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Abstract—Online social networks (OSN) such as Twitter and
Facebook are playing important roles in our daily life, either to
socialize and communicate with people or to share information.
To better understand the information propagation in these
networks, it is important to study their structure and formation
process. However, to do so, it is imperative to analyze the roles
these networks are used for — as news media or social networks.
In this paper, we study the structure and formation of Twitter
and attempt to answer what the role of Twitter is. We first
examine the Twitter network creation process to gain insight into
its structure. Our analysis indicates that the Twitter network can
be formally modeled as a composition of two main networks that
have different roles in information propagation. Following this
we also propose a concise configurable two-step model that can
generate a Twitter-like network to facilitate the development of a
simulation platform for future research. We verify the validity of
the proposed model by empirically analyzing two large datasets
containing the topological information of Twitter and study its
properties by means of mathematical analysis and simulation.

I. INTRODUCTION

Online social networks (OSN), such as Facebook, Twitter,
Instagram, etc., are becoming an important part of our daily
lives. The popularity of these networks can be attributed to
characteristics such as ubiquitous access and easy content
production.

Twitter is especially interesting in this context since its
content has been widely used in business and marketing [1],
[2]. Further, the ability to provide real-time updates, as seen
during “Arab Spring” and relief operations as seen after the
Japan tsunami and earthquake, makes it an ideal platform for
information dissemination. However, there have been cases
where Twitter has been misused, such as the hijacking of the
Associated Press account and subsequent bogus tweet, that
resulted in the loss of millions of dollars in the stock market.
To design mitigation techniques that prevent misuse of Twitter,
it is imperative to understand the role of Twitter as well as the
mechanisms of information propagation. However, to ensure
that these techniques are realistic, scalable and practical, they
need to be tested either by simulation or real experiments.

There is a lot of interest from the research community to
understand the Twitter structure and information dissemination
mechanisms [3]-[6]. However, the research is often dependent
on datasets of Twitter structure which are not always easily
available. This is further exacerbated by the lack of formal
modeling or understanding of the Twitter structure, which is
the main reason for the lack of suitable simulation platforms.

Two of the key challenges in creating a simulation plat-
form are the quantification of the role of Twitter and the
characterization of its structure. The public notion of Twitter
is that it is an OSN used to interact with friends and also
is a micro-blogging site to disseminate information [7]. The

authors of [8] attempted to answer if Twitter is a social network
or a news medium. Towards this end, they topologically
analyzed a large dataset of the social graph of Twitter and
one of their key findings was that the social graph did not
fit Power Law distribution, a key attribute of social networks.
However, they were not able to conclude with certainty the
structure of Twitter.

The objective of this paper is to analyze the structure of
Twitter based on the formation of its network and formally
model its structure, in order to obtain a better understanding
of the information propagation. Based on the purpose and
formation of the Twitter network and its structure, we propose
that Twitter is indeed a composition of two distinct networks
and analyze them. We then propose a two-step configurable
model that creates a Twitter-like structure while maintaining
its properties and identify key parameters necessary for such a
network. The model will serve as a first step towards creating
a scalable simulation platform that can be used to analyze
information propagation and user behavior.

The rest of the paper is organized as follows: The prelim-
inaries and background appear in Sec. II. The key aspects of
the proposed model are explained in Sec. III and empirically
verified in Sec. IV. The simulation results are presented in
Sec. V. Finally, we compare our work with related literature
in Sec. VI before concluding the paper in Sec. VII.

II. PRELIMINARIES

In this section, we first describe the way Twitter forms
the network when a user creates a Twitter account. We then
provide details on Power Law Distribution (PLD), including
some properties as well as formation processes of networks
that yield a PLD.

A. Twitter Network Formation Process

When a user creates a new Twitter account, a new network
creation is initiated for the user, divided into three steps:

1) A list of popular users (e.g., celebrities or news media) is
provided and the user is asked to “follow” five of them (need
not necessarily be the suggested ones).

2) Twitter’s Who to Follow algorithm [9] analyzes the areas
of interest based on the selections in the first step. It then
provides a categorized list so that the user can follow another
five entities.

3) Twitter asks for permission to access the user’s contact list
(gmail or yahoo! mail) to find people that are already using
Twitter and suggests five of them from the lists to follow.

The user — follower entity abstracts the dissemination
model of information from a user to its followers, other users



who “follow” a user. The information is propagated via Twitter
specific messages called tweets. In terms of relationship, unlike
other social networks, the relationship between a user and its
follower in Twitter can be asymmetric. Specifically, when a
user gains a follower, they both do not automatically follow
each other, thus a user does not necessarily gain access to all
the tweets of its followers.

B. Power Law Distribution

Power law distribution (PLD) is often used in the under-
standing and analysis of complex network structures. It holds
a special significance in the purview of social networks.

Definition and Properties: Mathematically, the probability
density function (pdf) of PLD can be expressed as

p(z) = Ca™” ey

where C' is a constant and +y is the scaling parameter. It has
been shown via real world datasets that the scaling parameter
v typically falls in the range between 2 and 3, although there
are some exceptions [10].

Scaling Parameter: As can be seen from the equation, the
scaling parameter governs the shape of the pdf curve. Basi-
cally, a smaller scaling parameter will lead to a more even
distribution than a larger one. When the value of the scaling
parameter is equal to 1, the probability of larger value will
be higher, and probability of smaller value will be lower, as
compared to probabilities when value of the scaling parameters
is equal to 2 or 3.

PLD and Social Networks: An important property is the
heterogeneity among the possible values of a variable fol-
lowing a PLD. That is, a small number of values has high
probabilities of appearance while the majority of values has
very low probabilities of appearance. Thus, the average value
cannot well describe the variables that follow a PLD. In the
context of social networks, it can be used to analyze and gain
understanding of the structure of the network. As has been
shown in [11], many OSNs are likely to have a degree distri-
bution following a PLD, with the scaling parameter falling in
the range between 2 and 3, with the exception of Twitter [11].
Thus, one way to determine if a network is a social network,
is to examine if the degree distribution follows PLD, a process
known as distribution fitting.

Fitting of PLD: A simple way to judge whether a dataset
follows a PLD is to plot its complementary cumulative distri-
bution function (CCDF) on a log-log scale and examine if the
plot is a straight line. Fitting PLD is a non trivial task [12]
and while the method mentioned above is simple, it is not
very accurate. This paper follows the method described in [12]
which is an efficient implementation of the method in [10].

Preferential Attachment Model: This is one of the formation
models that leads to a degree distribution that follows PLD.
First described in [13], this model has two key features. First,
the model assumes a growing network rather than forming
links from a set of existing nodes; second, when a new
node joins, it has a greater affinity to connect to popular
nodes (higher degrees) than unpopular nodes, thus the name
“preferential attachment.” Let m be the number of links a new
node forms upon joining and d;(t) be the degree of an already

existing node ¢ at time ¢, then when the new node joins, node ¢
: di(t) ;
gains mZ§:1 () hew links.

To ease the modeling process, we use the mean field
approximation approach by assuming that every new node
forms the same number of links; this average behavior has
been proved to be a good approximation [14]. This gives the
increasing rate of d;(t) to be

dd; d;
) _ ) o

dt 22j=145(1)

Solving this differential equation with a start condition of
d;(i) = m will give a PLD with a scaling parameter equal
to 3. Though the original preferential attachment works on
undirected networks and results in a PLD with scaling pa-
rameter equal to 3, a modification of the model can be used
to incorporate directed networks and yields a wide range of
values for the scaling parameter as shown in Sec. III-B1.

III. ANALYSIS OF THE TWITTER STRUCTURE

For the precise understanding of the structure as well as
the role of Twitter, the authors of [8] analyzed the topology
of Twitter users and concluded that Twitter exhibited a non-
power-law follower distribution, a short effective diameter,
a low reciprocity, which all mark a deviation from known
characteristics of human social networks. Quantifying the role
of Twitter is also a difficult question since it is largely user-
dependent, which means different users use Twitter differently.
However, the formation process as explained in Sec. II pro-
vides some insight into analyzing the network.

The process almost! clearly separates the formation of two
subnetworks, say, information network and social network. The
first two steps in Sec. II-A can be regarded as helping the new
user form the “information network”, by suggesting popular
users. This is very reasonable since users want someone with
public trust/credibility as information sources, thus popular
users provide good choices as they are trusted by a large
number of users. The formation of the information network is
also a basic characteristic of the preferential attachment model
which is further displayed by the “find and follow well-known
people” as part of the second step.

The third step builds the “social network”, by importing
from other existing social relationships, typically people from
the email contact list who are already using Twitter. The
formation process also reveals two other important parameters
that can be helpful in building a model of the Twitter structure.
The first one is the total number of users that a user will follow
upon joining Twitter, which if the user strictly follows the
Twitter suggestions, is 15. The second one is the ratio of the
number of users a new user follows by searching his contact
list to the total number of users the new user follows, which we
denote as a. This parameter « is defined as the “social ratio”
in this paper and the significance of this will be explained
in Sec. V. Thus, if a new user strictly follows the Twitter
suggestions, « will be 1/3, as 5 out of 15 of Twitter users
followed by the new users are supposed to be “real friends.”

By almost we mean that there is a possibility for some of the users’ contacts
to appear in the suggested lists of steps 1 and 2 of Sec. II-A.



In the following section we use the insights from the
formation process to analyze the Twitter network.

A. Network Separation

Based on the preceding discussion, we hypothesize that the
Twitter network is separable into two different networks based
on the usage purposes. Further, since the original Twitter fol-
lower network could be regarded as a mixed-purpose network
or a combination of a social and an information network, it is
reasonable that it does not strictly follow a PLD as concluded
by the authors of [8].

In view of this, the two subnetworks extracted from the
Twitter network can be formally defined as follows:

e Social Network: a network containing all mutual
relationships. This is an undirected graph where every
pair of connections implies that the connected users
mutually follow each other on Twitter. Nodes only
in the social network correspond to the white circular
node in the social network in Fig. 1. These nodes have
only mutual relationships.

e Information Network: a network containing all the
one-way relationships. This is a directed graph where
every pair of connections implies that one user follows
the other but not vice versa. Nodes in the information
network correspond to the triangular nodes in the
information network in Fig. 1 and have only a one-
way relationship.

There are also those nodes that exist in both networks and
have both mutual as well as one-way relationships. These
correspond to the shaded nodes in Fig. 1. It should be noted
that if two nodes are connected in the social network and both
appear in the information network, they will not be connected
in the information network.

Social Network

i
w2

Information Network

Fig. 1.  Network Separation. Top: Social Network. Bottom: Information
Network. Black round nodes appear in both networks, whereas triangular
nodes appear only in the information network and white round nodes only
in the social network. An arrow from node A to node B in the information
network indicates user A follows user B.

The three types of nodes correspond to the three different
types of users discussed in the previous section. The nodes
in these two networks could be overlapping but the links in
these two networks are mutually exclusive. Thus, a link cannot
appear in both networks. It should be noted that only the
follower network is considered here, i.e., the out degrees of
all the nodes are considered. The reason is that a user’s tweets
will appear in all its followers’ timeline, but has no effect on
its friends’ (users it follows) timelines. From the perspective
of information propagation, the out degree of a node typically
indicates how many other nodes it could reach in one hop, i.e.,
its ability to spread information from the point of view of size.

Hence, it is meaningful to study the follower network, rather
than the friend network.

In order to conduct our theoretical analysis, the overall
Twitter follower network is denoted as a graph G, = (V,, E,).
Here V, is the set that contains all the nodes appearing in the
Twitter follower network, V, = {v|d(v) > 0}, where d(v)
is degree (in and out) of node v. As users with no followers
have no ability to spread information and cannot have negative
followers, it is obvious that all v € V, have a non-negative
number of followers. F, is the set containing all the follower
relationships in the network. If e;; € E,, then user ¢ follows
user j.

We can then define the social network as the graph
Gs = (Vi, Es) and the information network as the graph
G; = (V;, E;), with the following relationships:

VSUVi:Va
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Based on the idea of network separation, it is meaningful
to investigate if the two subnetworks have a more clear degree
distribution. Fundamentally, we want to verify if either one or
both of them would be a better fit of the PLD, thus conforming
to the notion of a human social network. The testing of our
hypothesis is described in Sec. IV.

B. Generation of Proposed Models

Based on the observations from the real world process in
Sec. II-A and the above analysis, we propose two configurable
two-step formation models to generate a network capturing the
degree distribution of the real Twitter network. It is important
to note that the goal is not simply to generate a network with
its degree following PLD; but rather to find a process which is
similar to Twitter user behavior as much as possible and could
lead to a similar network distribution at the same time while
making it scalable.

1) Description of Proposed Models: At each time step,
a new node joins a network, making the model a growing
network formation. Upon joining the network, the new node
selects a subset of nodes, m, from the existing nodes with
whom to form a relationship. Among these m nodes, some
are selected as information sources, while others are selected
as friends in the real world. The former ones (step 1) will
appear in the information network and are named “information
network nodes.” The new node forms a directed link with
each of these nodes; such links are called “information links.”
The latter ones (step 2) will appear in the social network
and are named “social network nodes” or “mutual followers.”
These nodes will form two directed links, from the new
node to each of them as well as in the opposite direction;
such links are called “social links.” We assume that all the
following relationships are formed when a new node joins the
network, which, while not being realistic, is used to simplify
the model as considering forming links between existing nodes
would be equivalent to changing some initial parameters in our
proposed model. Based on this assumption, there are (1 —a)m
information network nodes and am social network nodes,
where « is the social ratio.



The following two steps are used by a node to connect to
the m nodes.
Select information network nodes. Based on the preferential
attachment scheme, the probability of an existing node to be
selected as an information network node by the new user is
directly proportional to its current in-degree. This process is
similar to Twitter suggesting new account users to follow popu-
lar users. However, it should be noted that the current in-degree
of an existing node includes both its information network in-
degree as well as its social network in-degree. This can be
reasoned from two perspectives. From the existing node’s point
of view, the social network in-degree also contributes to its
popularity, e.g., viral videos, photographs, etc. Similarly, from
the new node’s point of view, when deciding whether to follow
another user as an information source, it is based completely
on the user’s out degree, which is an aggregate of both mutual
followers and pure followers.
Select social network nodes. The principles of people select-
ing social network nodes are largely dependent on their real
world social networks. Thus, it is relatively difficult to model
this process within the Twitter environment. The modeling of
this can be done via two processes.

(1) Preferential attachment: This means in selecting the social
network nodes, the new node will also connect to popular
nodes. However, here only the social network in-degree is
considered. This is referred to as Model I and the degree
distribution of this model should follow a PLD.

(ii) Multiplicative process: In [15] it has been shown that a
multiplicative process will generate a lognormal distribution.
This process is simulated by randomly selecting social nodes
from the set of existing nodes and is referred to as Model II.

It should also be noted that the formation process of
the social network is independent from the formation of the
information network, but not vice versa. The effect of these two
options for social network node selection is tested in Sec. V.

In the real world scenario, the values of m and « vary
for all users. However, to simplify the modeling, the mean
field approximation is used in these models assuming that,
every user behaves like an average user with the same number
of nodes to connect to, and with the same friends to select.
It will be shown later via simulation that the behavior of «
may only be effected by its expectation. These models are
configurable in the sense that o can be adjusted. We now sketch
a mathematical analysis for the above two models.

2) Mathematical Analysis: We assume that di () is the
in-degree of node k in the information network at time t;
similarly, d3 (¢) is the in-degree of node k in the social network
at time ¢, and dj(t) is the total in-degree of node k at time
t. When a new node joins at time ¢, the number of new
information links an existing node k£ will gain is

ddi(t) _ di () + di (1)

a TS )

Similarly, the number of new social links an existing node
k will gain, assuming Model I is:
dj,(t)

ddj(t)
dt amzj:i di(t) @)

Solving this equation for the social network,
t
di(t) = am(-)"? )
g
where ¢y, is the time at which node k was added to the system.

Substituting (5) back to (3) gives the rate of increase as

ddi(t) di(t) am 1
= —_— 6
dt At T AtdS " 405 ©)
where A = }f—a Solving the differential equation for the

information network gives

d(0) = 5 < () = (-

Comparing with (5), we can observe that there are two power
law components (consistent with our hypothesis) and that the
resulting scaling parameter is affected by « as well as the
network structure of the social network part. This means that
a larger o will lead to a larger scaling parameter of the
information network. Similarly, for Model II the change in
number of social links will be given by:

ddi(t) _ am
dt ot ®)

The above analysis is similar to the one in [13] and is cus-
tomized to our context. We omit the details of the derivations
for the sake of brevity.
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IV. EMPIRICAL STUDY

In this section, we use two datasets to empirically validate
our proposed model.

A. Dataset Information

The Twitter datasets from [8] and [16] are used in this
paper, and are denoted as D1 and D2, respectively. Table I
lists the basic information from the two datasets.

From Table I, we can see that the number of Twitter users
increased by more than 25% in just three months. Further,
it should be noted that these two datasets contain the whole
topology of Twitter network at the time they were crawled. The
datasets provide a measure of ground-truth of Twitter network,
since a large network like Twitter is shaped by all its users.
Thus any conclusions reached from a partial or sampled dataset
would not be convincing enough. Further, by studying the
difference of the two datasets crawled in a close time period,
the evolution trend of Twitter network could be more clear,
thus providing insights into the topological analysis.

B. Fitting and Results

To test our hypothesis using real data traces, the social
network and the information network are first extracted from
the originally unseparated datasets. To our surprise in both the
datasets there are only about 50% of Twitter users who have
at least one mutual link with another user. This corroborates
the conclusion reached in [8] that Twitter has a lower level of
reciprocity. The value of reciprocity of 22% in D1 (21.6% in
D?2) is low when compared to other OSNs like Flicker and
Yahoo! 360. The difference between the maximum degree and
the average degree in the social network also suggests that the



heterogeneity among nodes could possibly lead to the social
network fitting a PLD. Table I presents the statistics for the

TABLE 1. TWITTER NETWORK STATISTICS

Attribute D1 D2
Total users 41,652,230 52,579,682
Total Links 1,468,365,182 | 1,963,263,821
Social Network Characteristics
Users in social network 22,580,393 26,866,589
Average degree in social network 23 25
Maximum degree in social network 698,112 713,207
Information Network Characteristics
Users in information network 38,355,089 47,175,611
Average degree in information network 24 26
Maximum degree in information network | 2,997,304 3,503,476

information and the social networks. From the table we can see
that in the information network only a small fraction of Twitter
users have no followers and that the difference between the
average degree and maximum degree is significant. Although
D2 is larger in size than D1, both exhibit the same basic
properties in the separated networks, indicating that Twitter
may have stepped into a stable stage in its evolution.

The next step is to check whether the degree distribution of
these two subnetworks follows a PLD. We first plot the CCDF
in normal scale and log-log scale. As mentioned in Sec. II-B,
the fat tail feature is expected to be observed in the normal
scale CCDF plot, and a straight line in the log-log scale plot.
Figures 2 and 3 show the plot of the CCDF of D1; the CCDF
plots of D2 are similar and hence are not shown.
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Fig. 2. CCDF of Social Network Degree in D1 Top Left: CCDF in normal
scale. Top Right and Bottom Left: Zoomed versions (100x and 1000x). Bottom
Right: CCDF in log-log scale

In Fig. 2 and 3, the log-log plots are very close to a
straight line, starting from a lower bound, thus indicating that
our hypothesis has a high probability to be true. In order to
confirm the hypothesis, the exact scaling parameters need to
be calculated. Following the process described in [12], the
datasets are fitted into PLD, and the scaling parameter as well
as the goodness of fit compared to other candidate heavy-tail
distributions (exponential/lognormal), are calculated.

The fitting results are shown in Table II, where the compar-
ison with two alternative distributions is shown by the unnor-
malized likelihood ratio of PLD to exponential and lognormal
by columns three and four respectively. As described in [12],
a positive value indicates that the fit follows PLD, whereas a
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Fig. 3.  CCDF of Information Network Degree in D1 Top Left: CCDF in
normal scale. Top Right and Bottom Left: Zoomed versions (100x and 1000x).
Bottom Right: CCDF in log-log scale

negative value indicates that the fit follows the other heavy-tail
distribution, namely, exponential or lognormal.

TABLE II. POWER LAW FITTING OF SOCIAL & INFORMATION
NETWORK
Network Scaling Parameter | Exponential | Lognormal
Social Network in D1 1.87 293 -18
Social Network in D2 1.88 309 -24
Information Network D1 | 2.24 34 28
Information Network D2 | 2.15 155 10.7
Basically, the information network is a good fit

of PLD with the scaling parameter equal to 2.24 in D1 and
2.15 in D2 compared to the exponential and lognormal distri-
butions. However, for the social network the power law fitting
does not showcase a better fit over lognormal distribution. In
fact, as the fitting algorithm is not deterministic, the power law
is a better fit to the lognormal only some of the times. This
is the reason why two different models are tried for these two
possibilities in Sec. III-B1.

V. SIMULATION AND RESULTS

In this section, we conduct simulations to analyse the
various parameters that affect the formal modeling of Twitter
structure.

Simulation Setup: All simulations start with an initial network
containing m nodes, fully connected with each other, in order
to mimic the launching process of Twitter and other online
products. Basically, they would start with invitation or internal
test, which indicates highly connected relationships between
the initial users. As described in Sec. III-B1, the formation of
the network continues by adding one node at each time step.
Upon joining the network, the new node selects information
type and social type nodes to connect to, and the network
gets updated. If a node is selected as one of the two types,
then it cannot be selected again. All simulations stop when the
network size reaches 0.6 million, which is an empirical value
as after this the network structure is observed to be stabilized.

Effect of Fixed «: Fig. 4(a) and Fig. 4(b) show the effect of «
along the way of the network evolution, for the two models
proposed in Sec. III-B1. In these simulations, m and mg are
both set to be 20. Different values of o are tested on both
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Fig. 4. Effect of social ratio on scaling parameter.

models and the values are selected so that am and (1 — a)m
are both integers.

Although there are some oscillations in the curves, in
general, all of them show the same trend for the scaling
parameter : <y increases in the beginning of the network
evolution, and eventually saturates at a stable value ;. The
saturation scaling parameter 75 is our focus since it occurs
when the network size approaches infinity. Fig. 4(c) shows the
saturation scaling parameter ~, for different models as well
as for the empirical datasets D1 and D2 2. It can also be
observed from the figures that a larger o produces a larger
scaling parameter 7, which is consistent with the mathematical
deduction.

To compare the two different models, closer attention
should be paid in Fig. 4(a) and Fig. 4(b) to the lines when
the “social ratio” « is equal to 0.2 since they are closest to
the overall « in the empirical dataset, which is reported to be
0.22 in [8]. In Fig. 4(c), the saturation scaling parameter s is
2.28 for Model I and 2.39 for Model II. Since the empirical
information network has a scaling parameter of 2.24 when
a = 0.22 (in D1) and 2.15 when o = 0.216 (in D?2), it can
be concluded that Model I is a good enough fit for generating
the desired information network.

However, the fitting of the social network part remains an
open question. As analyzed in Sec III-B2, the social network
structure has an impact on the fitting scaling parameter of the
information network while by itself is independently formed
from the information network. Since changing the selection
of social network nodes from random selection to preferential
attachment decreases the saturation scaling parameter v, from
2.39 to 2.28 (from Fig. 4(c)), it is reasonable to make the
hypothesis that a social network with a lower scaling param-
eter will further decrease the saturation scaling parameter s
progressively, yielding a value even closer to 2.24 or 2.15. The
preferential attachment scheme cannot produce an undirected
network with scaling parameter around 2, suggesting that hu-
man factors outside the scope of degree should be considered.

It is interesting to think about the role that the “social ratio”
a plays in the network formation process and the resulting
structure. Generally, it reflects on average how “social” the
users in the network are, i.e., how often or how willing the
users are to use it as a social network with their friends.
Thus, a can be regarded as an intrinsic property of a particular
network, determined by the nature of the network. From the
two empirical datasets, we calculated that the social ratio «

2The two points correspond to the s values calculated by obtaining the o
values from datasets D1 and D2.
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is decreasing, from 0.22 in June 2009 to 0.216 in September
2009; this indicates that users are getting more information-
driven on Twitter and use it more as an information source.
From this point of view, it is meaningful to extend this
model to general networks that have both mutual and one-
way relationships. Based on the discussion above, we conclude
that Model I is the better of the two models and all further
simulations were performed with Model I.

Different o for Different Users: In Sec. II we assumed in
our models that all users have the same social ratio «, under
the mean field approximation approach. We test the validity of
our assumption as well as the goodness of this approximation,
by assigning to « values from a distribution similar to that
calculated in the empirical dataset, as shown in Fig. 5(a). It
can be observed that a large fraction of the users have no or
very small percentage of mutual friends, and some values of
« are more frequent than others. This distribution is simulated
when the new node joins, by randomly picking an « value in
the set [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0.2, 0.5, 0.5,
04, 04,0.6,0.8, 1, 1, 1, 1 ]. The resulting curve in Fig. 5(b)
shows that the plot of the saturation scaling parameter v, is
almost the same when all the nodes have the « value fixed at
0.3, and when all the nodes have a value of o drawn from a
distribution with an expected value of o = 0.3.

Effect of Initial Network Size: Fig. 6 shows the effect of
initial network size mg on the resulting scaling parameter
during the network formation process. We observe that the
initial network size does not affect the saturation scaling
parameter 7y but has an influence on the speed of reaching the
stable stage. A large initial network size takes a longer time
to reach a saturation scaling parameter. This influence is quite
obvious in Figure 6; when my is equal to 80, the network did
not even reach a saturation stage before there are 0.6 million
nodes.

VI. COMPARISON TO RELATED WORK

The analysis based on topological datasets has led to infer-
ence on followers, friends, geographic distributions, etc. [3]—
[5]. Similarly, the analysis based on the content-based datasets
has revealed aspects of information propagation such as the
type of content retweeted, the users that retweet information,
etc. [1], [6], [17]. These works also try to predict the type
of content based on the real-world dataset. The work in [18]
uses both types of datasets to understand the structure and
interaction between students who have used Twitter but it does
not provide a formal model. The authors of [19] use sociology
concepts to understand the network structure and analyze how
it influences users to “un-follow” other users. Our work differs
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from the rest in two aspects. First, in terms of methodology,
we use a combination of analyzing the formation process to
propose a model and empirical validation. Second, we present
a concise two-step model that can generate a structure similar
to the Twitter network. Finally, we also identify the parameters
that can affect the structure of the network.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, the conclusion reached by previous re-
searchers that the Twitter network does not follow a PLD
is challenged through mathematical and empirical analysis. A
hypothesis that the Twitter network contains two subnetworks
following PLD is made and a formal model of the Twitter
structure is presented. Further, a two-step configurable model
that could generate a network with a similar structure as
Twitter has been proposed. The hypothesis is validated by
extracting the social network and information network from
two large scale datasets and fitting them into PLD. Finally,
we also identify some parameters and test their effect on the
Twitter structure via simulations. We show that the social ratio
« is crucial in the formation process of such a network as
Twitter, and a network with more social users has a larger
value of o and a larger resulting scaling parameter 7y for
the information network. The structure of the social network
part of Twitter influences the structure of the information
network part, and to best describe its own formation process
more human behavior related parameters should be taken into
consideration.

The results of this paper provide a basic foundation for
several lines of future research. With this formal model of the
Twitter network structure, information propagation process and
security issues can be analyzed quantitatively. Conversely, the
models proposed in this paper could be further extended to
represent general OSNs, which would be helpful in exploring
the similarities and differences between different OSNs. Our
goal with the analysis and modeling presented in this paper
is to facilitate the building of a simulation platform for OSNs
that will help the research community in their research with
such networks.
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