disjunct matrix with O(d 2 log(N /d)) rows.

(Hint: Use the probabilistic method. It might help to pick each of t N bits in the matrix inde-
pendently at random with the same probability.)

Exercise 17.5. We first begin by generalizing the argument of Theorem 17.4.2:

• Let Cout be an (n,k,D)q code. Let Cin be defined such that MCin is the q×q identity matrix.
Let MCout◦Cin be a t ×N matrix that is d-disjunct. Derive the parameters d , t and N .

Next argue that it is enough to pick an outer random code to obtain a d-disjunct matrix with
the same parameters obtained in Exercise 17.4:

• Pick q = Θ(d). Then using the previous part or otherwise show that if Cout is a random
[n,k,D]q code, then the resulting t ×N matrix MCout◦Cin is d-disjunct with t =O(d 2 log N)
for large enough N .

(Hint: Use Theorem 4.2.1 and Proposition 3.3.5.)

Exercise 17.6. For every integer d ≥ 1 and large enough N ≥ d , construct a d-disjunct matrix
with O(d 2 log N) rows in (deterministic) time poly(N).

Hint: Recall Exercise 4.7.

Exercise 17.7 (Lower Bound on t (d , N) due to Bassalygo). In this problem we will show that

t (d , N) ≥ min
{(d+2

2

)

, N
}

. In what follows let M be a t ×N matrix that is d-disjunct.

(a) Argue that if w t (M j) < d then M j has a private row i.e. there exists a row i ∈ [t] such that
Mi j = 1 but Mi j ′ = 0 for every j ′ 6= j .

(b) Using part (a) or otherwise, argue that if all columns of M have Hamming weight at most
d −1, then t ≥ N .

(c) Let M− j for j ∈ [N] be the matrix M with M j as well as all rows i ∈ [t] such that Mi j = 1
removed. Then argue that M− j is (d −1)-disjunct.

(d) Argue that t (1, N) ≥ min{3, N }.

(e) Using induction with parts (b)-(d) or otherwise, argue that t ≥ min
{(d+2

2

)

, N
}

.

Exercise 17.8 (Lower Bound on t (d , N) due to Ruszinkó and Alon-Asodi). In this problem, we
will show that

t (d , N) ≥Ω
(

min
{

d 2 logd N , N
})

. (17.7)

In what follows let M be a t ×N matrix that is d-disjunct.

277

(a) Argue that any j ∈ [N] such that w t (M j) < 2t
d

has a private subset of size ⌈4t/d 2⌉, i.e. there
exists a subset S ⊆ [N] with |S| = ⌈4t/d 2⌉ such that M j has ones in all i ∈ S but for every
j 6= j ′, M j ′ has at least one row i ′ ∈ S such that Mi ′ j ′ = 0.

(b) Using part (a) or otherwise, argue:

N −
d

2
≤

(

t

⌈4t/d 2⌉

)

.

(c) Using Exercise 17.7 and part (b) or otherwise argue (17.7).

Exercise 17.9. In this exercise and the ones that follow it, we will consider the following equiv-
alent version of the decoding problem: given r = M ⊙x with w t (x) ≤ d , output {i |xi = 1}. Now
consider the following easier version of the problem. In addition to r and M assume that one is
also given a set S such that {i |xi = 1} ⊆ S. Modify Algorithm 29 to design a decoding algorithm
that computes {i |xi = 1} in time O(t · |S|).

Exercise 17.10. A t ×N matrix M is called (d ,L)-list disjunct if and only if the following holds for
every disjoint subsets S,T ⊂ [N] such that |S| = d and |T | = L −d , there is a row in M where all
columns in S have a 0 but at least one column in T has a 1.

• What is a (d ,d +1)-list disjunct matrix?

• Let Cout be an (n,k)q code that is (0,d ,L)-list recoverable code (recall Definition 13.3.2).
Let Cin be the inner code such that MCin is the q ×q identity matrix. Argue that MCout◦Cin

is (d ,L) list disjunct.

Exercise 17.11. Using Exercises 17.9 and 17.10 or otherwise prove the following. Let MC∗ be
the Kautz-Singleton matrix from Section 17.4.1. Then given MC∗ ⊙ x with w t (x) ≤ d , one can
compute {i |xi = 1} in poly(t) time.
(Hint: Theorem 13.3.2 could be useful.)

17.8 Bibliographic Notes

Robert Dorfman’s paper in 1943 [13] introduced the field of (Combinatorial) Group Testing. It
must be noted that though this book covers group testing as an application of coding theory, it
took off long before coding theory itself.

The original motivation arose during the Second World War when the United States Public
Health service and the Selective Service embarked upon a large scale project. The objective was
to weed out all syphilitic men called up for induction. [13].

The connection between group testing and hot items problem considered in Section 17.5
was established by Cormode and Muthukrishnan [12]. More details on data stream algorithms
can be bound in the survey by Muthukrishnan [57].

278

Bibliography

[1] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, 1992.

[2] P.G.H. Bachmann. Die analytische Zahlentheorie. Number v. 2 in Zahlentheorie. Versuch
einer Gesammtdarstellung dieser Wissenschaft in ihren Haupttheilen. 2. th. Teubner, 1894.

[3] E. R. Berlekamp. Factoring polynomials over large finite fields. Mathematics of Computa-

tion, 24:713–735, 1970.

[4] Kristian Brander. Interpolation and list decoding of algebraic codes. PhD thesis, Technical
University of Denmark, 2010.

[5] P.S. Bullen. Handbook of Means and Their Inequalities. Mathematics and Its Applications.
Springer Netherlands, 2010.

[6] Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput. Syst.

Sci., 18(2):143–154, 1979.

[7] Donald G. Chandler, Eric P. Batterman, and Govind Shah. Hexagonal, information encod-
ing article, process and system. US Patent Number 4,874,936, October 1989.

[8] C. L. Chen and M. Y. Hsiao. Error-correcting codes for semiconductor memory applica-
tions: A state-of-the-art review. IBM Journal of Research and Development, 28(2):124–134,
1984.

[9] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A. Patterson.
RAID: High-performance, reliable secondary storage. ACM Computing Surveys, 26(2):145–
185, 1994.

[10] Alan Cobham. The Intrinsic Computational Difficulty of Functions. In Y. Bar-Hillel, edi-
tor, Logic, Methodology and Philosophy of Science, proceedings of the second International

Congress, held in Jerusalem, 1964, Amsterdam, 1965. North-Holland.

[11] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the

3rd Annual ACM Symposium on Theory of Computing (STOC), pages 151–158, 1971.

[12] Graham Cormode and S. Muthukrishnan. What’s hot and what’s not: tracking most fre-
quent items dynamically. ACM Trans. Database Syst., 30(1):249–278, 2005.

279

[13] Robert Dorfman. The detection of defective members of large populations. The Annals of

Mathematical Statistics, 14(4):436–440, December 1943.

[14] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis

of Randomized Algorithms. Cambridge University Press, 2009.

[15] Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximating the min-
imum distance of a linear code. IEEE Transactions on Information Theory, 49(1):22–37,
2003.

[16] Zeev Dvir and Shachar Lovett. Subspace evasive sets. Electronic Colloquium on Computa-

tional Complexity (ECCC), 18:139, 2011.

[17] Jack Edmonds. Paths, trees, and flowers. In Ira Gessel and Gian-Carlo Rota, editors, Clas-

sic Papers in Combinatorics, Modern BirkhÃd’user Classics, pages 361–379. BirkhÃd’user
Boston, 1987.

[18] Peter Elias. Error-free coding. IEEE Transactions on Information Theory, 4(4):29–37, 1954.

[19] Peter Elias. List decoding for noisy channels. Technical Report 335, Research Laboratory of

Electronics, MIT, 1957.

[20] P. Erdös. On extremal problems of graphs and generalized graphs. Israel Journal of Mathe-

matics, 2(3):183–190, 1964.

[21] G. David Forney. Concatenated Codes. MIT Press, Cambridge, MA, 1966.

[22] G. David Forney. Generalized Minimum Distance decoding. IEEE Transactions on Infor-

mation Theory, 12:125–131, 1966.

[23] Peter Gemmell and Madhu Sudan. Highly resilient correctors for multivariate polynomials.
Information Processing Letters, 43(4):169–174, 1992.

[24] E. N. Gilbert. A comparison of signalling alphabets. Bell System Technical Journal, 31:504–
522, 1952.

[25] M. J. E. Golay. Notes on digital coding. Proceedings of the IRE, 37:657, 1949.

[26] Venkatesan Guruswami. Limits to list decodability of linear codes. In Proceedings of the

34th ACM Symposium on Theory of Computing (STOC), pages 802–811, 2002.

[27] Venkatesan Guruswami. List decoding of error-correcting codes. Number 3282 in Lecture
Notes in Computer Science. Springer, 2004. (Winning Thesis of the 2002 ACM Doctoral
Dissertation Competition).

[28] Venkatesan Guruswami. Linear-algebraic list decoding of folded reed-solomon codes.
In Proceedings of the 26th Annual IEEE Conference on Computational Complexity (CCC),
pages 77–85, 2011.

280

[29] Venkatesan Guruswami, Johan Håstad, and Swastik Kopparty. On the list-decodability of
random linear codes. IEEE Transactions on Information Theory, 57(2):718–725, 2011.

[30] Venkatesan Guruswami, Johan Håstad, Madhu Sudan, and David Zuckerman. Combina-
torial bounds for list decoding. IEEE Transactions on Information Theory, 48(5):1021–1035,
2002.

[31] Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with
near-optimal rate. IEEE Transactions on Information Theory, 51(10):3393–3400, 2005.

[32] Venkatesan Guruswami and Atri Rudra. Limits to list decoding reed-solomon codes. IEEE

Transactions on Information Theory, 52(8):3642–3649, August 2006.

[33] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capac-
ity: Error-correction with optimal redundancy. IEEE Transactions on Information Theory,
54(1):135–150, 2008.

[34] Venkatesan Guruswami and Atri Rudra. Better binary list decodable codes via multilevel
concatenation. IEEE Transactions on Information Theory, 55(1):19–26, 2009.

[35] Venkatesan Guruswami and Atri Rudra. The existence of concatenated codes list-
decodable up to the hamming bound. IEEE Transactions on Information Theory,
56(10):5195–5206, 2010.

[36] Venkatesan Guruswami and Igor Shparlinski. Unconditional proof of tightness of john-
son bound. In Proceedgins of the Fourteenth Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 754–755, 2003.

[37] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon and
algebraic-geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767,
1999.

[38] Venkatesan Guruswami and Chaoping Xing. Folded codes from function field towers and
improved optimal rate list decoding. Electronic Colloquium on Computational Complexity

(ECCC), 19:36, 2012.

[39] Richard W. Hamming. Error Detecting and Error Correcting Codes. Bell System Technical

Journal, 29:147–160, April 1950.

[40] G.H. Hardy and J.E. Littlewood. Some problems of diophantine approximation. Acta Math-

ematica, 37(1):193–239, 1914.

[41] Johan Håstad, Steven Phillips, and Shmuel Safra. A well-characterized approximation
problem. Inf. Process. Lett., 47(6):301–305, 1993.

[42] Tom Høholdt, J. H. van Lint, and Ruud Pellikaan. Algebraic geometry codes. In W. C. Huf-
famn V. S. Pless and R. A.Brualdi, editors, Handbook of Coding Theory. North Holland, 1998.

281

[43] Ari Juels and Madhu Sudan. A fuzzy vault scheme. Des. Codes Cryptography, 38(2):237–257,
2006.

[44] J. Justesen. Class of constructive asymptotically good algebraic codes. IEEE Trans. Inform.

Theory, pages 652–656, Sep 1972.

[45] Erich Kaltofen. Polynomial-time reductions from multivariate to bi- and univariate inte-
gral polynomial factorization. SIAM J. Comput., 14(2):469–489, 1985.

[46] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer

Computations, pages 85–103, 1972.

[47] Donald E. Knuth. Big omicron and big omega and big theta. SIGACT News, 8(2):18–24,
April 1976.

[48] Andrei N. Kolmogorov. Three Approaches to the Quantitative Definition of Information.
Problems of Information Transmission, 1(1):1–7, 1965.

[49] E. Landau. Handbuch der lehre von der verteilung der primzahlen. Number v. 1 in Hand-
buch der lehre von der verteilung der primzahlen. B. G. Teubner, 1909.

[50] Amos Lapidoth and P. Narayan. Reliable communication under channel uncertainty. IEEE

Transactions on Information Theory, 44(6):2148–2177, 1998.

[51] Leonid A Levin. Universal sequential search problems. Problemy Peredachi Informatsii,
9(3):115–116, 1973.

[52] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its Appli-

cations. Graduate Texts in Computer Science. Springer, New York, NY, USA, third edition,
2008.

[53] Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and their applications.
Cambridge University Press, Cambridge, MA, 1986.

[54] Michael Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi, and Daniel A. Spiel-
man. Efficient erasure correcting codes. IEEE Transactions on Information Theory,
47(2):569–584, 2001.

[55] Robert J. McEliece. On the average list size for the Guruswami-Sudan decoder. In 7th

International Symposium on Communications Theory and Applications (ISCTA), July 2003.

[56] Robert J. McEliece, Eugene R. Rodemich, Howard Rumsey Jr., and Lloyd R. Welch. New
upper bounds on the rate of a code via the Delsarte-Macwilliams inequalities. IEEE Trans-

actions on Information Theory, 23:157–166, 1977.

[57] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends in

Theoretical Computer Science, 1(2), 2005.

282

[58] Farzad Parvaresh and Alexander Vardy. Correcting errors beyond the guruswami-sudan
radius in polynomial time. In Proceedings of the 46th Annual IEEE Symposium on Founda-

tions of Computer Science (FOCS), pages 285–294, 2005.

[59] Larry L. Peterson and Bruce S. Davis. Computer Networks: A Systems Approach. Morgan
Kaufmann Publishers, San Francisco, 1996.

[60] W. Wesley Peterson. Encoding and error-correction procedures for Bose-Chaudhuri codes.
IEEE Transactions on Information Theory, 6:459–470, 1960.

[61] Michael O. Rabin. Probailistic algorithms. In J. F. Traub, editor, Algorithms and Complexity,

Recent Results and New Directions, pages 21–39, 1976.

[62] Irving S. Reed and Gustav Solomon. Polynomial codes over certain finite fields. SIAM

Journal on Applied Mathematics, 8(2):300–304, 1960.

[63] Herbert Robbins. A remark on Stirling’s formula. Amer. Math. Monthly, 62:26–29, 1955.

[64] Atri Rudra and Steve Uurtamo. Two theorems on list decoding. In Proceedings of the 14th

Intl. Workshop on Randomization and Computation (RANDOM), pages 696–709, 2010.

[65] Claude E. Shannon. A mathematical theory of communication. Bell System Technical Jour-

nal, 27:379–423, 623–656, 1948.

[66] Victor Shoup. A computational introduction to number theory and algebra. Cambridge
University Press, 2006.

[67] R. Singleton. Maximum distance q -nary codes. Information Theory, IEEE Transactions on,
10(2):116 – 118, apr 1964.

[68] Michael Sipser. The history and status of the p versus np question. In Proceedings of the

Twenty-fourth Annual ACM Symposium on Theory of Computing, STOC ’92, pages 603–618,
New York, NY, USA, 1992. ACM.

[69] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE

Transactions on Information Theory, 42(6):1723–1731, 1996.

[70] Douglas R. Stinson. Universal hashing and authentication codes. Des. Codes Cryptography,
4(4):369–380, 1994.

[71] Madhu Sudan. Decoding of Reed Solomon codes beyond the error-correction bound. J.

Complexity, 13(1):180–193, 1997.

[72] Madhu Sudan. List decoding: Algorithms and applications. SIGACT News, 31:16–27, 2000.

[73] Robert Endre Tarjan. Algorithmic design. Commun. ACM, 30(3):204–212, 1987.

283

[74] Aimo Tietavainen. On the nonexistence theorems for perfect error-correcting codes. SIAM

Journal of Applied Mathematics, 24(1):88–96, 1973.

[75] Jacobus H. van Lint. Nonexistence theorems for perfect error-correcting codes. In Proceed-

ings of the Symposium on Computers in Algebra and Number Theory, pages 89–95, 1970.

[76] R. R. Varshamov. Estimate of the number of signals in error correcting codes. Doklady

Akadamii Nauk, 117:739–741, 1957.

[77] Lloyd R. Welch and Elwyn R. Berlekamp. Error correction of algebraic block codes. US

Patent Number 4,633,470, December 1986.

[78] John M. Wozencraft. List Decoding. Quarterly Progress Report, Research Laboratory of

Electronics, MIT, 48:90–95, 1958.

284

Appendix A

Notation Table

R The set of real numbers
¬E Negation of the event E

log x Logarithm to the base 2
Σ

m Vectors of length m with symbols from Σ

v A vector
0 The all zero vector
ei The i th standard vector, i.e. 1 in position i and 0 everywhere else
vS Vector v projected down to indices in S

〈u,v〉 Inner-product of vectors u and v

[a,b] {x ∈R|a ≤ x ≤ b}
[x] The set {1, . . . , x} Section
n Block length of a code Definition
Σ Alphabet of a code Definition
q q = |Σ| Definition
k Dimension of a code Definition
R Rate of a code Definition
∆(u,v) Hamming distance between u and v Definition
d Minimum distance of a code Definition
w t (v) Hamming weight of v Definition
B(x,r) Hamming ball of radius r centered on x Definition
V olq (r,n) Volume Hamming ball of radius r Definition
(n,k,d)Σ A code with block length n, dimension k, distance d and alphabet Σ Definition
(n,k,d)q A code with block length n, dimension k, distance d and alphabet size q Definition
[n,k,d]q A linear (n,k,d)q code Definition
Fq The finite field with q elements (q is a prime power) Section
F∗ The set of non-zero elements in the field F

Fm×N
q The set of all m ×N matrices where each entry is from Fq

Fq [X1, . . . , Xm] The set of all m-variate polynomials with coefficients from Fq

R(C) Rate of a code family C Definition

285

δ(C) Relative distance of a code family C Definition
U The uniform distribution Definition
E[V] Expectation of a random variable V Definition
1E Indicator variable for event E Section
Hq (x) x logq (q −1)−x logq x − (1−x) logq (1−x) Definition
H−1

q (y) Unique x ∈ [0,1−1/q] such that Hq (x) = y Section
deg(P) Degree of polynomial P (X) Definition
Fq [X] The set of all univariate polynomials in X over Fq Section
Jq (x) (1−1/q)(1−

√

1−qx/(q −1)) Theor
(S

t

)

{T ⊆ S||T | = t }
M ⊙x Binary matrix-vector multiplication where multiplication is AND and addition is OR

286

Appendix B

Some Useful Facts

B.1 Some Useful Inequalities

We begin with a simple lower bound on the binomial function:

Lemma B.1.1. For every integers 1 ≤ a ≤ b, we have

(

b

a

)

≥
(

b

a

)a

.

Proof. The following sequence of relations completes the proof:
(

a

b

)

=
a−1∏

i=0

b − i

a − i
≥

a−1∏

i=0

b

a
=

(
b

a

)a

.

In the above, the first equality follows from definition and the inequality is true since b ≥ a and
i ≥ 0.

We state the next set of inequalities without proof (see [63] for a proof):

Lemma B.1.2 (Stirling’s Approximation). For every integer n ≥ 1, we have

p
2πn

(n

e

)n
eλ1(n) < n! <

p
2πn

(n

e

)n
eλ2(n),

where

λ1(n) =
1

12n +1
and λ2(n) =

1

12n
.

We prove another inequality involving Binomial coefficient.

Lemma B.1.3. For every integers 1 ≤ a ≤ b, we have

(

b

a

)

≤
(

eb

a

)a

.

287

Proof. First note that
(

a

b

)

=
a(a −1) · · ·(a −b +1)

b!
≤

ab

b!
.

The final bound follows from the fact that

b! >
(

b

e

)b

,

which in turns follows from the lower bound in Lemma B.1.2.

We next state Bernoulli’s inequality:

Lemma B.1.4 (Bernoulli’s Inequality). For every real numbers k ≥ 1 and x ≥−1, we have

(1+x)k ≥ 1+kx.

Proof Sketch. We only present the proof for integer k. For the full proof see e.g. [5].
For the base case of k = 1, the inequality holds trivially. Assume that the inequality holds

for some integer k ≥ 1 and to complete the proof, we will prove it for k +1. Now consider the
following inequalities:

(1+x)k+1 = (1+x) · (1+x)k

≥ (1+x) · (1+kx)

= 1+ (k +1)x +kx2

≥ 1+ (k +1)x,

as desired. In the above, the first inequality follows from the inductive hypothesis and the sec-
ond inequality follows from the fact that k ≥ 1.

Lemma B.1.5. For |X |le1,
p

1+x ≤ 1+
x

2
−

x2

16
.

Proof. Squaring the RHS we get

(

1+
x

2
−

x2

16

)2

= 1+
x2

4
+

x4

256
+x −

x2

16
−

x3

32
= 1+x +

3x2

16
−

x3

32
+

x4

256
≥ 1+x,

as desried.

B.2 Some Useful Identities and Bounds

We start off with an equivalence between two inequalities.

Lemma B.2.1. Let a,b,c,d > 0. Then a
b
≤ c

d
if and only if a

a+b
≤ c

c+d
.

288

Proof. Note that a
b
≤ c

d
if and only if

b

a
≥

d

c
.

The above is true if and only if
b

a
+1 ≥

d

c
+1,

which is same as a
a+b

≤ c
c+d

.

Next, we state some infinite sums that are identical to certain logarithms (the proofs are
standard and are omitted).

Lemma B.2.2. For |x| < 1,

ln(1+x) = x −
x2

2!
+

x3

3!
−·· · .

We can use the above to prove some bounds on ln(1+x) (we omit the proof):

Lemma B.2.3. For 0 ≤ x < 1, we have

x −x2/2 ≤ ln(1+x) ≤ x,

and for 0 ≤ x ≤ 1/2, we have

−x −x2 ≤ ln(1−x) ≤−x.

We can use the above bounds to further prove boounds on the (binary) entropy function:

Lemma B.2.4. For x ≤ 1/4, we have

1−5x2 ≤ H(1/2−x) ≤ 1−x2.

Proof. By definition H(1/2− x) = 1−1/2log(1−4x2)+ x log(1−2x)/(1+2x), and using the ap-
proximations for ln(1+x) from Lemma B.2.3, we have, for x < 1/4,

H(1/2−x) ≤ 1+
1

2ln2
· (4x2 +16x4)+

1

ln2
· (−2x2)−

1

ln2
· (2x2 −2x3)

= 1−
2

ln2
· x2 +

2

ln2
· x3 +

8

ln2
· x4

≤ 1−
x2

ln2
(B.1)

≤ 1−x2.

In the above, (B.1) follows by using our assumption that x ≤ 1/4.
Using the other sides of the approximations we also have:

H(1/2−x) ≥ 1+
1

2ln2
· (4x2)+

1

ln2
· (−2x2 −4x3)−

1

ln2
· (2x2)

≥ 1−
3x2

ln2
≥ 1−5x2,

where the second inequality uses our assumption that x ≤ 1/4.

289

The following fact follows from the well-known fact that limx→∞(1+1/x)x = e:

Lemma B.2.5. For every real x > 0,
(

1+
1

x

)x

≤ e.

290

Appendix C

Background on Asymptotic notation,

Algorithms and Complexity

In this chapter, we collect relevant background on algorithms and their analysis (as well as their
limitations). We begin with notation that we will use to bound various quantities when we do
not pay close attention to the constants.

C.1 Asymptotic Notation

Throughout the book, we will encounter situations where we would be interested in how a func-
tion f (N) grows as the input parameter N grows. (We will assume that the real valued function
f is monotone.) The most common such situation is when we would like to bound the run-
time of an algorithm we are analyzing– we will consider this situation in some detail shortly. In
particular, we will interested in bounds on f (N) that are “oblivious" to constants. E.g. given
that an algorithm takes 24N 2 +100N steps to terminate, we would be interested in the fact that
the dominating term is the N 2 (for large enough N). Technically, speaking we are interested in
the asymptotic growth of f (N). Throughout this chapter, we will assume that all functions are
monotone.

The first definition is when we are interested in an upper bound on the function f (N). When
talking about numbers, we say b is an upper bound on a if a ≤ b. We will consider a similar
definition for functions that in some sense ignores constants.

Definition C.1.1. We say f (N) is O(g (N)) (to be read as f (N) is “Big-Oh" of g (N)) if there exists
constants c, N0 ≥ 0 that are independent of N such that for every large enough N ≥ N0:

f (N) ≤ c · g (N).

Alternatively f (N) is O(g (N)) if and only if

lim
N→∞

f (N)

g (N)
≤C ,

291

for some absolute constant C . (See Exercise C.1.) So for example both 24N 2+100N and N 2/2−N

are O(N 2) as well as O(N 3). However, neither of them are O(N) or O(N 3/2).
The second definition is when we are interested in a lower bound on the function f (N).

When talking about numbers, we say b is a lower bound on a if a ≥ b. We will consider a similar
definition for functions that in some sense ignores constants.

Definition C.1.2. We say f (N) is Ω(g (N)) (to be read as f (N) is “Big-Omega" of g (N)) if there
exists constants ε, N0 ≥ 0 that are independent of n such that for every large enough N ≥ N0:

f (N) ≥ ε · g (N).

Alternatively f (N) is Ω(g (N)) if and only if

lim
N→∞

f (N)

g (N)
≥C ,

for some absolute constant C . (See Exercise C.2.) So for example both 24N 2+100N and N 2/2−N

are Ω(N 2) as well as Ω(N 3/2). However, neither of them are Ω(N 3) or Ω(N 5/2).
The third definition is when we are interested in a tight bound on the function f (N). When

talking about numbers, we say b is same as a if a = b. We will consider a similar definition for
functions that in some sense ignores constants.

Definition C.1.3. We say f (N) is Θ(g (N)) (to be read as f (N) is “Theta" of g (N)) if and only if
f (N) is O(g (N)) and is also Ω(g (N)).

Alternatively f (N) is Θ(g (N)) if and only if

lim
N→∞

f (N)

g (N)
=C ,

for some absolute constant C . (See Exercise C.3.) So for example both 24N 2+100N and N 2/2−N

are Θ(N 2). However, neither of them are Θ(N 3) or Θ(N).
The fourth definition is when we are interested in a strict upper bound on the function f (N).

When talking about numbers, we say b is a strict upper bound on a if a < b. We will consider a
similar definition for functions that in some sense ignores constants.

Definition C.1.4. We say f (N) is o(g (N)) (to be read as f (N) is “little-oh" of g (N)) if f (N) is
O(g (N)) but f (N) is not Ω(g (N)).

Alternatively f (N) is o(g (N)) if and only if

lim
N→∞

f (N)

g (N)
= 0.

(See Exercise C.4.) So for example both 24N 2+100N and N 2/2−N are o(N 3) as well as o(N 5/2).
However, neither of them are o(N 2) or o(N 3/2).

The final definition is when we are interested in a strict lower bound on the function f (N).
When talking about numbers, we say b is a strict lower bound on a if a > b. We will consider a
similar definition for functions that in some sense ignores constants.

292

Definition C.1.5. We say f (N) is ω(g (N)) (to be read as f (N) is “little-omega" of g (N)) if f (N)
is Ω(g (N)) but f (N) is not O(g (N)).

Alternatively f (N) is ω(g (N)) if and only if

lim
N→∞

f (N)

g (N)
=∞.

(See Exercise C.5.) So for example both 24N 2 +100N and N 2/2−N are ω(N) as well as ω(N 3/2).
However, neither of them are ω(N 2) or ω(N 5/2).

C.1.1 Some Properties

We now collect some properties of asymptotic notation that we will be useful in this book.
First all the notations are transitive:

Lemma C.1.1. Let α ∈ {O,Ω,Θ,o,ω}. Then if f (N) is α(g (N)) and g (N) is α(h(N)), then f (N) is

α(h(N)).

Second, all the notations are additive:

Lemma C.1.2. Let α ∈ {O,Ω,Θ,o,ω}. Then if f (N) is α(h(N)) and g (N) is α(h(N)), then f (N)+
g (N) is α(h(N)).

Finally, all the notations are multiplicative:

Lemma C.1.3. Let α ∈ {O,Ω,Θ,o,ω}. Then if f (N) is α(h1(N)) and g (N) is α(h2(N)), then f (N) ·
g (N) is α(h1(N) ·h2(N)).

The proofs of the above properties are left as an exercise (see Exercise C.6).

C.2 Bounding Algorithm run time

Let A be the algorithm we are trying to analyze. Then we will define T (N) to be the worst-case
run-time of A over all inputs of size N . Slightly more formally, let tA (x) be the number of steps
taken by the algorithm A on input x. Then

T (N) = max
x:x is of size N

tA (x). (C.1)

In this section, we present two useful strategies to prove statements like T (N) is O(g (N))
or T (N) is Ω(h(N)). Then we will analyze the run time of a very simple algorithm. However,
before that we digress to clarify the following: (i) For most of the book, we will be interested in
deterministic algorithms (i.e. algorithm whose execution is fixed given the input). However, we
will consider randomized algorithms (see Section C.3 for more on this). (ii) One needs to clarify
what constitutes a “step" in the definition of T (N) above. We do so next.

293

C.2.1 RAM model

In this book, unless specified otherwise we will assume that the algorithms run on the RAM
model. Informally, this computation model is defined as follows. For an input with n items, the
memory consists of registers with O(logn) bits. For simplicity, we can assume that the input and
output have separate dedicated registers. Note that the input will have n dedicated registers.

Any (atomic) step an algorithm can take are essentially any basic operations on constant
such registers which can be implemented in O(logn) bit operations. In particular, the following
operations are considered to take one step: loading O(logn) from a register or storing O(logn)
bits in a register, initializing the contents of a register, bit-wise operations among registers, e.g.
taking bit-wise XOR of the bits of two registers, adding numbers stored in two registers, incre-
menting the value stored in a register, comparing the values stored in two registers. Some exam-
ples of operations that are not single step operations: multiplying numbers or exponentiation
(where the operands fit into one register each).

C.2.2 Proving T (N) is O(f (N))

We start off with an analogy. Say you wanted prove that given m numbers a1, . . . , am , maxi ai ≤
U . Then how would you go about doing so? One way is to argue that the maximum value
is attained at i∗ and then show that ai∗ ≤ U . Now this is a perfectly valid way to prove the
inequality we are after but note that you will also have to prove that the maximum value is
attained at i∗. Generally, this is a non-trivial task. However, consider the following strategy:

Show that for every 1 ≤ i ≤ m, ai ≤U . Then conclude that maxi ai ≤U .

Let us consider an example to illustrate the two strategies above. Let us say for whatever rea-
son we are interested in showing that the age of the oldest person in your coding theory lectures
is at most 100. Assume there are 98 students registered and the instructor is always present in
class. This implies that there are at most m = 99 folks in the class. Let us order them somehow
and let ai denote the age of the i ’th person. Then we want to show that max{a1, . . . , a99} ≤ 100
(i.e. U = 100). The first strategy above would be to first figure out who is the oldest person in
room: say that is the i∗’th person (where 1 ≤ i∗ ≤ 99) and then check if ai∗ ≤ 100. However, this
strategy is somewhat invasive: e.g. the oldest person might not want to reveal that he or she
is the oldest person in the room. This is where the second strategy works better: we ask every
person in the room if their age is ≤ 100: i.e. we check if for every 1 ≤ i ≤ 99, ai ≤ 100. If everyone
says yes, then we have proved that maxi ai ≤ 100 (without necessarily revealing the identity of
the oldest person).

Mathematically the above two strategies are the same. However, in "practice," using the
second strategy turns out to be much easier. (E.g. this was true in the age example above.)
Thus, here is the strategy to prove that T (N) is O(f (N)):

For every large enough N , show that for every input x of size N , tA (x) is O(f (N)).
Then conclude that T (N) is O(f (N)).

294

C.2.3 Proving T (N) is Ω(f (N))

We start off with the same analogy as in the previous section. Say you wanted prove that given
m numbers a1, . . . , am , maxi ai ≥ L. Then how would you go about doing so? Again, one way
is to argue that the maximum value is attained at i∗ and then show that ai∗ ≥ L. Now this is a
perfectly valid way to prove the inequality we are after but note that you will also have to prove
that the maximum value is attained at i∗. Generally, this is a non-trivial task. However, consider
the following strategy:

Show that there exists an 1 ≤ i ≤ m, such that ai ≥ L. Then conclude that maxi ai ≥
L.

Let us go back to the class room example. Now let us say we are interesting in proving that
the oldest person in the room is at least 25 years old. (So a1, . . . , am is as in Section C.2.2 but now
L = 25.) Again, the first strategy would be to first figure out the oldest person, say i∗ and check
if ai∗ ≥ 25. However, as we saw in Section C.2.2, this strategy is somewhat invasive. However,
consider the the following implementation of the second strategy above. Say for the sake of
mathematics, the instructor comes forward and volunteers the information that her age is at
least 25. Since the oldest person’s age has to be at least the instructor’s age, this proves that
maxi ai ≥ 25, as desired.

Mathematically the above two strategies are the same. However, in "practice," using the
strategy second turns out to be much easier. (E.g., this was true in the age example above.)
Thus, here is the strategy to prove that T (N) is Ω(f (N)):

For every large enough N , show that there exists an input x of size N , tA (x) is
Ω(f (N)). Then conclude that T (N) is Ω(f (N)).

C.2.4 An Example

Now let us use all the strategies from Section C.2.2 and Section C.2.3 to asymptotically bound
the run-time of a simple algorithm. Consider the following simple problem: given n+1 numbers
a1, . . . , an ; v , we should output 1 ≤ i ≤ n if ai = v (if there are multiple such i ’s then output any
one of them) else output −1. Below is a simple algorithm to solve this problem.

Algorithm 33 Simple Search
INPUT: a1, . . . , an ; v

OUTPUT: i if ai = v ; −1 otherwise

1: FOR every 1 ≤ i ≤ n DO

2: IF ai = v THEN RETURN i

3: RETURN −1

We will show the following:

Theorem C.2.1. The Simple Search algorithm 33 has a run time of Θ(n).

295

We will prove Theorem C.2.1 by proving Lemmas C.2.2 and C.2.3.

Lemma C.2.2. T (n) for Algorithm 33 is O(n).

Proof. We will use the strategy outlined in Section C.2.2. Let a1, . . . , an ; v be an arbitrary input.
Then first note that there are at most n iterations of the for loop in Step 1. Further, each iteration
of the for loop (i.e. Step 2) can be implemented in O(1) time (since it involves one comparison
and a potential return of the output value). Thus, by Lemma C.1.3, the total times taken overall
in Steps 1 and 2 is given by

T12 ≤O(n ·1) =O(n).

Further, since Step 3 is a simple return statement, it takes time T3 = O(1) time. Thus, we have
that

tAlgorithm 33(a1, . . . , an ; v) = T12 +T3 ≤O(n)+O(1) ≤O(n),

where the last inequality follows from Lemma C.1.2 and the fact that O(1) is also O(n). Since the
choice of a1, . . . , an ; v was arbitrary, the proof is complete.

Lemma C.2.3. T (n) for Algorithm 33 is Ω(n).

Proof. We will follow the strategy laid out in Section C.2.3. For every n ≥ 1, consider the specific
input a′

i
= n+1−i (for every 1 ≤ i ≤ n) and v ′ = 1. For this specific input, it can be easily checked

that the condition in Step 2 is only satisfied when i = n. In other words, the for loop runs at least
(actually exactly) n times. Further, each iteration of this loop (i.e. Step 2) has to perform at least
one comparison, which means that this step takes Ω(1) time. Since n is Ω(n), by Lemma C.1.3
(using notation from the proof of Lemma C.2.2), we have

T12 ≥Ω(n ·1) =Ω(n).

Thus, we have
tAlgorithm 33(a′

1, . . . , a′
n ; v ′) ≥ T12 ≥Ω(n).

Since we have shown the existence of one input for each n ≥ 1 for which the run-time is Ω(n),
the proof is complete.

A quick remark on the proof of Lemma C.2.3. Since by Section C.2.3, we only need to exhibit
only one input with runtime Ω(n), the input instance in the proof of Lemma C.2.3 is only one
possibility. One can choose other instances: e.g. we can choose an instance where the output
has to be −1 (as a specific instance consider ai = i and v = 0). For this instance one can make a
similar argument as in the proof of Lemma C.2.3 to show that T (n) ≥Ω(n).

C.2.5 The Best-Case Input “Trap"

We now briefly talk about a common mistake that is made when one starts trying to prove Ω(·)
on T (N). Note that in Section C.2.3, it says that one can prove that T (N) to be Ω(f (N)) for
every large enough N , one only needs to pick one input of size N for which the algorithm takes
Ω(f (N)) steps.

296

The confusing part about the strategy in Section C.2.3 is how does one get a hand on that
special input that will prove the Ω(f (N)) bound. There is no mechanical way of finding this
input. Generally, speaking you have to look at the algorithm and get a feel for what input might
force the algorithm to spend a lot of time. Sometimes, the analysis of the O(·) bound itself gives
gives us a clue.

However, one way of picking the “special" input that almost always never works in practice

is to consider (for every large enough N), the “best-case input," i.e. an input of size N on which
the algorithm runs very fast. Now such an input will give you a valid lower bound but it would
almost never give you a tight lower bound.

So for example, let us try to prove Lemma C.2.3 using the best case input. Here is one best
case input: ai = i for every i ∈ [n] and v = 1. Note that in this case the algorithm finds a match
in the first iteration and this terminates in constant many steps. Thus, this will prove an Ω(1)
lower bound but that is not tight/good enough.

Another common mistake is to make an argument for a fixed value of N (say N = 1). How-
ever, note that in this case one can never prove a bound better than Ω(1) and again, this trick
never works in proving any meaningful lower bound.

C.3 Randomized Algorithms

So far the algorithms we have considered are deterministic, i.e. these are algorithm whose be-
havior is completely determined once the input is fixed. We now consider a generalization of
such algorithms to algorithms that have access to random bits. In particular, even when the
input is fixed, the behavior of the algorithm might change depending on the actual value of the
random bits.1 For the machine model, it is easy to modify the RAM model from Section C.2.1
to handle randomized algorithms: we can always load a register with independent and uniform
random bits in one step.

Typically one considers randomized algorithms due to the following reasons:

• For some problems, it is easier to think of a randomized algorithm. Once one has de-
signed a randomized algorithm, one could then attempt to “derandomize" the random-
ized algorithm to construct deterministic algorithms.

• In addition to conceptual simplicity, a randomized algorithm might run faster than all
corresponding known deterministic algorithms.

• For certain problems, it might be provably impossible to design deterministic algorithms
with certain guarantees but it is possible to design randomized algorithms with such guar-
antees. This is a common situation when we might be interested in algorithms that run
in sub-linear time.

1There are many fundamental and interesting questions regarding how truly random these random bits are and
how many such bits can an algorithm access. We will consider the ideal case, where an algorithm has access to as
many uniform and independent random bits as it wants.

297

In this section, we will consider a problem where the third scenario above is applicable. For
examples of the first and second scenarios, see Sections 11.3 and ?? respectively.

Before delving into an example problem, we would like to clarify how we determine the
run time and correctness of a randomized algorithm. There are multiple natural definitions
but we will consider the following ones. The run time of a randomized algorithm will again
be the worst-case run time as we defined for deterministic algorithms in Section C.2 for every
possible choice of internal random bits that the algorithm might use (with the modification to
the RAM model as discussed above). For correctness, the definition for deterministic algorithm
was obvious so we did not explicitly state it: for every input, a deterministic algorithm must
return the correct output. We call a randomized algorithm correct if on all its inputs, it returns
the correct answer with probability bounded away from a 1/2– to be precise let us say it has to
return the correct output with probability at least 2/3.2

We would like to remark on a subtle point in the definition above. In the definition of the
correctness of a randomized algorithm above, the probability is taken over the random coin
tosses that the algorithm might make. However, note that the guarantee is of the worst-case
flavor in the sense that the algorithm has to be correct with high probability for every input.
This should be contrasted with a scenario where the input might itself be random in which case
we might be happy with an average case guarantee where the algorithm is supposed to return
the correct output with high probability (over the distribution over the input). In particular, the
algorithm is allowed to err on certain inputs as long as the total probability mass on the inputs
on which it is incorrect is small: see Chapter 6 where this definition of correctness makes perfect
sense. In such situations one can always assume that the algorithm itself is deterministic (see
Exercise C.9).

C.3.1 An example problem

In the rest of the section, we will consider the following problem and will attempt to design
(deterministic and randomized) algorithms with an eye to illustrate various points that were
raised when we defined randomized algorithms.

Given a vector x ∈ {0,1}n determine whether w t (x) ≤ n
3 or w t (x) ≥ 2n

3 . For the cases
where w t (x) ∈ (n/2,2n/3) the algorithm can have arbitrary behavior.3

We will refer to the above as the GAPHAMMING problem.
It is easy to design an O(n) time deterministic algorithm to solve GAPHAMMING: In O(n)

one can compute w t (x) and then in O(1) time one can verify if w t (x) ≤ n/3 or w t (x) ≥ 2n/3. In
addition one can show that any correct deterministic algorithm will need a run time of Ω(n):
see Exercise C.10.

We will now design a randomized algorithm that solves GAPHAMMING problem. Recall that
we only need to determine if w t (x) ≤ n/3 or w t (x) ≥ 2n/3 (note that we assumed we do not get

2The choice of 2/3 was arbitrary: see Exercise C.8.
3Or equivalently one can assume that the algorithm is given the promise that it will never encounter an input x

with w t (x) ∈ (n/3,2n/3).

298

inputs with Hamming weight in (n/3,2n/2)) with high probability. We will present what is called
a sampling algorithm for this task. To gain intuition, pick a random index i ∈ [n]. Note that then
xi is a random bit. Further, if w t (x) ≤ n/3, then Pri [xi = 1] ≤ 1/3. On the other hand, if w t (x) ≥
2n/3, then the probability is at least 2/3. Thus, if we take s samples, with high probability in the
first case we expect to see less than s/3 ones and in the second case we expect to see at least
2s/3 ones. To get a constant probability of success we will invoke Chernoff bound to bound
the probability of seeing more ones in the first case than the second case. Algorithm 34 for the
details.

Algorithm 34 Sampling algorithm for GAPHAMMING

INPUT: x ∈ {0,1}n

OUTPUT: 0 if w t (x) ≤ n/3 and 1 if w t (x) ≥ 2n/3 with probability at least 1−ε

1: s ← 98 · ln(1/ε)
2: C ← 0
3: FOR j ∈ [s] DO

4: Pick i to be a random index from [n] ⊲ The choice of i is independent for each j

5: C ←C +xi

6: IF C < s/2 THEN

7: RETURN 0
8: RETURN 1

It can be checked that Algorithm 34 runs in time O(log(1/ε)): see Exercise C.11. Next we
argue that the algorithm is correct with probability at least 1−ε.

Lemma C.3.1. Algorithm 34 outputs the correct answer with probability at least 1−ε for every x

(such that w t (x) 6∈ (n/3,2n/3)).

Proof. We will prove the lemma for the case when w t (x) ≤ n/3 and leave the other case to Exer-
cise C.12.

Fix an arbitrary input x such that w t (x) ≤ n/3. We will argue that at Step 6, we have

Pr
[

C ≥
s

3
+

s

7

]

≤ ε. (C.2)

Note that the above is enough to prove that the algorithm will output 0, as desired.
Towards that end for every j ∈ [s], let Y j be the random bit xi that is picked. Note that C =

∑s
j=1 Y j . Since each of the Y j ’s are independent binary random variables, the additive Chernoff

bound (Theorem 3.1.6) implies that

Pr
[

C > E[C]+
s

7

]

≤ e
− s

72·2 ≤ ε,

where the last inequality follows from our choice of s. As observed earlier for any j , Pr[Y j = 1] ≤
1/3, which implies that E[C] ≤ s/3, which with the above bound implies (C.2), as desired.

299

Finally, we consider the average-case version of the GAPHAMMING problem. Our goal is
to illustrate the difference between randomized algorithms and average-case algorithms that
was alluded to earlier in this section. Recall that in the GAPHAMMING problem, we are trying to
distinguish between two classes of inputs: one with Hamming weight at most n/3 and the other
with Hamming weight at least 2n/3. We now consider the following natural version where the
inputs themselves comes from two distributions and our goal is to distinguish between the two
cases.

Let Dp denote the distribution on {0,1}n , where each bit is picked independently
with probability 0 ≤ p ≤ 1. Given an x ∈ {0,1}n sampled from either D 1

3
or D 2

3
, we

need to figure out which distribution x is sampled from.

The intuition for an algorithm that is correct with high probability (over the corresponding
distributions) is same as Algorithm 34, so we directly present the the algorithm for the new
version of the problem above.

Algorithm 35 An average-case algorithm for GAPHAMMING

INPUT: x ∈ {0,1}n sampled from either D 1
3

or D 2
3

OUTPUT: 0 if x was sampled from D 1
3

and 1 otherwise with probability at least 1−ε

1: s ← 98 · ln(1/ε)
2: C ← 0
3: FOR j ∈ [s] DO

4: C ←C +x j

5: IF C < s/2 THEN

6: RETURN 0
7: RETURN 1

Note that unlike Algorithm 34, Algorithm 35 is a deterministic algorithm and the algorithm
might make an incorrect decision on certain specific inputs x that it receives.

Using pretty much the same analysis as in the proof of Lemma C.3.1, one can argue that:

Lemma C.3.2. Let x be a random sample from D 1
3

(D 2
3

resp.). Then with probability at least 1−ε

(over the choice of x), Algorithm 35 outputs 0 (1 resp.)

(See Exercise C.13 for a proof.)

C.4 Efficient Algorithms

A major focus of this book is to design algorithms that are efficient. A somewhat smaller focus is
to argue that for certain problems efficient algorithms do not exists (maybe with a well accepted
assumption that certain computational tasks are hard to accomplish efficiently). In this section,
we first begin with the notion of efficient algorithms that will be standard for this book and then

300

present a peek into how one might argue that a computational task is hard. To illustrate various
concepts we will focus on the following problem:

Given n linear equations over k variables (all over F2: i.e. all the variables are in {0,1}
and all arithmetic operations are over the binary field 4 F2) and an integer 0 ≤ s ≤ n,
we want to find a solution to the systems of equations that satisfies at least s out
of the n equations. We will denote this problem as MAXLINEAREQ(k,n, s). We will
drop the arguments when we want to talk about the problem in general.

We choose the non-standard notation of k for number of variables and n for number of equa-
tions as they correspond better to problems in coding theory that we would be interested in.

An overwhelming majority of the algorithmic problems considered in this book will have
the following property: there are exponentially many possible solutions and we are interested
in a solution (or solutions) that satisfy a certain objective. For example, in the MAXLINEAREQ

problem, there are 2k possible solutions and we are interested in a solution that satisfies at least
s many linear equations. Note that such problems have a very natural exponential time algo-
rithm: generate all (the exponentially many) potential solutions and check if the current poten-
tial solution satisfy the objective. If it does, then the algorithm stops. Otherwise the algorithm
continues to the next solution. For example, Algorithm 36 instantiates this general algorithm
for the MAXLINEAREQ problem.

Algorithm 36 Exponential time algorithm for MAXLINEAREQ

INPUT: n linear equations over k variables and an integer 0 ≤ s ≤ n

OUTPUT: A solution in {0,1}k that satisfies at least s of the equations or fail if none exists

1: FOR every x ∈ {0,1}k DO

2: Let t be the number of equations the solution x satisfies
3: IF t ≥ s THEN

4: RETURN x

5: RETURN fail

It is not too hard to argue that Algorithm 36 runs in time O
(

kn2k
)

(see Exercise C.14). We
point out two things that will expand into more detailed discussion on what is an efficient algo-
rithm (and what is not):

1. A run time of Ω(2k) is not efficient for even moderate values of k: indeed for k = 100, the
number of steps of the algorithm exceeds the number of particles in the universe.

2. In the generic exponential time algorithm mentioned earlier, we made the implicit as-
sumption that given a potential solution we can “quickly" verify if the potential solution
satisfies the objective or not.

4In other words, addition is XOR and multiplication is AND.

301

Notwithstanding the fact that an exponential run time can become infeasible for moderate
input size, one might think that one cannot do better than Algorithm 36 to solve the MAXLIN-
EAREQ problem. In particular, the lack of any extra information other than the fact that we have
a system of linear equations on our hands seems to make the possibility of coming up with a
faster algorithm slim. However, looks can sometimes be deceptive, as we will see shortly.

Consider the special case of the MAXLINEAREQ problem: MAXLINEAREQ(k,n,n). In other
words, we want to see if there exists a solution x ∈ {0,1}n that satisfies all the equations. Not
only is this is an interesting special case but it is also relevant to this book since this setting
corresponds to the error detection problem (Definition 1.3.4) for linear codes (Chapter 2)– see
Exercise C.15. It turns out this special setting of parameters makes the problem easy: one can
use Gaussian elimination to solve this problem in time O(kn2) (see Exercise C.16). For the case
of k = Θ(n) (which would be the most important parameter regime for this book), this cubic
run time is much faster than the exponential time Algorithm 36. In particular, any run time
of the form O(nc) for some fixed constant c would be much faster than the 2Ω(n) run time of
Algorithm 36 (for large enough n). Note that the appealing aspect of a run time of the form
O(nc) is that when the input size doubles, the run time only increases by a constant (though
clearly we might be pushing the boundary of a practical definition of a constant for moderately
large values of c) as opposed to the exponential run time, where the run time on the new input
size is quadratic in the old run time.

In theoretical computer science, the notion of an efficient algorithm is one that runs in time
O(N c) on inputs of size N for some fixed constant c ≥ 0: such algorithms are said to have poly-

nomial run time. In particular, a problem is said to be in the complexity class P if it admits
a polynomial time algorithm5. While one might debate the definition of P as capturing algo-
rithms that are efficient in practice, it clearly seems to capture the difference between problems
that “need" exponential time algorithms and problems that have some inherent structure that
allows much faster algorithmic solutions (in this case polynomial time algorithm).

C.4.1 Computational Intractability

So far we have talked mainly about problems that admit efficient algorithms. We now consider
the issue of how we talk about a problem being hard: e.g. can we somehow formally argue that
a certain problem cannot admit efficient solutions? In particular, are there problems where the
generic exponential time algorithm discussed earlier is the best possible? To be more precise,
let us consider problems where given a potential solution one can in polynomial time deter-
mine whether the solution satisfies the objective or not. We call the class of such problems as
NP.6 For example, MAXLINEAREQ(k,n, s) is such a problem because given a potential solution
x, one can in time O(kn) verify whether it satisfies at least s out of the n solutions– see Exer-
cise C.17 and hence MAXLINEAREQ ∈NP. Like the earlier special case of MAXLINEAREQ(k,n,n),

5The technical definition of P is a bit more nuanced: in particular it only considers problems with a binary
output but we will ignore this technical issue in this book.

6Again for the technical definition we need to only consider problems with binary output but we will ignore this
technicality.

302

the more general problem MAXLINEAREQ(k,n, s) for s < n is also interesting from a coding the-
ory perspective: see Exercise C.18.

Thus, the question of whether there exists a problem where the earlier exponential time
algorithm is the best possible is essentially the same as showing P 6= NP (see Exercise C.19).
While we are nowhere close to answer this fundamental question, we do know a way to identify
the “core" of hard problems in NP. Such problems (called NP-complete problems) have the
property that if any of them do not have a polynomial time algorithms then none of them do.
(Conversely if any of them do have a polynomial time algorithm then P = NP.) Note that this
implies if one assumes that P 6=NP, then these NP-complete problems are hard problems since
they are not in P (which we consider to be the class of “easy" problems).

At first blush, one might wonder how one would go about proving that such problems exist.
Proving the existence of such a problem is out of the scope of the book. However, we do want to
give an overview of how given one such specific problem that is NP-complete one might argue
that another problem is alsoNP-complete. The way to show such a result is to reduce the known
NP-complete problem (let us call this problem P1) to the other problem (let us call this problem
P2). Without going into the technical definition of a reduction, we present an informal defini-
tion, which would be sufficient for our purposes. A reduction is a polynomial time algorithm
(let us call it A1) that given an arbitrary instance x1 of P1 can produce in polynomial time an-
other instance x2 but this time for the problem P2 such that given the answer for problem P2 on
x2, one can in polynomial time exactly determine the answer of P1 on x1 (by another algorithm,
which let us call A2). There are two (equivalent) ways to think about such a reduction:

1. A reduction implies that to solve P1 in polynomial time, it is enough to “only" solve some
subset of instances for problem P2 (in particular, those inputs for P2 that are generated by
A1 on all possible input instances of P1). In other words, P2 is “harder" to solve than P1.
Since the problem P1 is a hard problem, P2 is also a hard problem.

2. Let us for the sake of contradiction assume that there exists a polynomial time algorithm
A3 that solves P2 on all instances (i.e. P2 is easy). Then one can construct a polynomial
time algorithm to solve P1 as follows. Given an arbitrary input x1 for P1, first use A1 to
generate an input x2 for P2. Then use A3 to solve P2 on x2 and then convert the answer of
P2 on x2 to the answer of P1 on x1 by using A2. Note that this is a polynomial time algo-
rithm and is a correct algorithm. Thus, we have proved that P1 is easy, which contradicts
our assumption that P1 is hard.

To make the concept of reduction a bit less abstract we outline a reduction from a known
NP-complete problem to our MAXLINEAREQ problem.7 In particular, the following problem is
known to be NP-complete

Given a graph G = (V ,E) with |V | = k and |E | = n and an integer 0 ≤ s ≤ n, does there
exist a cut of size at least s. In other words, does there exist a subset S ⊂V such that
the number of edges with one end point in S and the other in V \ is at least s? We
will call this the MAXCUT(k,n, s) problem.

7We assume that the reader is familiar with the mathematical concept of graphs, where we do not mean graphs
in the sense of plots.

303

Algorithm 37 is the algorithm A1 of the reduction from MAXCUT(k,n, s) to MAXLINEAREQ(k,n, s).

Algorithm 37 Reduction from MAXCUT to MAXLINEAREQ

INPUT: An instance for MAXCUT(k,n, s): a graph G and an integer s

OUTPUT: An instance of MAXLINEAREQ(k ′,n′, s′)

1: k ′ ← k,n′ ← n, s′ ← s

2: FOR every vertex i ∈V DO

3: Add a variable xi to the set of variables

4: FOR every edge (i , j) ∈ E DO

5: Add a linear equation xi +x j = 1 to the system of equation

Further, the algorithm A2 is simple: given a solution (x1, . . . , xk) to the instance for MAXLINEAREQ(k,n, s)
problem, consider the cut S = {i ∈ V |xi = 1}. It can be checked that this algorithm and Algo-
rithm 37 forms a valid reduction. (See Exercise C.20.)

C.5 Exercises

Exercise C.1. Prove that f (N) is O(g (N)) (as per Definition C.1.1) if and only if

lim
N→∞

f (N)

g (N)
≤C ,

for some absolute constant C .

Exercise C.2. Prove that f (N) is Ω(g (N)) (as per Definition C.1.2) if and only if

lim
N→∞

f (N)

g (N)
≥C ,

for some absolute constant C .

Exercise C.3. Prove that f (N) is Θ(g (N)) (as per Definition C.1.3) if and only if

lim
N→∞

f (N)

g (N)
=C ,

for some absolute constant C .

Exercise C.4. Prove that f (N) is o(g (N)) (as per Definition C.1.4) if and only if

lim
N→∞

f (N)

g (N)
= 0.

Exercise C.5. Prove that f (N) is ω(g (N)) (as per Definition C.1.5) if and only if

lim
N→∞

f (N)

g (N)
=∞.

304

Exercise C.6. Prove Lemmas C.1.1, C.1.2 and C.1.3.

Exercise C.7. Prove or disprove the following for every α ∈ {O,Ω,Θ,o,ω}:

Let f (N) be α(h(N)) and g (N) be α(h(N)). Then f (N) · g (N) is α(h(N)).

Exercise C.8. Say there exists a randomized algorithm A that is correct with probability 1
2 +δ for

some δ> 0 with runtime T (N). Then show that for every ε> 0, there exists another randomized

algorithm that is correct with probability 1−ε with runtime O
(

log(1/ε)
δ ·T (N)

)

.

Hint: Repeat A multiple times and pick one among the multiple outputs. For analysis use the Chernoff bound

(Theorem 3.1.6).

Exercise C.9. Assume that there is a randomized algorithm A , which one when provided with
an input from a distribution D, is correct with probability p (where the probability is taken over
both D and internal randomness of A). Then show that there exists a deterministic algorithm
that is correct with probability at least p (where the probability is now only taken over D) with
the same run time as A .

Exercise C.10. Argue that any correct deterministic algorithm that solves the GAPHAMMING

problem needs a run time of Ω(n).

Hint: Argue that any correct deterministic algorithm needs to read Ω(n) bits of the input.

Exercise C.11. Argue that Algorithm 34 runs in time O(log(1/ε)).

Exercise C.12. Prove that for every x ∈ {0,1}n such that w t (x) ≥ 2n/3, Algorithm 34 outputs 1
with probability at least 1−ε.

Exercise C.13. Prove Lemma C.3.2 and that Algorithm 35 runs in time O(log(1/ε)).

Exercise C.14. Argue that Algorithm 36 runs in time O
(

kn2k
)

. Conclude that the algorithm runs
in time 2O(n).

Exercise C.15. Show that if any MAXLINEAREQ(k,n,n) problem can be solved in time T (k,n),
then the error detection for any [n,k]2 code can be solved in T (k,n) time.

Hint: The two problems are in fact equivalent.

Exercise C.16. Argue that the problem MAXLINEAREQ(k,n,n) can be solved in time O(kn2).

Exercise C.17. Show that given a system of n linear equation on k variables over F2, there exists a
O(kn) time algorithm that given a vector x ∈ {0,1}n can compute the exact number of equations
x satisfies.

Exercise C.18. Consider the following problem called the BOUNDED DISTANCE DECODING prob-
lem. Given a code C ⊆ {0,1}n , a vector y ∈ {0,1}n and an integer 0 ≤ e ≤ n (called the error radius),
output any codeword c ∈C such that ∆(c,y) ≤ e (or state that no such codeword exists).

Prove that if any MAXLINEAREQ(k,n, s) problem can be solved in time T (k,n, s), then one
can solve the BOUNDED DISTANCE DECODING problem for any [k,n]2 linear code with error
radius n − s.

305

Exercise C.19. Argue that showing P 6=NP is equivalent to showing that NP\P 6= ;.

Exercise C.20. Argue that Algorithm 37 and the algorithm A2 defined just below it are correct
and run in polynomial time.

C.6 Bibliographic Notes

The full suite of asymptotic notation in Section C.1 was advocated for analysis of algorithms by
Knuth [47]. The Big-Oh notation is credited to Bachmann [2] form a work in 1894 and the little-
oh notation was first used by Landau [49] in 1909. A variant of the Big-Omega notation was
defined by Hardy and Littlewood [40] in 1914 though the exact definition in Section C.1 seems
to be from [47]. The Theta and little omega notation seem to have been defined by Knuth [47]
in 1976: Knuth credits Tarjan and Paterson for suggesting the Theta notation to him.

The choice to use worst-case run time as measure of computational efficiency in the RAM
model as well as only considering the asymptotic run time (as opposed to more fine grained
analysis as advocated by Knuth) seem to have been advocated by Hopcroft and Tarjan: see
Tarjan’s Turing award lecture for more on this [73].

Cobham [10] and Edmonds [17] are generally credited with making the first forceful case
for using P as the notion of efficiently solvable problems. Somewhat interestingly, Peterson’s
paper on decoding of Reed-Solomon codes [60] that predates these two work explicitly talks
about why a polynomial time algorithm is better than an exponential time algorithm (though
it does not explicitly define the class P). The notion of NP (along with a proof of the existence
of an NP-complete problem) was defined independently by Cook [11] and Levin [51]. This no-
tion really took off when Karp showed that 21 natural problems where NP-complete (including
the MAXCUT problem) [46]. For more historical context on P and NP including some relevant
historical comments, see the survey by Sipser [68].

The first randomized algorithms is generally credited to Rabin [61]. However, an earlier
work of Berlekamp on factoring polynomials presents a randomized algorithm (though it is not
stated explicitly as such) [3].

This chapter gave a very brief overview of topics that generally span multiple classes. For
further readings, please consult standard textbooks on the subjects of (introductory) algorithms
and computational complexity as well as randomized algorithms.

306

	I The Basics
	The Fundamental Question
	Overview
	Some definitions and codes
	Error correction
	Distance of a code
	Hamming Code
	Hamming Bound
	Generalized Hamming Bound
	Exercises
	Bibliographic Notes

	A Look at Some Nicely Behaved Codes: Linear Codes
	Finite Fields
	Linear Subspaces
	Properties of Linear Codes
	Hamming Codes
	Family of codes
	Efficient Decoding of Hamming codes
	Dual of a Linear Code
	Exercises
	Bibliographic Notes

	Probability as Fancy Counting and the q-ary Entropy Function
	A Crash Course on Probability
	The Probabilistic Method
	The q-ary Entropy Function
	Exercises
	Bibliographic Notes

	II The Combinatorics
	What Can and Cannot Be Done-I
	Asymptotic Version of the Hamming Bound
	Gilbert-Varshamov Bound
	Singleton Bound
	Plotkin Bound
	Exercises
	Bibliographic Notes

	The Greatest Code of Them All: Reed-Solomon Codes
	Polynomials and Finite Fields
	Reed-Solomon Codes
	A Property of MDS Codes
	Exercises
	Bibliographic Notes

	What Happens When the Noise is Stochastic: Shannon's Theorem
	Overview of Shannon's Result
	Shannon's Noise Model
	Shannon's Result for BSCp
	Hamming vs. Shannon
	Exercises
	Bibliographic Notes

	Bridging the Gap Between Shannon and Hamming: List Decoding
	Hamming versus Shannon: part II
	List Decoding
	Johnson Bound
	List-Decoding Capacity
	List Decoding from Random Errors
	Exercises
	Bibliographic Notes

	What Cannot be Done-II
	Elias-Bassalygo bound
	The MRRW bound: A better upper bound
	A Breather
	Bibliographic Notes

	III The Codes
	When Polynomials Save the Day: Polynomial Based Codes
	The generic construction
	The low degree case
	The case of the binary field
	The general case
	Exercises
	Bibliographic Notes

	From Large to Small Alphabets: Code Concatenation
	Code Concatenation
	Zyablov Bound
	Strongly Explicit Construction
	Exercises
	Bibliographic Notes

	IV The Algorithms
	Decoding Concatenated Codes
	A Natural Decoding Algorithm
	Decoding From Errors and Erasures
	Generalized Minimum Distance Decoding
	Bibliographic Notes

	Efficiently Achieving the Capacity of the BSCp
	Achieving capacity of BSCp
	Decoding Error Probability
	The Inner Code
	The Outer Code
	Discussion and Bibliographic Notes

	Efficient Decoding of Reed-Solomon Codes
	Unique decoding of Reed-Solomon codes
	List Decoding Reed-Solomon Codes
	Extensions
	Bibliographic Notes

	Efficiently Achieving List Decoding Capacity
	Folded Reed-Solomon Codes
	List Decoding Folded Reed-Solomon Codes: I
	List Decoding Folded Reed-Solomon Codes: II
	Bibliographic Notes and Discussion

	V The Applications
	Cutting Data Down to Size: Hashing
	Why Should You Care About Hashing?
	Avoiding Hash Collisions
	Almost Universal Hash Function Families and Codes
	Data Possession Problem
	Bibliographic Notes

	Securing Your Fingerprints: Fuzzy Vaults
	Some quick background on fingerprints
	The Fuzzy Vault Problem
	The Final Fuzzy Vault
	Bibliographic Notes

	Finding Defectives: Group Testing
	Formalization of the problem
	Bounds on ta(d,N)
	Bounds on t(d,N)
	Coding Theory and Disjunct Matrices
	An Application in Data Stream Algorithms
	Summary of best known bounds
	Exercises
	Bibliographic Notes

	Notation Table
	Some Useful Facts
	Some Useful Inequalities
	Some Useful Identities and Bounds

	Background on Asymptotic notation, Algorithms and Complexity
	Asymptotic Notation
	Bounding Algorithm run time
	Randomized Algorithms
	Efficient Algorithms
	Exercises
	Bibliographic Notes

