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ABSTRACT

Koutsonikolas, Dimitrios. Ph.D., Purdue University, August 2010. “Exotic” Routing
Protocol Design and Implementation for Wireless Mesh Networks. Major Professor:
Y.Charlie Hu.

Wireless mesh networks (WMNs) are increasingly being deployed for providing

cheap Internet access. A main challenge in city-wide WMNs is to deal with the poor

link quality due to urban structures and interference. To combat the high loss rates

and satisfy the ever-growing demands for high-throughput Internet access, researchers

have recently proposed a new class of “exotic” routing protocols exploiting techniques

such as opportunistic routing or network coding, that promise a dramatic increase in

overall network throughput. Nonetheless, the design of practical protocols exploiting

such techniques still faces several challenges that often prevent them from realizing

the maximum possible gains.

This thesis presents the design, prototyping, and evaluation of two novel “exotic”

routing protocols that address fundamental limitations of state-of-the-art protocols

for multicast and unicast routing, respectively. The first part of the thesis presents

Pacifier, the first reliable multicast protocol for WMNs that efficiently addresses the

well-known (from the Internet) “crying baby” problem, i.e., when the presence of a

poorly connected multicast receiver results in performance degradation for the rest

of the receivers. The second part of the thesis presents a novel solution to the main

challenge in network coding based opportunistic routing protocols, i.e., determining

how many coded packets each forwarding node should transmit, through the design of

CCACK. Finally, in the third part of the thesis, we review the current diverse practices

in the evaluation methodology of this new class of “exotic” routing protocols, examine



xiii

their strengths and their weaknesses, and make recommendations for more consistent

and meaningful evaluation methodologies.
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1. INTRODUCTION

Wireless mesh networks [1] (WMNs) have recently gained significant popularity as

an alternative technology for providing cheap, low maintenance Internet access. This

type of networks, also known as community networks, are characterized by static mesh

routers connected by wireless links to each other and to a few gateway nodes. These

few gateway nodes have wired connectivity to the Internet. The WMN routers and

the gateway nodes effectively form a multihop wireless access backbone. A typical

mesh network is depicted in Figure 1.1 in which mesh routers are deployed inside or

on rooftops of homes.
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Fig. 1.1. Schematic of a wireless typical mesh network.

These mesh routers connect to each other over wireless links so that each home

can reach one of the three Internet gateways either directly or via multi-hop packet

forwarding among the mesh routers. Mesh routers are similar to cheap commodity

access point devices that are widely available. Typically home users connect to the

mesh router on a separate radio interface or via wired Ethernet.

WMNs typically have low deployment cost and low maintenance overhead, high

data rates, and are not energy constrained. Because of these properties, the deploy-
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ment and use of WMNs has recently increased significantly and several cities have

planned and/or deployed WMNs [2–11]. In addition to broadband Internet access,

WMNs are also an attractive option for enterprise wireless offices [12] in which the

entire office communication (printing, servers, voice communication, etc.) takes place

over wireless links.

However, despite their attractive properties, WMNs face a fundamental chal-

lenge to be successful: performance. Unlike traditional mobile ad hoc networks

(MANETs), the routers in WMNs are static; thus, topology changes due to mobility

or power consumption are not a concern in these networks. In addition, a WMN

aims to be a last-mile technology. Thus, in order to become a viable solution, it has

to compete with existing broadband technologies, such as cable and DSL, and offer

performance comparable to the performance offered by them. As a consequence, the

main design goal for WMNs has been shifted from maintaining connectivity among

routers and power saving to improving applications’ performance, in particular pro-

viding (primarily) high-throughput and reliability in network access.

A fundamental factor that can result in poor performance in WMNs is the poor

link quality due to urban structures and interference, both internal (among flows in

the WMN competing for the wireless medium via the 802.11 CSMA protocol) and

external (from other 802.11 networks or other sources of interference, e.g., microwaves

or cordless phones). For example, 50% of the operational links in Roofnet [2] have

loss rates higher than 30% [13]. Multihop routing makes the problem even more

challenging since the cumulative end-to-end loss rates are much higher. In addition,

a third type of interference, self-interference (among nodes that are part of the same

routing path carrying traffic for a given flow), further exacerbates the situation. As

a consequence, routing protocol design in WMNs has to overcome these challenges to

meet the goal of high performance.
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1.1 Evolution of wireless routing protocol design

In this section we give a brief overview of the evolution of unicast and multicast

routing protocol design for multihop wireless network, which is summarized in Fig-

ure 1.2. This overview reveals that despite significant innovations in routing protocol

design, there is still much to be desired in terms of performance. The discussion in

this section motivates our contributions in Section 1.3.

CCACK (’10)

MORE (’07)

Traditional
Routing

"Exotic"
Routing

Ad Hoc Era

Mesh Era

WMN Routing Protocols

Unicast

DSDV (’94), DSR (’96), AODV (’97)

ETX (’03), ETT (’04), ...

ExOR (’05)

MORE (’07)

Multicast

ODMRP (’99), MAODV (’99)

METX, SPP (’05)

Pacifier (’09)

Fig. 1.2. Evolution of unicast and multicast routing protocol design for multihop
wireless networks. The white area denotes existing work and the shaded area denotes
our contributions.

In the ad hoc networking era, the primary challenge faced by routing proto-

cols, both unicast (e.g., DSR [14], AODV [15]) and multicast (e.g., ODMRP [16],

ADMR [17]) was to deal with frequent route breaks due to host mobility in a dynamic

mobile environment. Accordingly, most research efforts were focused on designing ef-

ficient route discovery/repair schemes to discover or repair routes with minimum

overhead. The routing process itself was simple; once a route from the source to

a destination was known, each hop along the route simply transmitted the packet

to the next hop via 802.11 unicast. These protocols relied on 802.11 unicast (with

its built-in ACK-based local recovery scheme and exponential backoff) to deal with

packet loss due to channel errors or collisions.

Transition to WMNs changed the design goals of routing protocols. As we have

already mentioned, in a WMN, routers are static and hence route changes due to
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mobility are not a concern anymore. In addition, WMNs are proposed for urban

usage (and not for military or rescue applications). The main performance metric is

now throughput, often times even at the cost of increased control overhead.

The first major effort towards the new design goal was on designing link-quality

path metrics that replaced the commonly used shortest-path metric. These metrics

(e.g., ETX [18], ETT [19]) characterize link quality using information from the MAC

layer and are then used to assist route selection in finding a high-throughput end-

to-end path. The use of these new metrics was shown to improve the throughput

of routing protocols in mesh testbeds (e.g. [18, 19]). The protocols using these link-

quality metrics still followed the layering principle: the routing layer finds a good

route, and 802.11 MAC is used to deliver packets hop by hop.

Seeking further throughput improvement, researchers looked into new, “exotic”

techniques, which took two important departures from traditional routing. First,

they abandoned the notion of the wireless link, by exploiting wireless broadcast at

the MAC layer. Second, they largely abandoned the layering principle, adopting a

cross-layer approach.

Opportunistic routing. The first such technique was opportunistic routing as

demonstrated in the ExOR protocol [20].

Traditional routing protocols (independent of the routing metric they used) were

built on top of 802.11 unicast. The rule for routing was simple: first determine the

next hop, then let the MAC ensure that the packet is indeed delivered to the pre-

determined next hop. As shown, this rule was a limiting factor for achieving high

throughput.

Instead of having a decoupled MAC and routing layer, opportunistic routing ex-

ploits an inherent property of the wireless medium, its broadcast nature. Instead

of first determining the next hop and then sending the packet to it, it broadcasts

the packet so that all neighbors have the chance to hear it and assist in forwarding;

among those that received the packet, the node closest to the destination forwards

the packet. In practice, it is not beneficial if all nodes in the network participate in
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forwarding traffic for a single flow. Hence, existing opportunistic routing protocols

typically construct a belt of forwarding nodes (FNs) for each flow and only members

of the belt are allowed to forward packets.

Opportunistic routing provides significant throughput gains compared to tradi-

tional routing; however, it introduces a difficult challenge. Without any coordination,

all members of the FN belt that hear a packet will attempt to forward it, creating

duplicate transmissions, which waste bandwidth. To address this challenge, a coor-

dination protocol needs to run among the nodes, so that they can determine which

one should forward each packet. Coordination requires message exchange and it can

be costly in terms of wireless bandwidth. To avoid control message exchange, ExOR

imposes a strict global scheduler that works in rounds and allows only a single FN at

a time to transmit, thus significantly limiting spatial reuse.

Intra-flow network coding. The next breakthrough that addressed this challenge

in a simple and efficient manner, with minimal coordination was applying network

coding [21] to multihop wireless networks, as was first demonstrated in the MORE

protocol [22]. With network coding, the source sends random linear combinations of

packets, and each router also randomly mixes packets it already has received before

forwarding them. The destination can reconstruct a file consisting of N packets if

it receives N linearly independent coded packets. Random mixing at each router

ensures that with high probability different nodes that may have heard the same

packet can still transmit linearly independent coded packets.

Network coding has one more positive effect. It resembles traditional Forward

Error Correction (FEC) techniques, which offer reliability through redundancy, with

the extra advantage that it is applied at every hop, and not end-to-end [23,24]. Hence,

network coding completely eliminates the need for retransmissions of lost packets.

Since each coded packet contains information about many packets, nodes can simply

keep sending encoded packets until the destination receives sufficiently many packets

that allow reconstruction of the original data.
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1.2 New challenges

Initial practical routing protocols exploiting these “exotic” techniques were imple-

mented and evaluated on small WMN testbeds; their evaluation promised several-fold

throughput gains over traditional routing protocols. Nonetheless, a careful considera-

tion reveals several limitations in the design of these protocols. For example, the lack

of a rate control mechanism in these initial protocols causes a serious performance

degradation as the number of flows in the network increases. As another example, the

use of network coding introduces a new challenge: How many coded packets should

each forwarder transmit? This challenge, if not efficiently addressed, can have a severe

impact to the performance of network coding based opportunistic routing protocols.

Consequently, such protocols often work particularly well for a specific scenario, but

their performance may be far from satisfactory in different scenarios.

A second challenge lies in the evaluation methodology of this new class of proto-

cols. In contrast to traditional routing protocols, there have been no clear guidelines

that drive the evaluation of “exotic” routing protocols; often times each new protocol

is evaluated with a different methodology. Even worse, several pitfalls in the eval-

uation methodology of this class of protocols often result in performance gains over

traditional routing appearing higher than in reality.

Overall, the first generation of “exotic” routing protocols were a proof of concept,

showing that “exotic” techniques such as opportunistic routing or network coding can

indeed yield substantial performance improvements over traditional routing. Having

understood the limitations of this first class of “exotic” protocols, the next step is to

turn proof of concept to practical, robust, complete protocols.

Furthermore, the design of high-throughput routing protocols for WMNs has al-

most solely focused on unicast routing, while multicast has been largely ignored.

Indeed, high-throughput routing metrics (ETX [18], ETT [19]) were proposed for uni-

cast routing and they were integrated into unicast routing protocols, such as DSR [14]

and DSDV [25]. Also, almost all the “exotic” routing protocols were only proposed
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for unicast routing. The only exception is MORE, which works both for unicast and

multicast routing, although its design and evaluation were focused on unicast.

1.3 Research Contributions

In this thesis, we propose, design, and implement two practical, robust “exotic”

routing protocols for WMNs that advance the state-of-the-art by addressing funda-

mental limitations of existing protocols.

• First, this thesis fills the gap in high-throughput multicast routing. We propose

Pacifier, the first high throughput reliable multicast routing protocol for file

download applications, that require 100% Packet Delivery Ratio (PDR). One

fundamental challenge to supporting high-throughput, reliable multicast is the

“crying baby” problem as first pointed out in [26] in the context of multicast in

the Internet. If one receiver has a particularly poor connection, then trying to

satisfy the reliability requirement for that receiver may result in performance

degradation for the rest of the receivers. Pacifier is the first protocol to effi-

ciently address this challenge in WMNs in the context of file download applica-

tions, where the strict reliability requirement makes this problem particularly

challenging.

• Second, we propose a novel solution to the main challenge in NC-based OR pro-

tocols, i.e., determining how many coded packets each forwarding node should

transmit, through the design of the CCACK protocol. Existing protocols ad-

dress this challenge by combining network coding with offline loss rate based

heuristics to eliminate the overhead of feedback exchange, often at the cost

of reduced performance in dynamic wireless environments. On the contrary,

CCACK introduces an online Cumulative Coded ACKnowledgment scheme

that allows the protocol to sustain high performance in dynamic wireless envi-

ronments, with practically zero overhead.
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• The design of Pacifier and CCACK is guided by strong theoretical underpinning

but at the same time emphasizes practical concerns, making the two protocols

amenable to practical implementation on off-the-shelf hardware. An additional

contribution of this thesis is the extensive evaluation of the proposed proto-

cols under realistic settings and practical scenarios. First, both protocols were

extensively evaluated using the Glomosim simulator, a widely-used wireless net-

work simulator with a realistic physical model. In contrast to a recent trend in

the wireless networking community that seems to reject simulation-based eval-

uation in favor of testbed evaluations, simulation remains valuable, as in many

cases, it offers the chance of varying many parameters which are difficult to

change in a testbed, and it complements the testbed evaluation. Real world

systems, however, are complex, and even realistic simulations cannot capture

all the details of a real world deployment. Hence, this thesis has a strong im-

plementation component; both protocols have been prototyped and evaluated

on MAP (Mesh@Purdue), a 22-node experimental 802.11a/b/g WMN testbed

deployed on two academic buildings at Purdue University. In addition, to fur-

ther facilitate research on “exotic” routing protocol design, we have made the

source code for Pacifier publicly available. 17 research groups from 5 different

countries have already downloaded it since September 2009.

• An additional contribution of this thesis lies in study of the evaluation method-

ology of this new class of “exotic” routing protocols. One implication of the

advent of “exotic” techniques, such as OR and NC, is that many mechanisms

such as reliability and rate control, that used to be below or above the routing

layer in traditional routing protocols, have now moved to the routing layer. This

consolidation of mechanisms from multiple layers into the routing layer poses

new challenges to the methodology for evaluating and comparing this new gen-

eration of routing protocols. This thesis is the first to examine the diverse set

of current practices in evaluating recently proposed protocols and identify their

strengths and weaknesses. Our study suggests that there is an urgent need
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to carefully rethink the implications of the new merged-layer routing protocol

design and develop effective methodologies for meaningful and fair comparison

of these protocols. Finally, we make several concrete suggestions on the desired

evaluation methodology.

Bibliographic Note: The material presented in this thesis is based on the following

publications: [27], [28], and [29].

1.4 Organization of the Dissertation

This thesis is organized in 6 chapters. Chapter 2 gives a background on high

throughput routing in WMNs, by briefly describing the three landmarks in the evo-

lution of routing protocol design: link quality based routing metrics, opportunistic

routing, and intra-flow network coding. Chapters 3 and 4 present the design, imple-

mentation and performance evaluation of Pacifier and CCACK, respectively. Chap-

ter 5 presents an overview of the current practices in the evaluation methodology of

“exotic” routing protocols, discusses their strengths and weaknesses and makes sug-

gestions for a more meaningful evaluation. Finally, Chapter 6 concludes this thesis

and discusses future work.
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2. BACKGROUND

In this chapter, we give a brief background on high-throughput routing protocols

in WMNs. We first describe traditional routing using link-quality based metrics in

Section 2.1. We then turn to “exotic” techniques and describe opportunistic routing

in Section 2.2 and intra-flow network coding in Section 2.3, using ExOR [20] and

MORE [22], respectively, as examples.

2.1 Link quality based routing metrics

The first major effort towards high-throughput routing was on designing link-

quality based routing metrics that replaced the commonly used hopcount metric. The

main intuition behind link quality based routing metrics is the following: minimizing

the hopcount maximizes the distance traveled by each hop, which is likely to minimize

signal strength and maximize the loss rate. In contrast, it may be more advantageous

to select a longer path, consisting of short links, each of high quality (e.g., low loss

rate).

ETX. The idea of selecting a high-throughput path rather than the shortest path in

a multihop wireless network was first introduced through the Expected Transmission

Count (ETX) metric [18]. ETX is based on the expected number of transmissions

required to send a unicast packet over a link, including retransmissions. To calcu-

late ETX, each node measures the probability that a packet successfully reaches the

receiver, denoted as df , and the probability that an ACK is successfully received by

the sender, denoted as dr. The ETX value of the link is given by

ETX =
1

df × dr

(2.1)
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The routing algorithm then selects the path with the least sum of ETX values of all

its constituent links.

Figure 2.1 shows an example of how ETX avoids long lossy links. In this example,

there are two paths from the source node S to the destination node D: the direct

path S → D consisting of only one link with 20% delivery ratio and the two-hop path

S → A → D, consisting of two links, each with 80% delivery ratio. The hopcount

metric would select the direct path S → D resulting in each packet being transmitted

on average 5 times before being delivered to D. Instead, ETX selects the two-hop

high quality path which requires on average only 2.5 transmissions per packet.

A

DS

80%

20%

80%

Path Exp. transmissions

S−>D 1/0.2 = 5

S−>A−>D 1/0.8 + 1/0.8 = 2.5

Fig. 2.1. An example of the ETX metric.

To measure df and dr, each node broadcasts a probe packet every second. Each

such probe contains the number of probes the node received from each of its neighbors

in the previous 10 seconds. Since the 802.11 MAC layer protocol does not retransmit

broadcast packets, nodes use this information to estimate the forward and reverse

delivery probabilities.

ETT. ETX assumes that all links in the network have the same data rate. In practice,

with the autorate adaptation mechanism of 802.11 enabled, links may have different

data rates. In that case, the loss rate alone is not enough to describe the link quality.

For example, it may be more advantageous to transmit a packet over an 11Mbps link
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with 30% loss rate rather than over a 1Mbps link with 0% loss rate. The Expected

Transmission Time (ETT) metric [19] was proposed as an enhancement to ETX by

considering both the loss rate and the bandwidth (data rate) of links. The ETT value

of a link is computed as

ETT = ETX ×
S

B
(2.2)

where S is the packet size and B the link bandwidth. The routing algorithm again

selects the path with the least values of all its constituent links. To calculate ETT

for each link, a node measures ETX using the technique mentioned above, and the

bandwidth using a technique similar to Packet Pair [30] (i.e., sending two probe

packets back-to-back [31]).

2.2 Opportunistic Routing

Opportunistic routing [20] belongs to a general class of wireless algorithms that

exploit multi-user diversity. In contrast to traditional routing that uses a fixed path

from a source to a destination, opportunistic routing provides more than one paths

between the same source-destination pair. Traditional routing chooses the next hop

before transmitting a packet. On the other hand, opportunistic routing sends the

packet first and the decides the next hop among all neighbors that hear the packet

successfully.

In a lossy environment, opportunistic routing can provide significant throughput

improvements as a pre-selected next hop may not hear the transmitted packet but

there may be many other neighbors that hear the packet and can serve as the next

hop instead. With opportunistic routing, packets are broadcast at the MAC layer, so

that all the nodes within the transmission range of a transmitter have a chance to

receive the packet. Nodes then run a protocol to discover and agree on which nodes

have received the packet. Among the nodes that have received the packet, only the

node closest to the destination forwards (rebroadcasts) it. By delaying the decision of

the next hop until after completion of the packet transmission, opportunistic routing
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Src A B C D E Dst

(a) Example 1: Src’s transmissions make different amounts of
progress towards the destination.

Src

50% 0%

0%

0%

A

B

C

D

50%

50%

0%50%

Dst

(b) Example 2: Each of Src’s transmissions has many independent
chances of being received by a node closer to the destination.

Fig. 2.2. Two examples explaining the throughput gain of opportunistic routing over
traditional routing.

can try multiple long, lossy links in parallel, which results in high expected progress

per transmission.

Figures 2.2(a), 2.2(b) show two typical examples in which opportunistic routing

increases throughput compared to traditional routing.

In Figure 2.2(a), a chain of nodes A, B, C, D, and E lie between the source Src and

the destination Dst, serving as potential forwarders. The delivery probability from

Src to each of these nodes decreases with distance. A traditional routing protocol

would select a subset of these nodes in a given order to from a path from Src to

Dst, for example Src − B − D − Dst. If a transmission from Src is not received

by B (because of fading, interference from other nodes, etc.), but it reaches A, that

transmission is always wasted in traditional routing; A drops the packet and Src has

to resend it. Similarly, if by chance a transmission from Src reaches further from

B, for example it is received directly by D, then again this transmission is wasted

with traditional routing; D drops the packet and B has to forward it to D again. In
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contrast, opportunistic routing can exploit both these situations. In the first case A

will transmit the packet, thus making some progress, while in the second case D will

forward the packet instead of B, thus eliminating one transmission.

In Figure 2.2(b), assume that the loss rate for each of the links Src−A, Src−B,

Src − C, Src − D is 50% and the loss rate for each of the links A − Dst, B − Dst,

C−Dst, D−Dst is 0%. Traditional routing would send all the data packets through

the same intermediate node, e.g., through the path Src − B − Dst. In this case,

the loss rate of the path is 50%. In contrast, with opportunistic routing any of the

four intermediate nodes can forward the packet, thus the loss rate drops to only

0.54 = 6.25%.

2.2.1 ExOR

ExOR [20] was the first opportunistic routing protocol for unicast transfers. We

briefly review its major features: forwarding node (FN) selection, packet forwarding,

and the global node FN scheduler.

FN selection. ExOR uses the ETX metric [18], based on loss rate measurements,

to select the possible FNs. The source collects all the link loss rates periodically,

calculates the ETX metric of each link, and includes in the FN list the nodes whose

ETX distance to the destination is shorter than the source’s distance. The FNs in

the FN list are sorted in priority order using the ETX of each FN to the destination.

The algorithm for FN selection is run offline at the source. The algorithm starts

by assuming that every node with an ETX to the destination lower than the source’s

ETX to the destination is a candidate FN and calculates the expected number of

transmissions this node would make. It then prunes nodes that are expected to

perform less than 10% of the total transmissions; the remaining ones form a belt of

FNs that connect the source to the destination.

Packet forwarding and global scheduler. To reduce the coordination overhead

associated with any OR protocol, ExOR operates on batches of packets and uses a
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global scheduler trying to schedule the times at which FNs transmit their packets

so that only one node sends at a time. Transmission of a batch starts with the

source node transmitting all the packets of the current batch. Receiving nodes buffer

successfully received packets and await the end of the batch. The highest priority FN

then broadcasts the packets in its buffer. Each packet includes a copy of the sender’s

batch map, containing the sender’s best guess of the highest priority node to have

received each packet in the batch. The remaining FNs then transmit in order, sending

only packets which were not acknowledged in the batch maps of higher priority nodes.

The source and the FNs continue to cycle through the priority list transmitting

unacknowledged packets of the current batch until the destination has 90% of the

packets of a batch. The last few packets in a batch would be the most expensive to

send, since they would require all the overhead of running the transmission schedule,

but the overhead would be divided among relatively few packets. For this reason,

ExOR sends the last 10% of a batch over traditional routing, using 802.11 unicast.

2.3 Network Coding

With opportunistic routing, each packets is broadcast and all nodes in the trans-

mission neighborhood have the chance to hear it. The goal is to ensure that among

the nodes that hear a packet successfully, only the one closest to the destination will

forward it. Without any coordination, all nodes that hear a packet will attempt to

forward it, creating spurious retransmissions, which waste bandwidth. In order to

ensure that only one node will forward the packet, a coordination protocol needs to

run among the nodes. Coordination requires message exchange which can be costly

in terms of wireless bandwidth. ExOR tries to avoid message exchange by using a

global scheduler; however, this approach has its own drawbacks. First, it is difficult to

implement a perfect global scheduler in practice. Second, the global scheduler allows

only one node among the FNs to transmit at a given time, thus eliminating spatial

reuse.
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As was first shown in [22], intra-flow network coding offers a simple and efficient

solution to the coordination problem in opportunistic routing protocols with practi-

cally zero overhead. With intra-flow network coding, the source sends random linear

combinations of packets, and each intermediate node also randomly mixes packets it

already has received before forwarding them. The destination can reconstruct a file

consisting of k packets if it receives k linearly independent encoded packets. Random

mixing at each intermediate node ensures that with high probability different nodes

that may have heard duplicated versions of the same packet can still transmit linearly

independent coded packets. As a result, redundant transmission is avoided not by

exchanging feedback but by random network coding.

In addition to removing the need for feedback for coordination, intra-flow network

coding has one more benefit. It reduces the feedback for reliability. [23,32] showed that

the operation of mixing packets at the routers resembles the operation of rateless FEC

codes. Actually, network coding can be viewed as a technique equivalent to performing

hop-by-hop FEC, without the delay penalty incurred by the decoding operations at

each hop, that would be required by an actual hop-by-hop FEC implementation.

With end-to-end FEC, the amount of redundancy the source is required to inject

in the network is determined by the total loss over the path from the source to the

destination, in the case of unicast, and by the total loss over the path from the source

to the lossiest destination in the case of multicast. In contrast, with network coding,

the maximum amount of redundancy injected by any node in the network is only

determined by the lossiest link in the network.

2.3.1 MORE

MAC-independent Opportunistic Routing and Encoding (MORE) [22] was the

first practical protocol that demonstrated the idea of combining network coding with

opportunistic routing, with the primary goal of removing the need for coordination

required in opportunistic routing. However, the design of MORE also guarantees



17

100% Packet Delivery Ratio (PDR), i.e., MORE is a protocol for reliable file transfers.

Note that MORE is the only proposed “exotic” routing protocol that works for both

unicast and multicast.

Similar to most “exotic” routing protocols, MORE is implemented as a shim

between the IP and the 802.11 MAC layer. We briefly review its two major features:

forwarding node (FN) selection and packet batching/forwarding.

FN selection. Similar to ExOR, MORE uses the ETX metric [18], to select the

possible FNs. The source collects all the link loss rates periodically, calculates the

ETX metric of each link and includes in the FN list the nodes whose ETX distance

to that destination is shorter than the source’s distance. In addition, for each FN

the MORE source includes a TX credit in the FN list. The TX credit is the expected

number of transmissions a node should make for every packet it receives from a node

farther from a destination in the ETX metric, in order to ensure that at least one

node closer to the destination will receive the packet.

The algorithm for FN selection and TX credit calculation is run offline at the

source. The unicast FN selection algorithm is borrowed from ExOR. After pruning

nodes that are expected to perform less than 10% of the total transmissions, the

source assigns TX credits to the remaining ones, which form a belt of FNs that

connect the source to the destination. In case of multicast, the algorithm is repeated

for each destination, assuming a different hypothetical unicast flow; in the end the

belts formed for each destination are merged into the final FN set. If an FN belongs

to more than one belts, (i.e., for more than one destination), the algorithm calculates

a different expected number of transmissions for each of the belts it belongs to. Its

final TX credit is then calculated using the maximum number of transmissions among

these belts.

Batching and coded packet forwarding. In MORE, the source breaks a file into

batches of k packets. Whenever the MAC is ready to send a packet, the source creates

a random linear combination of the k packets of the current batch and broadcasts

the encoded packet. Each packet is augmented with its code vector, the batch ID,
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the source and destination IP addresses and the list of FNs for that multicast, with

their TX credits.

Packets are broadcast at the MAC layer, and hence they can be received by all

nodes in the neighborhood. When a node hears a packet, it checks if it is in the

packet’s FN list. If so, the node checks if the packet is linearly independent with all

the packets belonging to the same batch that it has already received. Such packets

are called innovative packets and are stored in a buffer. Non-innovative packets are

discarded. Every time a node receives a packet from an upstream node, it increments

its credit counter by its assigned TX credit included in the packet header. If its

credit counter is positive, whenever the MAC is ready to send a packet, the node

creates a linear combination of the innovative packets it has received so far1 and

broadcasts it. Broadcasting a packet decrements the credit counter by one unit.

The destination decodes a batch once it collects k innovative packets from that

batch. It then sends an ACK back to the source along the shortest ETX path in a

reliable manner (using 802.11 unicast) to notify the source to move to the next batch.

In case of multicast, the source keeps sending packets from the same batch until all

receivers have decoded and acknowledged the current batch; it then proceeds to the

next batch. Whenever a receiver acknowledges the current batch, the source removes

the FNs responsible for forwarding packets only towards that receiver and recalculates

the credits for the remaining FNs, using the maximum number of transmissions taken

only over FN belts to receivers that have not yet acknowledged the batch.

2.4 Summary

ExOR and MORE were two pioneering works in the new generation routing pro-

tocol design for WMNs, demonstrating through practical implementations and ex-

perimentation that “exotic” techniques, such as opportunistic routing and network

1Linear combinations of encoded packets are also linear combinations of the original packets.
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coding, respectively, can indeed improve throughput of WMNs. Nonetheless, the

design of these two protocols suffers from several drawbacks.

ExOR tries to solve the FN coordination problem, which is present in every oppor-

tunistic routing protocol, by implementing a global scheduler. The global scheduler

allows only one FN to transmit packets at a time, thus significantly limiting spatial

reuse, and preventing the protocol from realizing the maximum possible gain from

opportunistic routing. In addition, implementing a global scheduler in practice is

quite challenging, especially as the network size or the number of the flows in the

network increases.

MORE addresses the coordination problem using network coding but introduces

a new challenge; each FN needs to know how many coded packets it has to trans-

mit rather than which packets. MORE addresses this new challenge using an offline

heuristic at the source, based on link loss rates that are periodically collected from

the whole network. As we show in Section 4.1.2, this approach may suffer significant

performance degradation in dynamic wireless environments with continuously chang-

ing levels of channel quality, interference, and background traffic. In addition, MORE

assigns no TX credit to the source and applies no rate control, and thus it can easily

congest the network.

The performance evaluation of both protocols focused on the simplest case of a

single flow present in the network. Only [22] conducted one experiment with multiple

flows present in the network, only to show that MORE’s performance gain over ExOR

and traditional routing decreases with the number of flows. In addition, MORE was

evaluated on a relatively small, 20-node testbed. Thus, it is unclear if the protocol

scales well as the network size increases. There are additional pitfalls in the evaluation

methodology of either protocol, which we describe in Section 5.2.

Finally, the design of both protocols was focused on unicast and has largely ignored

multicast. In particular, ExOR was only designed for unicast routing. MORE works

for both unicast and multicast; however, its design is optimized for unicast. The

multicast extension is a simple heuristic, which often selects too many FNs resulting
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in congestion, as we show in Chapter 3. In addition, MORE’s policy of waiting for

all multicast receivers to complete a batch before moving to the next one causes the

“crying baby” problem, limiting the throughput of all the receivers to the throughput

of the slowest receiver.
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3. Pacifier: HIGH-THROUGHPUT, RELIABLE

MULTICAST WITHOUT “CRYING BABIES” IN

WIRELESS MESH NETWORKS

3.1 Introduction

In contrast to unicast routing, high-throughput, reliable multicast routing has

received relatively little attention. Reliable multicast routing has many important

applications in WMNs, such as software updates and video/audio file downloads. For

example, a WMN node controlled by the network operator may host WMN-related

software (e.g., a router software update or a security patch) or community-related

audio/video files (e.g., a local football match that was held the day before) to WMN

clients and serve as the multicast root. Or a group of WMN clients may want to

download software hosted on an Internet server (i.e., a new version of Windows); in

that case, a proxy at the WMN gateway serves as the multicast root.

A common characteristic of all these applications is a strict requirement of 100%

Packet Delivery Ratio (PDR), since every byte of the downloaded file has to be

received by all the receivers. This requirement makes many of the reliable multicast

protocols proposed in the past (e.g., [33–36]) inappropriate, since they cannot guar-

antee 100% PDR. In addition, reliability for this class of applications cannot come at

the cost of significantly reduced throughput, unlike in many military applications [37],

since Internet users always desire fast downloads.

The fundamental challenge in achieving reliable multicast in WMNs is no dif-

ferent from that of reliable unicast – that wireless links are lossy. To overcome this,

researchers have applied classic techniques such as Automatic Repeat reQuest (ARQ),

Forward Error Correction (FEC), or combinations of the two. The majority of the

works on reliable multicast in multihop wireless networks either are solely based on
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ARQ (e.g., [38, 39]) which suffer the feedback implosion problem, or combine ARQ

with congestion control (e.g., [35, 40]). Our recent work [41] studied the applicabil-

ity of FEC and hybrid ARQ-FEC techniques, borrowed from the wired Internet, to

WMNs, and showed that RMDP [42], a hybrid ARQ-FEC protocol, can achieve both

reliability and high throughput.

More recently, as we mentioned in Chapter 2, researchers have applied network

coding, a technique originally developed for the wireline Internet, to overcome the

above challenge. [23] showed that the operation of mixing packets resembles the op-

eration of rateless FEC codes. Actually, network coding can be viewed as a technique

equivalent to performing hop-by-hop FEC, without the delay penalty incurred by the

decoding operations at each hop, that would be required by hop-by-hop FEC. In [24],

the authors went one step further and showed that the reliability gain (expressed as

the expected number of transmissions) of network coding over end-to-end FEC for a

wireless multicast tree of height h with link loss rate p is in the order of Θ(( 1
1−p

)h).

Practical work that exploits the idea of utilizing network coding for reliable mul-

ticast is still at a preliminary stage. As mentioned in Section 2.3.1, MORE [22] is the

only practical network coding-based protocol that supports high-throughput, reliable

multicast. It combines network coding with opportunistic routing, with the primary

goal of removing the need for coordination required in opportunistic routing. How-

ever, the design of MORE also guarantees reliability, i.e., MORE is a routing protocol

for reliable file transfer, for both unicast and multicast.

A second fundamental challenge in reliable multicast, which is unique to multicast,

is the “crying baby” problem as first pointed out in [26] in the context of multicast in

the Internet. If one receiver has a particularly poor connection, then trying to satisfy

the reliability requirement for that receiver may result in performance degradation

for the rest of the receivers. This problem also raises the interesting question of

what is a suitable definition of overall performance metric if multiple receivers are

allowed to achieve uneven throughput. Regardless, a major challenge in the design

of high throughput, reliable multicast protocols is whether it is possible to develop a
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protocol that improves the throughput of well-connected receivers without worsening

the already low throughput of poorly connected receivers.

In spite of its significance, the “crying baby” problem has been largely ignored by

the majority of the wireless reliable multicast protocols proposed in the past. To our

best knowledge, BMCC [35], a multicast protocol for mobile ad hoc networks, was the

first protocol to consider the problem in the context of multihop wireless networks.

BMCC allows a router to drop packets on the path towards the worst receiver, in order

to prevent that receiver from holding back the rest of the receivers. This solution is

not applicable in file-download applications where 100% PDR is required and hence

dropping packets for some receivers is not an option. Essentially, the requirement for

100% PDR makes the problem much more challenging.

This chapter presents Pacifier, a high-throughput, reliable multicast protocol that

systematically addresses the above two challenges for reliable file transfer applications.

Pacifier seamlessly integrates four building blocks, namely, tree-based opportunistic

routing, intra-flow network coding, source rate limiting, and round-robin batching, to

support high-throughput, reliable multicast routing and at the same time solve the

“crying baby” problem. First, Pacifier builds an efficient multicast tree traditionally

used by multicast protocols and naturally leverages it for opportunistic overhear-

ing. Second, Pacifier applies intra-flow, random linear network coding to overcome

packet loss over lossy links which avoids hop-by-hop feedback and the coordination

of multicast tree forwarders in packet forwarding. Third, Pacifier applies rate lim-

iting at the source, reducing the congestion level in the network. Fourth, Pacifier

solves the “crying baby” problem by having the source send batches of packets in a

round-robin fashion. This functionality allows Pacifier to improve the throughput of

well-connected nodes drastically and often times of poorly connected nodes.

To evaluate Pacifier, we first compare its performance against MORE, using ex-

tensive realistic simulations. Our simulations use a realistic physical model, with ran-

dom signal variations due to fading, take into account the additional packet header

overhead introduced by the use of network coding and opportunistic routing, and are
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conducted over a variety of network topologies and multicast groups. Our simula-

tion results show that Pacifier increases the average throughput of multicast receivers

over MORE by 171%, while it solves the “crying baby” problem, by increasing the

maximum throughput gain for well-connected receivers by up to 20x. Interestingly

and importantly, Pacifier also improves the throughput of the “crying babies”, i.e.,

the poorly connected receivers, by up to 4.5x.

Second, since Pacifier uses the same type of network coding as MORE, and has the

same memory requirements at the routers, hence, like MORE, it can be easily imple-

mented on commodity hardware. To demonstrate this, we present an application-layer

implementation of Pacifier and MORE on Linux and their performance evaluation on

a 22-node 802.11 WMN testbed deployed in two academic buildings on the Purdue

University campus. Our testbed results verify the simulation results showing that

Pacifier increases the average multicast throughput over MORE by 83-114%, while

the maximum throughput gain for well-connected receivers can be as high as 14x, and

the maximum throughput gain for the “crying baby” itself can be as high as 5.4x.

The rest of the chapter is organized as follows. We begin with an overview of

related work in the field of reliable multicast in Section 3.2. We then present the design

of Pacifier and describe its various building blocks in Section 3.3. We discuss our

simulation evaluation methodology in Section 3.4.1 and present extensive simulation

results in Section 3.4.2. Section 3.5 describes the implementation and evaluation of

Pacifier and MORE on a wireless testbed. Finally, Section 3.6 concludes this chapter.

3.2 Related work

In spite of the extensive research on reliable multicast in the wired Internet, which

went through the development of ARQ-based schemes (e.g., [26,43]), to FEC schemes

(e.g., [44]), to hybrid ARQ-FEC schemes (e.g., [42,45,46]), to rateless codes [47–50],

the majority of the work on reliable multicast in multihop wireless networks have

used the traditional ARQ techniques. A survey on reliable multicast protocols for ad
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hoc networks [51] classifies them into deterministic and probabilistic ones, depending

on whether data delivery is fully reliable or not. Deterministic protocols (e.g., [37,

38, 40, 52–54]) provide deterministic guarantees for packet delivery ratio, but they

can incur excessive high overhead and drastically reduced throughput. On the other

hand, probabilistic protocols (e.g., [33, 34]) incur much less overhead compared to

the former, but they do not offer hard delivery guarantees. Using rateless codes

requires the source to continuously send packets, which can cause congestion in the

bandwidth-limited wireless networks. Recently, [41] studied the applicability of FEC

and hybrid ARQ-FEC techniques, borrowed from the wired Internet, to WMNs, and

showed that RMDP [42], a hybrid ARQ-FEC protocol, can provide both reliability

and high throughput.

Most recently, intra-flow network coding has been proposed as a whole new ap-

proach to reliable routing. Network coding in theory is equivalent to hop-by-hop

FEC [23,24], and hence the maximum amount of redundancy injected from any node

in the network is determined by the lossiest link of the tree, and not by the lossiest

path from the source to any receiver, unlike in end-to-end FEC. However, hop-by-hop

FEC/network coding also has its practical drawbacks; it requires buffering packets

at each node for decoding/re-encoding (in case of FEC) or only re-encoding (in case

of network coding). Due to the constraints on the buffer size and on packet delay,

network coding needs to send packets in batches, i.e., the source needs to wait till

a batch is received by all receivers before proceeding to the next batch. This intro-

duces the “crying baby” problem, where the poorly connected receivers slow down

the completion time of well-connected receivers.

To our best knowledge, MORE is the only network coding-based protocol for

high-throughput, reliable multicast routing (though it is also for unicast). To our

knowledge, the only other practical network coding-based multicast protocol is Code-

Cast [36], which exploits network coding for improving but not guaranteeing reliability

in multimedia multicast applications in mobile ad hoc networks.
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3.3 Pacifier Design

The design of Pacifier addresses several weaknesses of MORE. In particular, the

belt-based forwarding in MORE can be inefficient for multiple receivers, MORE lacks

source rate limiting which can lead to congestion in data dissemination, and MORE

suffers the “crying baby” problem.

For clarity, we present the design of Pacifier in several steps. We first present a

basic version of Pacifier, which consists of several building blocks: tree-based oppor-

tunistic multicast routing, batching and network coding-based forwarding, and credit

calculation. The basic version guarantees reliability and already increases through-

put compared to MORE, but does not solve the “crying baby” problem. We then

present two optimizations: source rate limiting which reduces congestion and further

improves the throughput, and round-robin batching, which solves the “crying baby”

problem.

3.3.1 Tree-based opportunistic routing

We argue that the use of opportunistic routing in the form used in MORE is an

overkill for multicast and it can lead to congestion, for two reasons. First, even for

a single destination, congestion can occur if too many nodes act as FNs, or if the

FNs are far from each other and they cannot overhear each other’s transmissions [55].

The situation is worsened when the number of flows increases, since almost all nodes

in the network may end up acting as FNs. Such performance degradation was ob-

served in the evaluation of MORE in [22] for many unicast flows; the situation for

many hypothetical unicast flows from a source to many multicast receivers is not

very different. Second, the benefit of overhearing of broadcast transmissions, which

is exploited by opportunistic routing in MORE, is naturally exploited in a fixed mul-

ticast tree, where the use of broadcast allows nodes to receive packets not only from

their parent in the multicast tree, but also from ancestors or siblings, essentially

transforming the tree into a mesh. We note this property of opportunistic reception
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of broadcast transmissions has been previously exploited in the design of some of

the first multicast protocols for multihop wireless networks (e.g., ODMRP [16]), for

improving the PDR.

The above observation motivates a simple multicast-tree based opportunistic rout-

ing design. Specifically, Pacifier starts by building a multicast tree to connect the

source to all multicast receivers. The tree is a shortest-ETX tree, constructed at

the source by taking the union of all the shortest-ETX paths from the source to the

receivers, which in turn are based on periodic loss rate measurements.1 The multi-

cast tree is reconstructed at the source every time some receiver completes a batch

(Section 2.3) and notifies the source.

Batching and coded forwarding. As in MORE, the source and the FNs in Paci-

fier use intra-flow random linear network coding. The hop-by-hop nature of network

coding requires the source to break a file into small batches of packets so that the

packet header overhead, encoding/decoding time, and memory requirements at the

FNs remain low. We selected a batch size of k = 32 packets, same as in [22, 56]. For

each batch, the source sends random linear combinations of the packets belonging to

that batch. The random coefficients for each linear combination are selected from a

Galois Field of size 28, again same as in [22]. Intermediate FNs store all the innova-

tive packets of the batch and also send random linear combinations of them. Every

transmitted encoded packet is augmented with its coding vector, i.e., the random

coefficients used to generate that packet. When a receiver receives any k linearly

independent coded packets of a batch, it decodes the batch to obtain the k original

packets. It then sends an ACK back to the source along the shortest ETX path in a

reliable manner.

To achieve reliability, this basic version of Pacifier uses the following batch termi-

nation scheme: the source keeps transmitting packets from the same batch, until all

the receivers acknowledge this batch. Such a transmission scheme however introduces

1As [22] argues, periodic link loss rate measurements and their distribution to all nodes in the
network are required in all state-of-the-art routing protocols, and the overhead this process incurs
is not considered Pacifier-specific.
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the “crying baby” problem as the completion time of each batch is limited by that of

the worst receiver.

How many packets should an FN send? Despite the use of a multicast tree for

data forwarding, the use of 802.11 broadcast effectively enables opportunistic routing,

i.e., a node can opportunistically receive packets from nodes other than its parent

in the multicast tree. If a node forwards every packet it receives, a receiver could

potentially receive each packet originated from the source multiple times. To avoid

unnecessary transmissions, we need to carefully analyze how many (coded) packets an

FN should send upon receiving a data packet.

Our solution is inspired by the approach used in MORE, and is based on the notion

of TX credits. Since, in practice, an FN should be triggered to transmit only when it

receives a packet, we derive the number of transmissions each FN needs to make for

every packet it receives. We define this number as the TX credit for that FN. Thus,

in Pacifier, an FN node j keeps a credit counter. When it receives a packet from

an upstream node (defined below), it increments the counter by its TX credit. When

the 802.11 MAC allows the node to transmit, the node checks whether the counter

is positive. If yes, the node creates a coded packet, broadcasts it, then decrements

the counter. If the counter is negative, the node does not transmit. We note that

opportunistic reception of data packets is always allowed, even from downstream

nodes. The credit calculation is on how many packets to be transmitted by the FN

upon receiving a data packet from an upstream node.

In the analysis, we focus on disseminating one data packet from the root down the

multicast tree. Our analysis is based on the simple principle that in disseminating

a packet from the root, each FN in the multicast tree should ensure that each of its

child nodes receives the packet at least once. Note this principle slows down a parent

node to wait for the worst child and creates the “crying baby” problem at each FN,

but is consistent with the batch termination scheme of this basic version of Pacifier.

We assume an FN j sends packets after receiving from any nodes with lower ETX

distance from the root to them, i.e., j’s upstream nodes. These nodes are likely to
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receive packets from the root before j.2 We also assume that wireless receptions at

different nodes are independent, an assumption that is supported by prior measure-

ments [57].

Let N be the number of FNs in the multicast tree rooted at s. Let ǫij denote

the loss probability in sending a packet from node i to node j. Let zj denote the

expected number of transmissions that FN j must make in disseminating one packet

(from the root) down the multicast tree. Let C(j) denote the set of child nodes of j

in the multicast tree, and A(j) denote the set of j’s upstream nodes.

The expected number of packets that j receives from ancestor nodes is
∑

i∈A(j) zi(1−

ǫij). Recall j’s objective is to make sure each of its child nodes receives at least one

packet. Since each child node k ∈ C(j) has already overheard
∑

i∈A(j) zi(1− ǫik) from

node j’s ancestors, the amount of packets node j actually needs to forward for child

k is:

Ljk = min(
∑

i∈A(j)

zi(1 − ǫij), 1) −
∑

i∈A(j)

zi(1 − ǫik) (3.1)

The min operation ensures that j does not forward the same packet more than once,

in case it receives it from more than one FNs. Note for the source node s, Lsk = 1

for all k ∈ C(s).

Since the expected number of times node j has to transmit a packet to ensure

that its child k will receive one packet is 1
1−ǫjk

, the expected number of transmissions

of j for child k to receive Ljk is:

zjk =
Ljk

1 − ǫjk

(3.2)

Since packets are broadcast, they can be received by more than one child nodes at

a time. Hence, the expected number of transmissions node j has to make to ensure

that each child node has one packet is:

2In contrast, MORE’s credit calculation was based on the ordering of FNs according to their ETX
distance to the destination node. It is unclear that nodes with larger ETX distance to the destination
will receive the packet from the root sooner.
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zj = maxk∈C(j)zjk (3.3)

zj and Ljk are inter-dependent, and can be calculated recursively in O(N2) oper-

ations, i.e., by traversing the FNs in the increasing order of their ETX values from

the source. Since the order of FNs is well-defined, there are no loops in the credit

calculation.

For each data packet the source sends down the multicast tree (which may require

multiple transmissions), FN j receives
∑

i∈A(j) zi(1 − ǫij). Thus, the TX credit of

node j is:

TX creditj =
zj

∑

i∈A(j) zi(1 − ǫij)
(3.4)

A fundamental difference between the TX credit calculation in MORE and in

Pacifier is that the latter decouples the credit calculation from the routing process.

Indeed, in Pacifier, we first build a multicast tree and then calculate the TX credits

only for those FNs that are part of the tree. In contrast, in MORE, FN selection and

TX credit calculation are tightly coupled; TX credits are calculated for the whole

network and then some FNs are pruned based on this calculation. As we will show

in our evaluation in Section 4.4, this decoupling in Pacifier significantly improves the

efficiency of both procedures. A second difference between the two approaches is that

TX credit calculation in Pacifier is optimized for multicast, while MORE optimizes it

for unicast and resorts to a simple (but inefficient, as we show in Section 4.4) heuristic

in the case of multicast.

3.3.2 Source rate limiting

Recent studies have shown the importance of adding rate control to network

coding-based unicast routing protocols, which exploit MAC layer broadcast [29, 55,

56,58]. However, end-to-end rate control in multicast is much more complex than in

unicast, and there is no widely accepted solution so far. In the version of Pacifier
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presented so far, the use of TX credits implements a form of rate control at which

each intermediate FN injects packets into the network. However, the source can

potentially send out all the packets in a batch unpaced.

To add rate control to the source, we exploit the broadcast nature of the wireless

medium and apply a simple form of backpressure-based rate limiting, inspired by

BMCC [35]. The basic idea is to have the source wait until it overhears its child

nodes forward the previous packet it sent before it transmits the next packet. Since

the number of transmissions by the source zs has already factored in packet losses to its

child nodes, the source does not need to worry about losses of individual transmissions,

i.e., it does not need to wait until all its child nodes forward each packet it sends out.

In fact, it is not even sure that every of its transmissions will trigger a transmission

at each of its child nodes, as some nodes may have negative credit counters. Instead,

the source waits until it overhears a transmission from any of its child nodes or until

a timeout before it sends the next packet in the batch.

The work in [35] does not discuss how to set the timeout. In [59], the authors

suggested a heuristic timeout of 3 × Tp for the backpressure-based unicast version

of BMCC, where Tp is the transmission time of one data packet, which depends on

the packet size and the MAC data rate. The factor of 3 is to account for the con-

tention time preceding each transmission. Following the same reasoning, in Pacifier,

we set the timeout to
∑

j∈C(s) TX creditj × 8 × Tp. This choice for the timeout re-

flects the fact that in Pacifier a transmission from the source will trigger on average
∑

j∈C(s) TX creditj transmissions from its child nodes, which in the worst case can be

sequential, and also the fact that in multicast contention near the source is in general

higher.

3.3.3 Solving the “crying baby” problem

In MORE, the source keeps transmitting packets from the same batch until all

the receivers acknowledge that batch, as shown in Figure 3.1(a). This policy makes
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(a) Sequential batch transmission
in MORE. Each batch is acknowl-
edged by all the receivers be-
fore the source moves to the next
batch.

k
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(b) Round-robin batch transmis-
sion in Pacifier. The source moves
to the next batch every time one
receiver acknowledges the current
batch.

Fig. 3.1. Two different ways of transmitting B batches of k original packets each:
sequential (as in MORE), and round-robin (as in Pacifier ). For better visualization,
we assume here (not true in the actual operations of the protocols) that the same
total amount of redundancy is required to be sent for each batch.

the protocol susceptible to the “crying baby” problem, since if the connection to one

receiver is poor, that receiver can slow down the rest of the receivers. The basic version

of Pacifier we have described so far suffers from the same problem. Note the problem

would not exist if the whole file could be encoded into one batch. However, such

an approach is not realistic due to the prohibitively high computational overhead

(associated with coding operations), header overhead (from including the random

coding coefficients in packet headers) and memory requirement at the intermediate

routers. In the following, we describe a practical solution to the problem, which

requires no more memory than MORE or our basic version, i.e., FNs still maintain

only one batch at a time in their memory.

In the proposed scheme, the source iteratively sends the batches of a file in a

round-robin fashion, for as many rounds as required, until it has received ACKs for

all batches from all the receivers, as shown in Figure 3.1(b). In detail, the source

maintains a counter Csi
for each batch i which is equal to the number of remaining
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packets the source has to transmit for that batch. The counter for batch i is initialized

as Csi
= zs×k, where zs is calculated in Equation (3.3) and k is the batch size, and it

is decremented every time a packet from batch i is transmitted. Each intermediate FN

forwards coded packets according to its TX credit, and only buffers packets belonging

to the current batch; when it receives the first packet from a new batch, it flushes its

buffer and starts buffering packets from the new batch.

The source determines when to switch to work on the next batch as follows. It

sends packets from batch i until either (1) Csi
reaches zero or (2) it receives from

one receiver acknowledging completion of this batch; it then moves to the next batch

for which there are still receivers that have not acknowledged it. When the source

finishes with the last batch B, it starts the next round by going back to the first

batch for which it has not received ACKs from all receivers. For each such batch it

revisits, it recalculates the multicast tree (i.e., the FNs) and the TX credit values for

the FNs based on the receivers that have not sent ACKs and resets Csi
= zs×k using

the newly calculated zs.

The above batch switching policy is critical to achieving high throughput for

both well- and poorly connected receivers. On one hand, if one receiver has already

acknowledged the current batch before the source sends all the scheduled packets for

that batch, not moving to the next batch at the source will reduce the throughput

of that receiver. On the other hand, after all the scheduled packets have been sent

out, allowing the source to move to the next batch only when it receives an ACK

from one receiver can be inefficient, as ACKs may delay to reach the source. This

policy can impact even the throughput of a well-connected receiver, if, for example,

congestion in the neighborhood around the source prevents the ACK to traverse the

reverse path. Its impact, though, is more severe on the worst receivers. Assume

all the well-connected receivers have acknowledged the batch in previous rounds.

In the next round, for the remaining (worst) receivers, an ACK may take a long

time to reach the source, since it has to traverse several hops, and, at each hop,

it competes with data packets traversing down the tree. This could result in the
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source sending unnecessary packets from the current batch while waiting for an ACK

to arrive. Instead, quickly moving to the next batch after finishing the scheduled

packets, without waiting for any ACK, ensures that the “network pipe” is always filled

with useful packets, and a delayed ACK will have little impact on the performance.

Our evaluation in Sections 3.4.2, 3.5.4 shows that switching batch when either of the

two conditions is satisfied results in significant throughput improvements over MORE

for both well-connected receivers and the worst ones (i.e., the “crying babies”). We

note previously [60] also noticed this “stop-and-wait” policy (also used in MORE)

can result in significantly low throughput, in the context of unicast, as the network

scales.

The above round-robin batching scheme is similar to the data carousel first intro-

duced in Fcast [46], an FEC-based protocol. However, it is important to note that the

use of network coding in Pacifier makes round-robin batching fundamentally more ef-

ficient than in the FEC-based protocol, by eliminating duplicate (i.e. non-innovative)

packets. In Fcast, each batch of k packets is encoded to produce n > k packets (typi-

cal values for k, n, are 32 and 255, respectively), and a receiver can decode a batch if

it receives any k out of those n packets. Once the source finishes transmission of all n

encoded packets from all B batches, it starts a new round where it retransmits again

the same n encoded packets for each batch. This results in many receivers receiving

duplicate packets and further delays decoding. For example, after all receivers have

received the first l < k packets of a batch in a round, they will receive those same

l packets in subsequent rounds. In contrast, in Pacifier, the source sends different

random combinations of the original k packets in every round, and in addition, every

FN also mixes the packets it receives and sends out new combinations of them. This

guarantees that, with very high probability, a receiver will never receive a duplicate

packet.

Adjusting TX credit calculation. In the basic version of Pacifier (Section 3.3.1),

we defined the TX credit of an FN as the expected number of packets it has to

transmit for every packet it receives from its upstream nodes, in order to ensure that
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all of its child nodes will receive one packet. This definition is consistent with the

batch termination scheme of the basic scheme, i.e., the source completes a batch

when it receives ACKs from all receivers. However, it is inconsistent with the round-

robin batching scheme, which aims to prevent poorly connected receivers from slowing

down well-connected receivers. Hence under the round-robin batching, we adjust the

definition of TX credit of an FN to be the expected number of packets it has to

transmit for every packet it receives from its upstream nodes, in order to ensure that

at least one of its child nodes will receive one packet. To realize this change, we simply

change the max operator to min in Equation (3.3). We note this new definition is

also consistent with the policy of moving to the next batch whenever any receiver

acknowledges the current batch.

Intricacies in TX credit calculation. There is a subtlety in the above adjustment

to the TX credit calculation under the round-robin batching scheme, i.e., changing

the max operator to min in Equation (3.3). The derivation of Equation (3.3) is

based on expected number of opportunistic packet receptions (based on the ETX

measurements). However, in the actual dissemination of any given batch i, it is

possible that the actual packet reception is below or above the expected value. In the

later case, the best receiver will successfully receive all packets for that batch, and it

is the correct thing to do for the source to move on to the next batch. However, in the

former case, the best receiver could be a few packets short of receiving the whole batch

i, and hence if the source moves on to the next batch, even the best receiver has to

wait for a whole round before the source transmits again packets from batch i. On the

other hand, if we had let the source send some additional packets to those predicted

by Equation (3.3), there is a good chance that the best receiver would have finished

in the current round; this would increase the throughput of the best receiver. The

challenge here is that it is unknown beforehand whether the opportunistic reception

in any particular batch is above or below the expectation, and hence those extra

packets sent by the source for a batch can potentially elongate each batch and reduce

the throughput of the best receiver.
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To facilitate studying the above subtlety in the TX credit calculation under the

round-robin batching scheme, we introduce a tunable knob in Equation (3.3). Essen-

tially, we define the expected number of transmissions node j makes to its child nodes

as zj = mink∈C(j)zjk +knob∗(maxk∈C(j)zjk−mink∈C(j)zjk). Setting knob to 1 changes

the objective to ensuring all child nodes receive a packet at least once, while setting

knob to 0 changes the objective to ensuring at least one child node receives a packet

at least once. In Section 3.4.2, we evaluate the impact of this knob by comparing the

performance of Pacifier under different values of knob.

3.4 Simulation Studies

We first evaluate the performance of Pacifier by comparing it against MORE using

extensive simulations. The use of a simulator allowed us to evaluate the performance

of the two protocols in large networks, using a diverse set of topologies, which are

difficult to create in a testbed. We note Pacifier uses the same type of network

coding and has the same memory requirements and the same fields in the packet

header as MORE,3 and hence it can be easily implemented in practice. We present

an implementation study of Pacifier in Section 3.5.

3.4.1 Evaluation methodology

Simulation setup. We used the Glomosim simulator [61], a widely used wireless

network simulator with a detailed and accurate physical signal propagation model.

Glomosim simulations take into account the packet header overhead introduced by

each layer of the networking stack, and also the additional overhead introduced by

MORE or Pacifier. For the implementation of MORE, we followed the details in [22].

We simulated a network of 50 static nodes placed randomly in a 1000m × 1000m

area. The average radio propagation range was 250m, the average sensing range was

3Pacifier only includes the list of FN nodes in the header, sorted in increasing ETX distance from
the source. It does not require information about the edges of the tree.
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460m, and the channel capacity was 2Mbps. The TwoRay propagation model was

used. To make the simulations realistic, we added fading in our experiments. The

Rayleigh model was used, as it is appropriate for WMN environments with many

large reflectors, e.g., walls, trees, and buildings, where the sender and the receiver are

not in Line-of-Sight of each other. Because of fading, the probability for a node to

hear/sense another node decreases with the distance and there is no clear cut off. For

example, at a distance of 250m, the probability of hearing a neighbor node is very

low. Although sometimes nodes can hear each other even in distances larger than

250m, in most cases, link quality is very low for distances larger than 150m.

We simulated each protocol on 10 different randomly generated topologies (sce-

narios), i.e., placement of the 50 nodes. For each scenario, we randomly generated a

multicast group consisting of 1 source and 9 receivers. The source sent a 12MB file,

consisting of 1500-byte packets, transmitting at the maximum rate allowed by the

MAC (in case of MORE) or by the MAC and the backpressure-based rate limiting

(in case of Pacifier). We present the result for each scenario and the average result

over all 10 scenarios.

Following the methodology in [20, 22], we implemented an ETX measurement

module in Glomosim which was run for 10 minutes prior to the file transfer for each

scenario to compute pairwise delivery probabilities. During these 10 minutes, each

node broadcasts a 1500-byte packet every second, and keeps track of the packets it re-

ceives from its neighbors. At the end of the 10-minute duration, all the measurements

are distributed to all the nodes. The source uses these measurements to compute the

forwarding lists and the transmission credits for the two protocols. There was no

overhead due to loss rate measurements during the file transfer.

Evaluation metrics. We used the following metrics:

• Average Throughput: The file size (in bytes) divided by the total time required

for a receiver to collect the necessary number of packets for decoding, averaged

over all receivers.
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• Total number of data packet transmissions:4 The total number of data packets

broadcast by the source and the FNs.

• Source Redundancy: The total number of encoded data packets sent by the

source divided by the file size. It gives an estimate of the redundancy injected

in the network by the source.

• Download completion time: The total time required for a receiver to collect the

necessary amount of coded packets to decode all the batches and recover the

complete file.

Note that we did not use the PDR as a metric, since both protocols guarantee

100% PDR.

3.4.2 Simulation results

We start by optimizing MORE’s pruning strategy as the default strategy appears

to cause frequent network partition. We then proceed to evaluate the incremental

performance benefit of Pacifier’s major components, i.e., the basic version, adding

source rate limiting, and adding round-robin batching. Table 3.1 summarizes the

different versions of MORE and Pacifier evaluated.

Tuning MORE’s pruning threshold. Recall from Section 2.3.1 that MORE

prunes FNs that are expected to perform less than 10% of the total number of trans-

missions. We found using such a pruning threshold can result in disconnection of

some receivers. The probability for this to happen naturally increases with the net-

work size, since the larger the number of nodes acting as FNs, the smaller the expected

number of transmissions each of them has to make. Recall also that in MORE, the

source proceeds to the next batch only when all receivers acknowledge the current

batch. When a receiver is disconnected, the source will never leave the first batch,

and all the receivers will receive zero throughput.

4The number of control packets (ACKs) is the same for both MORE and Pacifier, equal to N ×B,
where N is the number of receivers and B is the number of batches the file is broken into.
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Table 3.1 Versions of MORE and Pacifier evaluated in our study. All versions include
intra-flow network coding.

Name Description

MORE MORE [22] optimized with

scenario-specific pruning threshold

TREE Tree-based OR

TREE+RL Tree-based OR, source rate limiting

TREE+RL+RRB Tree-based OR, source rate limiting,

(Pacifier) and round-robin batching

One solution to the problem is to use a much lower pruning threshold than 0.1.

However, using a very low threshold can lead to too many FNs in dense WMNs which

increases the contention for the channel. To be fair in our evaluation and not cause

performance degradation for MORE, we used the following approach, which favors

MORE, instead of a common threshold for all 10 scenarios: for each scenario, we

repeated the simulation for different values of the pruning threshold α, starting with

the default value of 0.1, and lowering it by 0.01 until no receiver was disconnected.

This last value was the one we used for the comparison against Pacifier.

Figure 3.2 shows the number of FNs, and the throughput, with the default thresh-

old of 0.1 (MORE orig), and with the best threshold for each scenario (MORE new),

in each of the 10 scenarios. Figure 3.2(a) shows that using the default threshold

resulted in a very low number of FNs; on average only 11.2 FNs were used in a net-

work of 50 nodes. However, this low number of FNs caused disconnection of at least

one receiver and resulted in zero throughput in 8 out of 10 scenarios, as shown in

Figure 3.2(b). For the 10 scenarios studied, the largest pruning threshold that does

not cause any disconnection varies from 0.1 to 0.03.

In the following, we compare various versions of Pacifier to MORE new. For

simplicity, we will call it MORE.
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(a) Number of FNs (b) Throughput

Fig. 3.2. Number of FNs and throughput with the default threshold (MORE orig)
and the largest threshold not causing any disconnection (MORE new), for 10 different
scenarios. For MORE new, the labels above the bars show the threshold used for each
scenario.

Impact of tree-based opportunistic routing. We start the evaluation of Paci-

fier by examining the impact of its tree-based opportunistic routing, by comparing

the basic version of Pacifier (TREE), with MORE. The only difference between the

protocols is the algorithm used for selecting FNs and assigning TX credits to them.

The results for 10 different scenarios are shown in Figure 3.3.

Figure 3.3(a) shows TREE achieves higher throughput than MORE in 8 out of 10

scenarios. The gain ranges from 20% (Scenario 7) up to 199% (Scenario 4), with an

average throughput gain over all 10 scenarios equal to 42%. Only in two scenarios (2

and 3), there is a small throughput reduction with TREE, about 16%.

The higher throughput achieved by TREE compared to MORE can be explained

by the fewer FNs and lower total number of transmissions in the former compared

to the latter. In particular, Figure 3.3(b) shows that the use of a tree instead of a

union of belts results in on average 36% fewer FNs in TREE than in MORE. Note

that in some cases, TREE uses equal or even fewer FNs compared to MORE with

the default pruning threshold (e.g., in Scenarios 2, 4, 6). However, the FN selection

algorithm ensures that no receiver is disconnected from the source, unlike in MORE,
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(a) Throughput (b) Number of FNs

(c) Total # of Transmissions (d) Source Redundancy

Fig. 3.3. Throughput, number of FNs, total number of transmissions, and source
redundancy with MORE and TREE for 10 different scenarios.

since there is no random, threshold-based pruning. Figure 3.3(c) shows the use of a

tree combined with the new algorithm for TX credit calculation results in on average

44% reduction in the total number of transmissions in TREE, compared to MORE.

Finally, Figure 3.3(d) shows MORE has a high source redundancy; the source sends

on average 17 times the file size. TREE reduces the average source redundancy to

12. The difference in source redundancy suggests TREE is more efficient in selecting

FNs and more accurate in calculating the TX credit values for the FNs.

Impact of source rate limiting. We next evaluate the impact of backpressure-

based rate limiting at the source, as implemented in the TREE+RL version of Paci-

fier. Figure 3.4(a) shows that the use of rate limiting at the source improves the
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(a) Throughput (b) Total # of Transmissions

(c) Source Redundancy

Fig. 3.4. Throughput, total number of transmissions, and source redundancy with
MORE and TREE+RL for 10 different scenarios.

throughput by 5% (Scenario 6) to 94% (Scenario 1), with an average of 20%, com-

pared to TREE. Figure 3.4(c) shows that TREE+RL on averages reduces the source

redundancy to 5.84, a 52% reduction compared to the value of 12.15 for TREE. The

reduction in the source redundancy in turn reduces the total number of transmissions

by 28% on average, as shown in Figure 3.4(b). We found that this reduction comes

not only from the contribution of the source but also from the majority of the FNs.

This confirms that, by pacing the source’s transmissions, the source’s children and

grandchildren get better chances to successfully transmit packets and make progress

down the tree.
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Fig. 3.5. Throughput with TREE+RL and TREE+RL+RRB (Pacifier) for 10 dif-
ferent scenarios. The error bars show throughput of the best and the worst receiver.

Solving the “crying baby” problem. The above results have shown that TREE

and TREE+RL already offer significant throughput improvement over MORE. How-

ever, these two versions of Pacifier still suffer from the “crying baby” problem.

We next evaluate the effectiveness of round-robin batching on solving the “crying

baby” problem, by comparing TREE+RL+RRB (the complete Pacifier protocol)

with TREE+RL.

Figure 3.5 shows the average throughput achieved with TREE+RL+RRB and

TREE+RL in each of the 10 scenarios, as well as the throughput of the best and the

worst receiver (top and bottom of error bars) in each scenario under TREE+RL+RRB.

We make three observations. First, with TREE+RL, which uses sequential batch

transmission, all 9 receivers in each scenario achieve the same throughput, which is

determined by the worst receiver. In contrast, with TREE+RL+RRB, well-connected

receivers get much higher throughput than the average, as shown by the large gap

between the top of the error bars and the average in most scenarios. Averaging

over 10 scenarios, the best receiver achieves 58% higher throughput than the average

throughput by all receivers. Second, allowing receivers to proceed independently in

TREE+RL+RRB also increases the average throughput by 47% on average over all

10 scenarios, compared to TREE+RL. Third, importantly, the throughput improve-

ment for the best receivers comes at almost no penalty to the worst receivers. In
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Fig. 3.6. Average throughput with Pacifier as a function of knob. The average is
taken over 10 scenarios. The error bars show average max and min values over the
10 scenarios.

particular, compared to with TREE+RL, the throughput of the worst receiver with

TREE+RL+RRB gets slightly worse in 3 scenarios (Scenario 7, 8, and 9 by 10%,

7%, and 3%, respectively), remains unaffected in 2 scenarios (Scenarios 2 and 3), and

increases by 26%-146% for the remaining 5 scenarios.

Tuning the knob in TX credit calculation. Finally, we study the intricacies in

calculating TX credit values by varying the knob value introduced in Section 3.3.3.

We vary the value of knob from 0 (the version evaluated before) to 2. Intuitively, as

knob increases, the throughput of the best receiver is expected to decrease and the

throughput of the worst receiver is expected to increase, since we spend more time

on each batch in every round.

Figure 3.6 shows the average, max, and min throughput with Pacifier, as knob

varies from 0 to 2. Every point is the average over 10 scenarios. Somewhat sur-

prisingly, higher knob values improve the max throughput and knob = 1 appears

to maximize the average and the min throughput. knob = 0, which is expected to

optimize the performance of the best receiver, achieves on average the lowest max,

average, and min throughput, compared to all the other knob values. This confirms

our speculation in Section 3.3.3 that setting knob = 0 may not give the best result

as the TX credit calculation is fundamentally based on the expected opportunistic
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receptions, and a lower than expected number of receptions in any given batch can

cause the best receiver to be a few packets short of decoding a batch and wait for a

whole round.

An additional counter-intuitive observation from Figure 3.6 is that the throughput

does not change monotonically as the knob increases. The reason for this behavior is

that the the TX credits assigned to FNs actually interfere in a very complex way. In a

nutshell, increasing the TX credit of an FN j can potentially decrease the TX credit

of its child nodes, as the grandchild nodes of j now have more chance of overhearing j’s

transmissions. Consequently, the chance of packet reception at j’s grand-grandchild

nodes from their upstream nodes is affected in complicated ways.5

This complex interdependence of throughput, knob values, and TX credits is

shown in Figure 3.7. In this figure, we plot the individual throughput for each of

the 9 receivers, with 3 different knob values (0. 1, and 1.4) in 3 different scenarios

(Figures 3.7(a), 3.7(c), 3.7(e)), and initial TX credits of the FNs in the same scenar-

ios, for the same knob values (Figures 3.7(b), 3.7(d), 3.7(f)). We picked up Scenario

3, which had the highest max throughput for most of the knob values, Scenario 10,

which had the lowest min throughput for all knob values, and Scenario 8.

In Figure 3.7(a), we observe that increasing the knob value improves throughput

for the three best receivers (9, 4, and 8). However, for the remaining 6 receivers,

throughput increases when knob changes from 0 to 1 but it reduces again when it

changes form 1 to 1.4. Finally, the average throughput is same with knob 1 and 1.4,

slightly larger than with knob 0.

In Figure 3.7(c), we observe that the best receiver changes when knob changes

from 0 to 1. With knob 0, the best receiver is receiver 9, closely followed by receiver

8 (their throughput differ only by 3%). But changing the knob to 1 results in a

large throughput improvement for receiver 8 (by 46%), which now becomes the best

receiver, while throughput of receiver 9 only increases by 8%. Also, when moving

5Recall our TX credit calculation is a polynomial heuristic; optimal TX credit assignment to all FNs
is an NP-hard problem.
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(a) Receiver Throughput - Scenario
3.

(b) FN TX credits - Scenario 3.

(c) Receiver Throughput - Scenario
8.

(d) FN TX credits - Scenario 8.

(e) Receiver Throughput - Scenario
10.

(f) FN TX credits - Scenario 10.

Fig. 3.7. Individual receiver throughput and FN TX credits with 3 different knob
values in 3 scenarios. FNs are sorted in increasing ETX distance from the source.
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to knob 1.4, throughput of the best receiver increases even more, but the average

throughout decreases compared to with knob 1 (although it remains higher than with

knob 0).

Finally, in Figure 3.7(e) throughput of the three best receivers (7, 3, and 4) and

of the worst receiver (6) increases as the knob increases. However, for the remaining

5 receivers throughput only increases when knob changes from 0 to 1 but it decrease

when it changes from 1 to 1.4, and the average throughput also exhibits the same

behavior.

For each of the 3 scenarios, we observe that the TX credits of the FNs follow very

different patterns as shown in Figures 3.7(b), 3.7(d), 3.7(f). In Scenario 3, TX credits

are in general higher with knob 0. In Scenario 8, there is no specific pattern – we

can observe the TX credit of the 4th FN going to 0, for large knob values. Finally, in

Scenario 10, a large fraction of the FNs maintains the same TX credits for different

knob values.

In summary, the discussion above shows that there is no optimal value for knob.

We find setting knob = 1 in Pacifier appears to improve the max throughput while

maximizing the average and the min throughput.

Overall comparison Figure 3.8(a) summarizes the average, maximum and minimum

throughput comparison among MORE, TREE, TREE+RL, and TREE+RL+RRB

(Pacifier), where TREE+RL+RRB used a knob value of 1. We observe that on

average, Pacifier outperforms TREE+RL, TREE, and MORE by 60%, 90%, and

171%, respectively. In addition, Pacifier allows well-connected receivers to achieve

much higher throughput, which can be up to 20x higher than with MORE (for scenario

1), and also improves throughput of the worst receiver in all 10 scenarios, compared

to the other 3 protocols.

Figure 3.8(b) depicts the same results in a different way. It plots the CDF of

the 90 throughput values obtained from 10 scenarios with 9 receivers each, for the

four protocols. In this figure, the CDFs for MORE, TREE, and TREE+RL have a

staircase form, since for each scenario, all 9 receivers get roughly the same throughput
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(a) Average, max, and min
throughput with each protocol for
each of the 10 scenarios.

(b) CDF of the 90 throughput
measurements obtained with each
protocol for 10 scenarios with 9 re-
ceivers each.

Fig. 3.8. Overall throughput comparison of MORE, TREE, TREE+RL, and Pacifier.

(equal to that of the worst receiver) due to the “crying baby” problem. In contrast,

with Pacifier, receivers finish independently of each other and the CDF has a contin-

uous form. In the median case, Pacifier outperforms TREE+RL, TREE, and MORE

by 20%, 49%, and 178%, respectively.

The benefit of Pacifier becomes more prominent if we look at the two ends of the

CDF. Pacifier solves the “crying baby” problem by allowing good receivers to achieve

very high throughput. The 90th percentile is 223Kbps for Pacifier, 70%, higher than

with TREE+RL, 77% higher than with TREE, and 159% higher than with MORE.

If we look at the 10th percentile, i.e., the worst receivers, we observe that Pacifier

outperforms TREE+RL, TREE, and MORE by 80%, 300%, and 450%, respectively.

This shows again that Pacifier not only solves the “crying baby” problem, it also

simultaneously offers a significant improvement to the performance of the “crying

baby” itself.

Figures 3.9(a), 3.9(b) compare the four protocols in terms of download completion

time. In Figure 3.9(a), we observe that Pacifier reduces the download completion time

of the best receiver in all 10 scenarios compared to MORE by a factor of 2.1x-21x
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(a) Average, max, and min down-
load completion time with each
protocol for each of the 10 scenar-
ios.

(b) CDF of the 90 download com-
pletion time measurements ob-
tained with each protocol for 10
scenarios with 9 receivers each.

Fig. 3.9. Download completion time comparison of MORE, TREE, TREE+RL, and
TREE+RL+RRB (Pacifier).

(scenarios 7 and 1, respectively). It also reduces the download completion time of the

worst receiver (i.e., the “crying baby”) in 9 out of 10 scenarios compared to MORE

by a factor of 1.1x-5.5x (scenarios 3 and 1, respectively), and only increases it in one

scenario (scenario 2) by 5%. In Figure 3.9(b), we observe that Pacifier improves the

median download completion time compared to MORE by a factor of 2.2x, the 90th

percentile (best receivers) by a factor of 4.9x and the 10th percentile (worst receivers)

by a factor of 2.4x.

3.5 Protocol implementation and testbed evaluation

In this section, we describe an implementation of Pacifier on a WMN testbed and

present experimental results comparing Pacifier and MORE.
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Fig. 3.10. A schematic of the MAP testbed.

3.5.1 Testbed description

Our testbed, Mesh@Purdue (MAP) [62], currently consists of 22 mesh routers

(small form factor desktops) deployed on two floors of two academic buildings on the

Purdue University campus. A schematic of the testbed is shown in Figure 3.10. Each

router has two radios. For this study, we used one of them: the Atheros 5212 based

802.11a/b/g wireless radio operating in b ad hoc mode. Each radio is attached to a

2dBi rubber duck omnidirectional antenna with a low loss pigtail to provide flexibility

in antenna placement. Each mesh router runs Mandrake Linux 10.1 (kernel 2.6.8-

12) and the open-source madwifi driver [63] is used to enable the wireless cards. IP

addresses are statically assigned. The testbed deployment environment is not wireless-

friendly, having floor-to-ceiling office walls, as well as laboratories with structures that

limit the propagation of wireless signals and create multipath fading.

3.5.2 Implementation details

Network coding-based wireless protocols (e.g., [22,64]) are typically implemented

as a shim between the IP and the MAC layer, i.e., at layer 2.5. Here, for ease of
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debugging, deployment, and evaluation, we implemented Pacifier at the application

layer, using broadcast sockets, on Mandrake Linux 10.1 (kernel 2.6.8-12). For a

fair comparison, we also implemented MORE at the application layer, following all

the details in [22].6 Although such an implementation unavoidably results in some

performance degradation, compared to an implementation closer to the MAC layer,

from crossing the kernel-user boundary, we note that this degradation is expected to

be similar for both protocols, since they use the same type of network coding, they

have the same memory requirements at the routers, and the same header fields.

Our implementation handles only synthetic traffic, i.e., data packets are generated

within the MORE or Pacifier application, similarly as the implementation in [65], in

which packets are generated within Click. The layer-2.5 header of MORE or Pacifier is

part of the application layer packet payload. The source initially generates k random

payloads for the current batch and mixes them every time it wants to transmit a

packet. It then appends the MORE or Pacifier header and delivers the resulting

packet to the IP layer, which in turn delivers the packet to the MAC for transmission.

Packets are broadcast at the MAC layer, and every neighbor node can hear them.

When a node receives a packet, it extracts and processes the protocol-specific header

from the payload; if the node is an FN (i.e., it finds its ID7 in the FN list in the

header), it also uses the coding coefficients (also included in the header) to check

for linear independence. If the received packet is innovative, the rest of the payload

is stored for future mixing (if the node is an FN) or for decoding (if the node is a

multicast receiver).

3.5.2.1 Dealing with queue sizes

In an ideal implementation at layer 2.5, a node running either MORE or Pacifier

transmits a packet when (1) the 802.11 MAC allows and (2) the credit counter is

6The publicly available implementation of MORE [65] using the Click modular router from the
authors of [22] currently supports only unicast.
7To reduce the header overhead, we used 1-byte IDs instead of 4-byte IP addresses.
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positive. A layer-2.5 implementation [22] does not queue packets in the wireless card.

Instead, innovative packets for the current batch are stored at a buffer. A pre-coded

packet is always available awaiting for transmission. If another innovative packet is

received before the pre-coded packet is transmitted, the pre-coded packet is updated

by multiplying the newly received packet with a random number and adding it to

the pre-coded packet. This approach ensures that every transmitted packet includes

information from all the received innovative packets, including the most recent ones.

In our application layer implementation, we cannot get any feedback from the

MAC, and hence, we have no control over the time a packet is transmitted. Instead,

the application delivers packets to the IP when only the second condition holds and

there is enough space in the socket buffer; from the IP layer, the packets are delivered

to the wireless driver stored at the card’s queue for transmission at a later time.

Since we have no control over a packet, once it leaves the application layer, we

cannot update the packets buffered at the socket buffer or awaiting for transmission

at the card’s queue, if a new innovative packet is received. This inefficiency can have

a significant impact on the performance of the two protocols. If a packet is queued

either at the IP or at the MAC layer for a long time, it may not contain information

from all the received packets so far. Even worse, the downstream nodes may have

already received enough packets from the current batch, in which case the enqueued

packets should not be transmitted at all. This is true in particular at the source which

may create packets at a rate faster than the (actual) MAC’s transmission rate. To

avoid this problem with application-level implementation, we limit the socket buffer

size to one packet and the card’s queue length to three packets, so as to limit the

time from the moment a packet is created at the application layer till the moment

the packet is actually transmitted.
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3.5.2.2 Dealing with end-to-end ACKs

In both protocols, a multicast receiver sends an end-to-end ACK back to the source

every time it decodes a batch. It is critical for the performance of the protocols that

these ACKs are propagated to the source in a fast and reliable way. In particular in

MORE, loss of an ACK breaks the operation of the protocol, since the source only

moves to the next batch when all receivers acknowledge the current batch. Similarly,

delayed ACKs cause throughput degradation, since the source again cannot quickly

move to the next batch. In Pacifier, the first problem does not exist, since even if

no ACK is received for batch i, the source will eventually move to the next batch

when the Csi
counter reaches zero (Section 3.3.3). However, delayed or lost ACKs

can again significantly affect performance if the source unnecessarily spends time on

batches that have already been decoded by all the receivers.

ACK reliability. To provide reliability, the ACKs in MORE are unicast at the MAC

layer. In contrast to the 802.11 broadcast mode, the 802.11 unicast mode provides a

reliability mechanism through acknowledgments and retransmissions. Unfortunately,

there is an upper limit to the number of times a packet can be retransmitted at the

MAC layer. For our Atheros wireless cards, this limit is 11. In our experiments, we

found that 11 retransmissions were not always enough to deliver the packet to the

next hop (especially under heavy traffic). Since this particular card does not allow

changing this limit through iwconfig, we had to implement a simple but efficient

reliability scheme at the application layer.

In our scheme, every node maintains an ACK cache, where it caches every ACK

it transmitted, along with some meta data (the next hop of the path towards the

source, the multicast group, the batch acknowledged by the ACK, and its status –

“ACKed” or “not ACKed”). Nodes also remember the last ACK they forwarded

for each multicast group. Every time a node transmits a data packet, it piggybacks

information about the last ACK it received. This serves as an acknowledgment for

the ACK to the ACK’s previous hop. When the previous hop overhears a data
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packet acknowledging the ACK, it marks it as “ACKed” in the ACK cache. A node

retransmits an ACK when (i) it overhears M packets from the ACK’s next hop that

do not acknowledge the ACK, or (ii) it overhears N packets from any node other than

the ACK’s next hop. We experimented with different values of M and N and finally

selected M = 10, N = 20.

Fast ACK propagation. Similar to in [22], ACKs are sent to the source over

the shortest ETX path to ensure quick propagation. In addition, in [22], ACKs are

prioritized over data transmissions. In addition to ensuring fast ACK propagation,

prioritizing ACKs over data packets is critical in our application layer implementation

for one more reason. Since we have no control over a packet once it leaves the

application layer, we have to guarantee that an ACK packet will never be dropped if

the card’s queue is full of data packets.

To implement ACK priority over data packets in our application layer implemen-

tation, we leveraged the TOS bits (“TOS filed”) of the IP header, which can be set

using setsockopt at the application layer, and the priority properties in Linux rout-

ing [66]. The basic queuing discipline in Linux, pfifo fast, is a three-band first-in,

first-out queue. Each band is txqueuelen packets long, as configured with ifconfig.

In our implementation, we set txqueuelen = 5, as mentioned in 3.5.2. Packets are

enqueued in the three bands based on their TOS bits. The three bands, 0, 1, 2,

have different priorities, with band 0 having the highest priority and band 2 having

the lowest priority. Packets from a given band are dequeued only when all higher

priority bands are empty. By default, the TOS bits are set to 0000 and packets are

enqueued in band 1. For ACKs, we set them to 1010. This combination corresponds

to “minimum delay + maximum reliability” (or “mr+md”) and enqueues the ACKs

in the highest priority band 0.

Another factor that caused significant delay to the ACK packets and resulted in

very low throughput was the ARP messages. Since ACKs are unicast at the MAC

layer, the sender of an ACK first sends an ARP request before the actual transmission

of the ACK packet, in order to learn the MAC address that corresponds to the IP
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address of the next hop. If no reply is received, the ARP request is retransmitted

after a timeout (the default is 1 sec). Unfortunately, both the ARP requests and the

ARP replies are broadcast at the MAC layer. Since 802.11 broadcast implements no

reliability mechanism for broadcast frames, ARP messages are susceptible to loss due

to poor channel conditions or collisions (under heavy traffic). Indeed, we observed

in our experiments that sometimes ARP requests were retransmitted up to 90 times,

which resulted in a 1.5 min delay, before the actual ACK was sent. To deal with this

problem, before each experiment, we cached permanently at each node on the shortest

ETX path from a receiver to the source, the IP-MAC mapping of the next hop, using

the ip command, thus completely eliminating the exchange of ARP messages during

the experiment.

In addition to the two protocols, we also implemented an ETX measurement

module, same as the one we used in our simulations (described in Section 3.4.1). The

source code for the two protocols and the ETX module together is over 9000 lines of

C code.

3.5.3 Experimental setup

In the implementation of the two protocols we used the same parameters as in our

simulation study in Section 4.4, i.e., the batch size was k = 32 packets, the random

coding coefficients were chosen from a Galois Field of size 28, and the knob value for

Pacifier was again set to 1. In all the experiments, the bitrate of the wireless cards

was set to 2Mbps and the transmission power to 16dBm. We disabled RTS/CTS for

unicast frames as most operational networks do. With these settings, the length of

the shortest ETX paths between different nodes is 1-6 hops in length, and the loss

rates of the links vary from 0% to 88%, with an average value of 29%.

We ran each protocol on 10 different scenarios (i.e., selection of source and mul-

ticast group members). In each scenario, 1 source and 4 receivers were randomly

selected among the 22 nodes of our testbed. In each scenario, we first ran the ETX
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module for 10 minutes to collect the pairwise loss rates and ETX metric for each link

of our testbed, and then we ran the two protocols, MORE and Pacifier, in sequence.

With both protocols, the source sent a 2.3MB file consisting of 1460-byte packets.

Since the quality of some links of our testbed varies substantially from day to day in

a week, we repeated the experiments for the same 10 scenarios on 4 different days

(one weekend and two weekdays), and we present separately the results for each day.

3.5.4 Experimental results

Figures 3.11(a)-3.11(d) show the average throughput achieved with MORE and

Pacifier in each of the 10 scenarios, as well as the throughput of the best and the

worst receiver (top and bottom of error bars) in each scenario, on 4 different days.

Similar to the simulation results, we observe that Pacifier outperforms MORE in

9 out of 10 scenarios on all 4 days. The average throughput improvement over all 10

scenarios ranges between 83% (for Day 4) and 144% (for Day 1). This is somewhat

lower than the corresponding simulation result (171% in Figure 3.8(a)). The reason

is that the size of our testbed is much smaller than the simulated networks, and hence

path diversity is not as large, and the “crying baby” problem is not as severe, as in

the simulations.

We observe again that Pacifier solves the “crying baby” problem, allowing well-

connected receivers in each case to achieve throughputs much higher than the average

value, while also improving throughput of the worst receivers in almost all scenarios.

Averaging over 10 scenarios for each of the 4 days, the throughput of the best receiver

with Pacifier is 244%, 302%, 239%, and 259% higher than with MORE, but, in some

cases, it can be much higher, e.g., more than 8x in Scenario 7, Days 2 and 3, and

Scenario 8, Day4, more than 10.5x in Scenario 6, Day 4, and more than 14.4x in

Scenario 7, Day1. Similarly, the average (over 10 scenarios) throughput of the worst

receiver with Pacifier is on 83%, 101%, 74%, and 53% higher than with MORE on
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(a) Day 1 (b) Day 2

(c) Day 3 (d) Day 4

Fig. 3.11. Testbed throughput comparison of MORE and Pacifier in 10 different
scenarios and 4 different days.

each of the 4 days, and the maximum improvement can be as high as 5.4x (higher

than in the simulation results) in Scenario 7, Day 1.

Figures 3.12(a)-3.12(d) plot the CDF of the 40 throughput values obtained from

the 10 scenarios with 4 receivers each, for the two protocols, on each of the 4 days.

Similar to Figure 3.8(b) for the simulation results, we observe that the CDFs for

MORE exhibit a staircase form, since for each scenario, all 4 receivers get roughly

the same throughput (equal to that of the worst receiver) due to the “crying baby”

problem. In contrast, with Pacifier, receivers finish independently of each other and

the CDF always has a continuous form. Pacifier outperforms MORE on all 4 days

both in the median case, by 158 - 286%, and in the two ends of the CDFs – the 90th

percentile is 85-128% higher and the 10th percentile is 128-294% higher with Pacifier
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(a) Day 1 (b) Day 2

(c) Day 3 (d) Day 4

Fig. 3.12. CDFs of 40 testbed throughput measurements obtained with MORE and
Pacifier for 10 scenarios with 4 receivers each on 4 different days.

than with MORE. This again shows that Pacifier not only solves the “crying baby”

problem, it also simultaneously offers a significant improvement to the performance

of the “crying baby” itself.

3.6 Summary

Designing high-throughput, reliable multicast protocols faces two challenges: the

inherent lossiness of wireless links and the “crying baby” problem. In this chapter, we

presented Pacifier, the first practical network coding-based high-throughput, reliable

multicast protocol for WMNs. Pacifier seamlessly integrates tree-based OR, intra-
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flow network coding, source rate limiting, and round-robin batching, to achieve high

throughput and solve the “crying baby” problem.

Our performance evaluation of Pacifier via extensive simulations and an imple-

mentation on a WMN testbed have shown Pacifier significantly outperforms the

state-of-the-art MORE protocol for various multicast scenarios. In particular, the

experimental results on our 22-node WMN testbed show that Pacifier increases the

average multicast throughput over MORE by 83-114%, while the maximum through-

put gain for well-connected receivers is as high as 14x, and the maximum throughput

gain for the “crying baby” itself is as high as 5.4x, compared to MORE.

Since the cumulative path loss rate in wireless multihop networks increases with

the path length, multicast receiver heterogeneity is unavoidable in WMNs. In fact,

the degree of heterogeneity is expected to increase as future WMNs scale in size. Our

experience with designing Pacifier shows the importance of exploiting heterogeneity,

rather than ignoring it. By treating heterogeneous receivers equally, MORE penalizes

well-connected receivers, forcing them to achieve the same throughput as the worst

receiver. In contrast, by exploiting heterogeneity, and prioritizing well-connected re-

ceivers over the “crying babies”, Pacifier manages to achieve several-fold throughput

improvement for well-connected receivers, without penalizing the poorly-connected

ones; on the contrary, it often drastically improves the throughput of the worst re-

ceivers.
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4. EFFICIENT NETWORK CODING BASED

OPPORTUNISTIC ROUTING THROUGH CUMULATIVE

CODED ACKNOWLEDGMENTS

4.1 Introduction

In this chapter, we propose a novel solution to a fundamental challenge in network

coding based opportunistic routing: How many coded packets should each forwarder

transmit? This challenge, if not efficiently addressed, may prevent network coding

based opportunistic routing protocols from realizing the maximum possible gains. We

begin by explaining this challenge in more detail in 4.1.1, and then review existing

approaches and their drawbacks in 4.1.2. The drawbacks of the existing approaches

motivate our approach which we present in 4.1.3.

4.1.1 The challenge in network coding based opportunistic routing pro-

tocols

We illustrate the main challenge in network coding based opportunistic routing

protocols, e.g., MORE, with the example shown in Figure 4.1. This figure shows a

Fig. 4.1. The importance of knowing how many coded packets to transmit.
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typical scenario of a network coding based opportunistic routing protocol. The source

S has three downstream FNs A, B, and C. Assume for simplicity that S has three

innovative packets X1, X2, and X3 to send. Instead of transmitting the native packets,

S transmits three coded packets X1 +X2 +X3, 3X1 +X2 +2X3, and X1 +2X2 +3X3

in sequence, which are denoted by the corresponding coding vectors (1, 1, 1), (3, 1, 2),

and (1, 2, 3). Assume that (1, 1, 1) coded packet is received by C, and the (3, 1, 2) and

(1, 2, 3) packets are received by A and by {A,B}, respectively. The downstream FNs

A, B, and C have received a sufficient amount of innovative packets. Collectively,

the three FNs can now act as the new source and the original source S should stop

transmission. However, it is a non-trivial task for S to know whether its downstream

FNs have accumulated a sufficient amount of innovative packets.

The same challenge exists for the intermediate FN A. After transmitting a useful

coded packet (4, 3, 5), which is received by FN C, A has to decide whether it should

continue or stop sending coded packets. Furthermore, A has limited knowledge about

the reception status of the three packets transmitted by S (e.g., A may not know

that C has received (1, 1, 1) from S), which makes the decision of whether to stop

transmission even harder for A than for the source S.

Note that overhearing, a common way of acknowledging non-coded wireless traffic,

does not suit network coded traffic. Consider the same example in Figure 4.1. C

generates a coded packet c1(1, 1, 1) + c2(4, 3, 5). If the randomly chosen coefficients

happen to be c1 = c2 = 1, then a (5, 4, 6) packet is sent. Suppose A overhears this new

packet. If A were aware of the reception of the (1, 1, 1) packet by C and also knew the

coefficients c1 = c2 = 1, then A could deduce that the previously transmitted (4, 3, 5)

packet was received successfully since ((5, 4, 6)−1·(1, 1, 1))/1 = (4, 3, 5). Nonetheless,

in practice, neither piece of the information is available to A, it is thus impossible

for A to know whether the (4, 3, 5) packet is received or not by only overhearing the

(5, 4, 6) packet sent by C.

One way to address the challenge is to combine individual packet overhearing, as in

non-coding based protocols, with a credit system, based on coded transmissions, and
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have the forwarders perform detailed bookkeeping to guarantee credit conservation in

the system. This approach is taken in MC2 [56]. Although theoretically optimal [67],

this approach is quite complex in practice. In addition, like every approach that

relies on individual packet overhearing, it requires a reliable control plane. In typical

WMN environments with high packet loss rates or contention [13], this approach can

cause excessive signaling overhead and retransmissions, which can significantly limit

the performance.

4.1.2 Offline loss rate based approaches

Since theoretically optimal solutions are hard to implement in practice, existing

network coding based opportunistic routing protocols use heuristics based on link

loss rates, to address the challenge in a simple manner, and to minimize the control

overhead.

As we have described in Section 2.3.1, MORE [22], the first network coding based

opportunistic routing protocol, employs an offline approach which requires no coordi-

nation among FNs. In MORE, the source calculates and assigns a transmission credit

to each FN, using the ETX metric [18], computed from loss rate measurements. Re-

ceptions from upstream nodes are then used to trigger new transmissions at the FNs,

with precomputed relative frequencies using the transmission credits. Since the ETX

metric expresses the expected behavior, the approach used in MORE cannot guarantee

that the destination will always receive enough packets, due to the randomness of the

wireless channel. Hence, the source in MORE keeps transmitting packets from the

same batch until it receives an ACK from the destination, unnecessarily increasing

interference.

Many other works that improve MORE also use offline measured loss rates as

a basic component in their proposed solutions (e.g., [60, 68, 69] and our proposed

Pacifier in Chapter 3).
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The drawback of all these approaches is that performance heavily depends on

the accuracy and freshness of the loss rate measurements. Loss rate estimates are

obtained through periodic probing and are propagated from all nodes to the source.

Apparently, the higher the probing frequency, the higher the accuracy, but also the

higher the overhead. As a recent study [70] showed, even low-rate control overhead

in non-forwarding links can have a multiplicative throughput degradation on data-

carrying links.

To reduce this overhead, the authors of MORE collect the loss rates and calcu-

late the credits only in the beginning of each experiment. In practice, this suggests

that loss rate measurements should be performed rather infrequently. Unfortunately,

recent WMN studies [58,71] have shown that, although link metrics remain relatively

stable for long intervals in a quiet network, they are highly sensitive to background

traffic. For example, in [71], the authors observe that 100 ping packets (one per sec-

ond) between two nodes in a 14-node testbed caused an increase of 200% or more to

the ETT [72] metric of around 10% of the links.1 Even worse, a 1-min TCP transfer

between two nodes in the same network caused an increase of more than 300% to the

ETT metric of 55% of the links.

In summary, since acknowledging network coded traffic online is expensive, so-

lutions based on loss rate measurements try to avoid that by predicting offline the

amount of coded traffic each FN should send. Although attractive because of their

simplicity, and their minimal coordination overhead, these approaches may suffer sig-

nificant performance degradation in dynamic wireless environments with continuously

changing levels of channel quality, interference, and background traffic. Overesti-

mated loss rates cause redundant transmissions, which waste wireless bandwidth. On

the other hand, underestimated loss rates may have an even worse impact, since nodes

may not transmit enough packets to allow the destination to decode a batch. Increas-

ing the frequency of the loss rate measurements is not always a solution, since the

1The ETT metric estimates the quality of a link taking into account both the loss rate (through the
ETX metric) and the link bandwidth.
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incurred overhead may counterbalance the low coordination overhead. This motivates

the need for a new approach, oblivious to loss rates.

4.1.3 Our approach – Cumulative Coded Acknowledgments

In this chapter, we present a novel approach to addressing the main challenge in

network coding based opportunistic routing protocols, i.e., determining how many

coded packets each FN should transmit, through the design of CCACK, a new effi-

cient network coding based opportunistic routing protocol. Unlike existing protocols,

FNs in CCACK decide how many packets to transmit in an online fashion, and

this decision is completely oblivious to link loss rates.2 This is achieved through a

novel Cumulative Coded ACKnowledgment scheme that allows nodes to acknowl-

edge network coded traffic to their upstream nodes in a simple and efficient way,

with practically zero overhead. In other words, unlike existing network coding based

opportunistic routing protocols which use network coding to avoid sending feedback,

CCACK encodes feedback to exploit its benefits while hiding its overhead. Feedback

in CCACK is not required strictly on a per-packet basis; this makes the protocol

resilient to individual packet loss and significantly reduces its complexity, compared

to [56].

Take the scenario in Figure 4.1 as a continuing example. One naive approach

to ensure that S (resp. A) knows when to stop transmission is through the use of

reception reports, for which each node broadcasts all the basis vectors of the received

linear space to its upstream nodes, as illustrated in Figure 4.2(a).3 In this figure, node

C broadcasts its two corresponding basis vectors, (1, 1, 1) and (4, 3, 5). Similarly, A

and B transmit the basis vectors back to their upstream nodes. S (resp. A) can use

the overheard basis vectors to reconstruct the collective knowledge space (CKS) of

2By “oblivious to link loss rates” we mean here that loss rates are not taken into account in deter-
mining how many packets each FN should transmit. We still use MORE’s loss rate based offline
algorithm in CCACK to build the FN belt, for a fair comparison between the two protocols. We
note though that the coded feedback mechanism in CCACK is orthogonal to the belt construction.
3We sometimes refer to the linear space spanned by the received vectors as the knowledge space.
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(a) Uncoded Feedback (b) Coded Feedback

Fig. 4.2. Different types of feedback for network-coded traffic.

the downstream nodes. S (resp. A) then decides whether to continue transmission

depending on whether the CKS of the downstream nodes is strictly larger than the

local knowledge space at S (resp. A).

An obvious drawback of this approach is the size of the feedback messages. For

practical network coding with symbol size GF(28) and batch size 32, each coding

vector contains 32 bytes. To convey a space of dimension κ ≫ 1 thus requires

κ 32-byte vectors, which is too large to piggyback to normal forward traffic. The

unreliability of the wireless channel further exacerbates the problem as the κ×32-byte

feedback messages need to be retransmitted several times until they are overheard by

all the upstream nodes.

In contrast, in CCACK each node uses a single coded feedback vector to represent

the entire space, which may consist of κ ≫ 1 basis vectors. In the broadest sense, the

three coded acknowledgment vectors zA to zC in Figure 4.2(b) serve as a hash for their

corresponding spaces. As will be explained in Section 4.3, we have devised a simple

mechanism that successfully compresses (most of) the space information into a single

vector, say zA for node A, while allowing upstream nodes to extract the original space

from zA without exchanging any additional control information. Each single vector

zA can be easily piggybacked to the forward data traffic. This compressed/coded

acknowledgment is critical to the efficiency since in CCACK overhearing any of the

data packets of A with piggybacked coded ACK will convey to the upstream nodes
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the entire space (or most of the space) of A. This thus drastically reduces the need

of retransmitting feedback information over the unreliable wireless channel.

In addition to efficiently solving the challenge of how many packets each FN

should transmit, the cumulative coded acknowledgment scheme in CCACK enables

us to develop an efficient rate control algorithm. In contrast, MORE has no explicit

rate control mechanism and its performance degrades as the number of flows in the

network increases [22,67–69].

To evaluate CCACK, we first compare its performance against MORE, using ex-

tensive realistic simulations. Our simulations use a realistic physical model, with ran-

dom signal variations due to fading, take into account the additional packet header

overhead introduced by the use of network coding and opportunistic routing, and

are conducted over a variety of network topologies. Our results show that CCACK

improves both throughput and fairness over MORE, by 27-45% and 5.8-8.8%, respec-

tively, on average, with different number of flows. For some challenged flows which

completely starve under MORE, CCACK increases throughput by up to 21x and

fairness by up to 124%.

In addition, the coding and memory overheads of CCACK are comparable to those

of MORE, making it easily deployable on commodity hardware. To demonstrate this,

we present an application layer implementation of CCACK and MORE on Linux

and their performance evaluation on a 22-node 802.11 WMN testbed deployed in

two academic buildings at Purdue University. Although the small size of our testbed

along with the limitations of our implementation limit the potential gains, our testbed

results show that CCACK improves both throughput and fairness, by up to 3.2x and

83%, respectively, with average improvements of 11-36% and 5.7-8.3%, respectively,

for different numbers of flows, validating the benefits of our approach.

The remaining of this chapter is organized as follows. In Section 4.2, we intro-

duce the basic principles of coded feedback through a simple existing coded feedback

scheme. We identify two problems with this scheme which motivate the design of

CCACK, presented in Section 4.3. Section 4.4 evaluates the performance of CCACK
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(a) Basic operation.
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(b) The collective space problem.

(c) The false positive problem.

Fig. 4.3. Null-Space-Based (NSB) coded feedback.

and MORE through extensive simulations and Section 4.5 describes the implementa-

tion and evaluation of CCACK and MORE on a wireless testbed. Finally, Section 4.6

concludes the paper.

4.2 A simple Coded Feedback Scheme

One candidate solution (which has been used in the past in a different context [36]),

attractive due to its simplicity, is null-space-based (NSB) coded feedback, i.e., each

node sends to each upstream node one vector randomly chosen among all vectors in

the null space of the innovative vectors the node has received in the past. Take for

example Figure 4.3(a). Let Bv denote the buffer containing the innovative coding

vectors received by an FN (Bv contains two vectors (1, 2, 3) and (3, 1, 2) at node A

and one vector (1, 2, 3) at node B in Figure 4.3(a)). Every time B broadcasts a coded

data packet to its own downstream nodes, it also appends to the packet header an

ACK vector zB satisfying:

zB · v = 0, ∀v ∈ Bv (4.1)
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Namely, the inner product between zB and v ∈ Bv is zero. There may be multiple

choices of zB that satisfy (4.1) (e.g., in Figure 4.3(a), zB can be any vector of the

form (−2x− 3y, x, y)). zB is then chosen uniformly randomly among all valid vectors

satisfying (4.1). Let SB = 〈v : v ∈ Bv〉 denote the linear space spanned by vectors in

Bv. One can easily show that:

Lemma 1 With the above random construction of zB, any vector v′ ∈ SB must satisfy

zB ·v′ = 0. Moreover, for any vector v′′ /∈ SB we have prob(zB ·v′′ = 0) = 1
28 assuming

the GF(28) finite field is used.

From the above lemma, when the upstream node A hears such a packet from B, it

simply needs to compute the inner product of its own innovative vectors with zB.

In Fig. 4.3(a), suppose that zB is chosen as (0, 1,−1). Since (1, 2, 3) · (1, 1,−1) = 0,

A concludes that B has received packet (1, 2, 3). On the other hand, since (3, 1, 2) ·

(1, 1,−1) = 2 6= 0, A concludes that packet (3, 1, 2) is an innovative packet for B,

and hence it should send more coded packets to B.

Although attractive due to its simplicity, the NSB feedback scheme suffers from

two significant limitations when used in network coding-based opportunistic routing.

Problem 1: The collective space problem. Take Figure 4.1 for example. Nodes

B and C would like to convey their space information to A so that A can stop

packet transmission. Based on the NSB concept, B and C send zB = (1, 1,−1) and

zC = (−2, 1, 1), respectively, which are orthogonal to their local innovative vectors

(see Figure 4.3(b)). The idea is to hope that, upon the reception of zB and zC , A

will know that the knowledge spaces of B and C have collectively covered the local

knowledge space of A and thus will stop transmission.

Nonetheless, when A checks the inner product of the coded feedback and its own

innovative packets, we have

zB · (3, 1, 2) = 2 6= 0 and zC · (3, 1, 2) = −3 6= 0.

Therefore A thinks that the coding vector (3, 1, 2) is innovative to both its downstream

nodes and thus continues transmission even when collectively B and C already have
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enough information. This misjudgment is caused by that the NSB coded feedback

does not convey the collective space of all downstream nodes but only the space

relationship between the individual pairs (e.g., A vs. B and A vs. C). Therefore, if

we apply the NSB coded feedback as in [36] to unicast opportunistic routing, A will

not stop transmission until one of its downstream nodes has a local knowledge space

that completely covers the local knowledge space of A. This defeats the purpose of

opportunistic routing.

Problem 2: Non-negligible false-positive probability. Take Figure 4.3(c) for

example. A wants to send two packets to B and a network coded packet has been

received by B already. To convey its local knowledge space back to A, B sends an

orthogonal vector zB satisfying (4.1), which is randomly chosen to be any vector

of the form zB = (4x, 4y,−2x − 3y). Suppose that B chooses zB = (4,−8, 4) and

A receives such zB. Since zB is orthogonal to all the innovative vectors of A, A

will wrongfully conclude that the knowledge space of B covers the local knowledge

space of A. A thus attempts no further transmission. Although Lemma 1 guarantees

that this false positive event happens only with probability 1
28 , its impact to the

system performance is significant. The reason is that in a multi-hop transmission,

any single hop that experiences this false positive event will cause an upstream node

to stop transmission prematurely. The communication chain is thus broken and the

destination may not be able to receive enough independent packets for decoding.

Although one can fix this false-positive issue by retransmitting another zB vector, the

necessary timer management for the unreliable feedback channel and the additional

interference caused by retransmission easily negate the benefits of sending coded

feedback.

4.3 CCACK design

In this section, we present the design of CCACK. We begin with an overview of

the protocol and then we describe its two main components: construction of a novel
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Fig. 4.4. Overview of CCACK operations. A1: Node B creates a coded packet and a
coded feedback ACK vector, stores coding vector in Bw. A2: Node B broadcasts the
packet with the ACK vector appended. A3: Node C (and other downstream nodes)
store the packet in Bu and in Bv if it is innovative. A4: Node A (and other upstream
nodes) process the ACK vector (H test with all vectors stored in Bu, Bw).

cumulative coded feedback scheme which addresses the two problems we discussed in

Section 4.2, and a rate control algorithm, built upon this coded feedback scheme.

4.3.1 CCACK overview

An overview of CCACK ’s operation is shown in Figure 4.4.

The source and the intermediate FNs in CCACK use intra-flow random linear

network coding. We selected a batch size of N = 32 packets and the random coef-

ficients for each linear combination are selected from a Galois Field (GF) of size 28,

same as in [22,56,60].

Nodes in CCACK maintain per flow state, which includes the current batch of the

flow, a credit counter (Section 4.3.4), and three buffers: a packet buffer Bv, and two

coding vector buffers Bu and Bw. With the exception of Bu and Bw, all the other

information is also maintained in MORE. The size of Bv is equal to the batch size N ,

since the number of innovative packets is bounded by the batch size. The size Bu and

Bw can be larger, since these buffers only store 32-byte coding vectors and not whole

packets. In our implementation we used a size equal to 5 × N . Similar to MORE,

this information is soft-state and it is flushed if no packet for a flow is received for 5

minutes.
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The source and the FNs broadcast randomly mixed packets and store the coding

vectors of these packets in Bw. Whenever a node overhears a packet, the node first

checks whether the packet is innovative by comparing the coding vector to those of

the existing packets in Bv. If innovative, the newly received packet is stored in Bv,

similarly to MORE and other existing network coding based opportunistic routing

protocols. Regardless being innovative or not, the node also checks whether the newly

received packet is from an upstream node. If yes, then it stores the forward coding

vector in Bu.

Each forward coding vector in Bu and Bw can be marked as H (heard by a down-

stream node) or ¬H (not heard). A coding vector is marked as ¬H when initially is

inserted in either of the two buffers, since the node has no information at that time

whether any downstream node has heard the packet or not.

Similar to [36], nodes in CCACK embed an additional ACK vector in the header

of each coded data packet of the forward traffic to report a subset of the packets (or

coding vectors) they have received (heard) in the past from their upstream nodes.

For the following, we use the terms forward coding vectors and ACK coding vectors

to denote the coding coefficients used to encode the payload of the packets and the

feedback vectors used to acknowledge the space, respectively. The construction of

the ACK coding vector using the vectors stored in Bu is described in Section 4.3.3.

Nodes mark forward coding vectors as H, using the inner product of these vectors

and the ACK coding vectors they receive from downstream nodes, as we explain in

Section 4.3.3.

The destination periodically broadcasts coded feedback to its upstream nodes

in the form of ACK vectors (without any payload). This is necessary to inform

its upstream nodes whether they should temporarily stop transmitting, since the

destination sends no data packets. Once it receives N innovative packets for a batch,

it decodes the batch to obtain the N original packets. It then sends an end-to-end

ACK back to the source along the shortest ETX path in a reliable manner.4

4In our current implementation, similar to MORE, the source moves to batch i + 1 only when it
receives the end-to-end ACK from the destination for batch i. As [60] showed, a better approach is
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Fig. 4.5. Solving the collective space problem in CCACK .

4.3.2 Solving the collective-space problem

In contrast to the simple NSB coded feedback scheme (Section 4.2), nodes in

CCACK construct the ACK coding vectors using all the received forward coding vec-

tors stored in Bu, and not only the innovative vectors stored in Bv. Also, when an

upstream node A overhears a packet from a downstream node, it uses the ACK coding

vector of that packet to decide whether any of the coding vectors in Bu ∪Bw, instead

of Bv, have been heard by the downstream node.

Nodes keep checking the rank of the Bu and Bw vectors marked as H. When

this rank becomes equal to the rank of innovative packets in Bv for a node A, A

stops transmitting either temporarily, until it receives another innovative packet, or

permanently if the rank of the Bv vectors is already equal to N . In both cases,

the downstream nodes have received a sufficient number of packets that cover the

innovative packets of A from the knowledge space perspective.

Focusing on Bu and Bw vectors instead of Bv, this new structure solves the

collective-space problem of the NSB coded feedback. Continue our example from

Figure 4.3(b) in Figure 4.5. For node A, Bu contains the received coding vectors

(1, 2, 3) and (3, 1, 2) while Bw contains the transmitted vector (4, 3, 5). Suppose we

reuse the NSB coded feedback for nodes B and C. Then by checking inner products

for the source to move to batch i + 1 immediately after it stops transmitting packets for batch i. In
the future we plan to incorporate this feature in CCACK.
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with zB and zC , A knows that the (1, 2, 3) ∈ Bu and (4, 3, 5) ∈ Bw have been received.

Since the rank of (1, 2, 3) and (4, 3, 5) is the same as the rank of Bv vectors, A stops

transmission.

4.3.3 Solving the false positive problem

Instead of sending to their upstream nodes a vector randomly chosen from the

null space of the vectors in Bu, nodes in CCACK use a new algorithm to construct

the ACK vectors. With the new algorithm, nodes still append one ACK vector to

each data packet but construct it in such a way that it is equivalent to appending

M vectors from the null space of the vectors in Bu. We now describe this new ACK

design that drastically reduces the false-positive probability from 1
28 to

(

1
28

)M
for any

integer M ≥ 1.

Each node maintains M different N × N hash matrices H1 to HM where N = 32

is the batch size and each entry of the matrix is randomly chosen from GF (28). All

nodes in the network are aware of the H1 to HM matrices of the other nodes. This

is achievable by using the ID of a node as a seed to generate the H1 to HM matrices.

We assume that all vectors are row vectors and we use the transpose uT to represent

a column vector (constructed from the row vector u).

To improve the efficiency of our feedback mechanism, we associate a usage count

with every vector in Bu. When a vector is placed in Bu, its usage count is set

to 0. Every time this vector is selected in the feedback construction algorithm, its

usage count is incremented by 1. The ACK vector is always constructed using those

vectors in Bu with the lowest counts. This will reduce the probability that the same

vectors are repeatedly acknowledged many times.

Nodes construct the ACK vectors using the following algorithm:

§ Construct the ACK vector

1: Start from a 0 × N matrix ∆.
2: while The number of rows of ∆ < N − M do
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3: Choose the u with the smallest usage count from Bu. If more than one such u

exist, choose one randomly.
4: for j = 1 to M do
5: if the 1 × N row vector uHj is linearly independent to the row space of ∆

and the number of rows of ∆ < N − M then
6: Add uHj to ∆.
7: Perform row-based Gaussian elimination to keep ∆ in a row-echelon form.5

8: end if
9: end for

10: Increment the usage count of u by 1.
11: end while
12: Choose randomly the coding coefficients c1 to cN such that the following matrix

equation is satisfied:

∆(c1, · · · , cN)T = (0, · · · , 0)T.

Remark 1: We also require that the randomly chosen coefficients c1 to cN are not
all zero.
Remark 2: By Line 3 there will be at least 1 degree of freedom when solving the
above equations. Since ∆ is in the row-echelon form, it is easy to choose c1 to cN .

13: Use the vector (c1, · · · , cN) as the ACK vector.

When a node A overhears a packet with an ACK vector z from a downstream node,

it uses again the inner product to check all its vectors in Bu and Bw and determine

whether any of them has been heard by the downstream node. More explicitly, a

vector u ∈ Bu (or Bw) is marked H if and only if u passes all the following M

different “H tests” (one for each Hj):

∀j = 1, · · · , M, uHjz
T = 0, (4.2)

where H1 to HM are the hash matrices of the downstream node of interest.

Remark: In our practical implementation, instead of choosing completely random

hash matrices H1 to HM (each with N2 random elements), we simply choose H1

to HM as “random diagonal matrices”, with the N diagonal elements for each Hj

randomly chosen from 1 to 255 (excluding zero) and all other elements being zero.

5Since ∆ is always of row-echelon form, it is easy to check whether the new vector is linearly
independent to the row space of ∆.
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This simplification improves the efficiency as the matrix multiplication uHj can be

performed in linear instead of N2 time.

We now quantify the false positive probability (passing all M tests simultaneously)

with this new coded feedback scheme.

Proposition 4.3.1 Consider an upstream/downstream node pair AU and AD, and

AU receives an ACK vector z0 from AD. The hash matrices H1 to HM of node AD

are chosen uniformly randomly. For any w vector in Bu ∪ Bw of the upstream node

AU , if such w is in the space of the u vectors selected by the downstream node AD,

then it is guaranteed that such w vector will pass all M tests in (4.2). If such w is

not in the space of the selected u vectors, then the false-positive probability (passing

all M tests) is
(

1
28

)M
.

Proof Let SB denote the linear space spanned from the u vectors selected by AD.

If w in Bu ∪ Bw of AU is in SB, then w =
∑

i αiui is the linear combination of the

selected u vectors (indexed as ui). Since by construction uiHjz
T
0 = 0 for all selected

ui, we have wHjz
T
0 =

∑

i αiuiHjz
T
0 = 0.

Suppose that w in Bu ∪ Bw of AU is not in SB. Conditioning on the non-zero z0

vector, for any j the Hjz
T
0 vector must be randomly distributed over the null space

of SB, since uiHjz
T
0 = 0 for all selected ui vectors and since Hj is chosen randomly.

Moreover, conditioning on the non-zero z0, H1z
T
0 to HMzT

0 are independently dis-

tributed over the null space of SB. As a result, even though only a single vector

z0 is transmitted, the CCACK scheme has the same effect of using the NSB coded

feedback M times, sending out M independently randomly selected vectors (H1z
T
0 to

HMzT
0 ) from the null space of SB. By Lemma 1, the overall false-positive event is

when all M tests return false positive. The overall false positive probability becomes
(

1
28

)M
. The proof is complete.

The M value represents a tradeoff between how many vectors one can acknowledge

32
M

and the false-positive probability (2−8)M . Since any false alarm event for any

packet over any link will trigger the land-sliding cost of breaking the communication
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chain, we observe in our experiments that any M ≤ 3 will severely jeopardize the

reliability of the CCACK. In our implementation we thus choose M = 4, which gives

a false positive probability of 2.23 × 10−10 that is necessary for the effectiveness of

CCACK.

It is worth noting that a naive way of avoiding false-positive events is to increase

the underlying finite field size GF(2b). This is not viable for WMNs. One reason is

that to achieve the level of false-positive probability needed in our CCACK scheme

(M = 4), we need b = 32, which uses 4 bytes to represent a single coding symbol. The

size of each forward coding vector and each coded feedback vector thus grows from

32×1 bytes to 32×4 bytes, which substantially increases the overhead. An even bigger

challenge is that each addition and multiplication coding operation now operate on

GF(232). A table look-up method has to have 232 × 232 4-byte entries, which takes

prohibitively 4 million terabytes to store. Since table look-up is impossible, one thus

has to use online polynomial-based computation each time a coding operation needs

to be performed, which is far beyond today’s microprocessor capability.

4.3.4 Rate control

The cumulative coded feedback scheme in CCACK helps nodes to determine when

they should stop transmitting packets for a given batch, but it does not tell anything

about how fast nodes should transmit before they stop. Unlike in MORE, in CCACK

we cannot use receptions from upstream to trigger new transmissions, since the goal

is exactly to stop the upstream nodes, when the downstream nodes have sufficiently

enough packets. In addition, we want to apply rate control to the source as well, and

not only to the FNs.

The rate control algorithm in CCACK uses a simple credit scheme, which is obliv-

ious to loss rates but aware of the existence of other flows in the neighborhood, and

leverages CCACK’s cumulative coded acknowledgments.
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For each flow f at a node, we define the “differential backlog”6 as:

∆Qf = dim(Bf
v ) − dim(Bf

H) (4.3)

where Bf
H is the set of vectors in Bf

u ∪ Bf
w marked as H, and dim(S) denotes the

number of linearly independent packets in the set S. Note that dim(Bf
H) ≤ dim(Bf

v ).

∆Qf is the difference between the number of innovative packets at a given node and

the cumulative number of innovative packets at its downstream FNs for flow f . As

we saw in Section 4.3.2, when ∆Qf = 0, i.e., dim(Bf
v ) = dim(Bf

H), the node stops

transmitting packets for flow f . Note that for the destination of flow f , ∆Qf = 0.

We also define the relative differential backlog ∆Qf
rel for each flow f as:

∆Q
f
rel =

∆Qf

∆Qf + ∆QN

(4.4)

where, ∆QN is the total differential backlog of all the neighbor nodes for all flows,

calculated as follows. Every time a node nj broadcasts a coded data packet, it includes

in the packet header its current total differential backlog ∆Qtot
nj

of all flows crossing

that node. All nodes that hear this packet update their ∆QN as an exponential

moving average:

∆QN = 0.5 × ∆QN + 0.5 × ∆Qtot
nj

(4.5)

Every node in CCACK (including the source and the destination) maintains a

credit counter for each flow. Every time there is a transmission opportunity for a

node A, one flow f is selected in a round robin fashion, among those flows with

∆Qf > 0, and the credit counter of that flow is incremented by α×∆Qf
rel + β. If the

counter is positive, the node transmits one coded packet for flow f and decrements the

counter by one, otherwise it selects the next flow. The credit increment α×∆Qf
rel +β

6Our solution is inspired by the theoretical backpressure based rate control algorithms [73]. The
difference is that, instead of queue lengths, we use innovative coded packets to define a cumulative

differential backlog for flow f at every node with respect to all its downstream nodes for that flow.
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is larger for flows with large “backpressure”, and thus packets of such flows will

be transmitted more frequently. For our implementation we selected α = 5/6 and

β = 1/6. If ∆Qf
rel = 1, then α × ∆Qf

rel + β = 1 and the credit counter will always

remain equal to 1, effectively allowing the node to always transmit.

4.4 Evaluation

4.4.1 Methodology

We evaluated the performance of CCACK and compared it against MORE using

extensive simulations. We used the Glomosim simulator [61], a widely used wireless

network simulator with a detailed and accurate physical signal propagation model.

Glomosim simulations take into account the packet header overhead introduced by

each layer of the networking stack, and also the additional overhead introduced by

MORE or CCACK. For the implementation of MORE, we followed the details in [22].

We simulated a network of 50 static nodes placed randomly in a 1000m × 1000m

area. The average radio propagation range was 250m, the average sensing range was

460m, and the channel capacity was 2Mbps. The TwoRay propagation model was

used and combined with the Rayleigh fading model to make the simulations realistic.

Because of fading, transmission and sensing range are not fixed but vary significantly

around their average values.

We simulated each protocol in 9 different randomly generated topologies, i.e.,

placement of the 50 nodes. We varied the number of concurrent flows from 1 up to 4.

For a given number of flows, we repeated the simulation 10 times for each topology,

selecting randomly each time a different set of source-destination pairs, i.e., we had

a total of 90 different scenarios for a given number of flows. In each scenario, every

source sent a 12MB file, consisting of 1500-byte packets.

Following the methodology in [20, 22], we implemented an ETX measurement

module in Glomosim which was run for 10 minutes prior to the file transfer for each
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scenario to compute pairwise delivery probabilities. There was no overhead due to

loss rate measurements during the file transfer.

It is generally known that the full benefit of opportunistic routing over traditional

routing is exposed when the destination is several hops away from the source [22]; in

those cases, opportunistic routing reduces the overhead of retransmissions incurred by

high loss rates and increased self-interference. Hence, for the single-flow experiment,

among the 90 flows we simulated, we show the results of the 65 flows for which the

destination was not within the transmission range of the source (with ETX shortest

paths of 3-9 hops). For the evaluation with multiple flows, we kept scenarios with

flows of shorter paths, when those flows interfered with other flows. On the other

hand, we do not show the results for scenarios where the multiple flows were out of

interference range of each other, since those scenarios are equivalent to the single-flow

case. We were left with 68 scenarios with 2 flows, and 69 scenarios with 3 and 4 flows.

4.4.2 Single flow

We begin our evaluation with a single flow. Figure 4.6(a) plots the Cumulative

Distribution Function (CDF) of the throughputs of the 65 flows with MORE and

CCACK. We observe that CCACK outperforms MORE; the median throughput with

CCACK and MORE is 276Kbps and 205Kbps, respectively.

Figure 4.6(b) plots the CDF of the relative throughput improvement of CCACK

over MORE for all 65 flows, defined as
T

f
CCACK

−T
f
MORE

T
f
MORE

×100%, where T f
CCACK , T f

MORE

are the throughput of flow f with CCACK and MORE, respectively. We observe that

CCACK achieves a higher throughput than MORE for 95% of the flows. The median

gain of CCACK over MORE is 34%. However, for some challenged flows with the

destination 7-9 hops away from the source, the throughput with CCACK is 2-5x

higher than with MORE.

Where does the gain for CCACK come from? Figure 4.7(a) plots the total

number of data transmissions with CCACK and MORE in each of the 65 scenarios, as
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(a) CDF of throughputs achieved
with MORE and CCACK.

(b) CDF of relative through-
put improvement of CCACK over
MORE.

Fig. 4.6. Throughput comparison between CCACK and MORE – single flow.

(a) Total number of data trans-
missions per scenario.

(b) Total number of data trans-
missions per node for one scenario.

Fig. 4.7. Total number of data transmissions with MORE and CCACK, and predicted
number of transmissions, based on MORE’s credit calculation algorithm, with a single
flow.

well as the predicted number of transmissions in each scenario using MORE’s offline

ETX-based credit calculation algorithm. The 65 scenarios are sorted with respect to

the predicted number of transmissions.



81

We observe that nodes with MORE perform a higher number of transmissions

than the predicted number in all 65 scenarios. The actual number is often more

than twice the predicted number, and in some scenarios up to 6-7x the predicted

number. This shows that the credit calculation algorithm based on offline ETX

measurements mispredicts the required number of transmissions even in the absence

of background traffic. The cause is self-interference which changes the loss rates,

which in most cases become higher than in a quiet network, where only probing

traffic exists [58]. Moreover, the source in MORE keeps transmitting packets until it

receives an ACK from the destination. With long paths, this may result in a large

number of unnecessary transmissions, as the ACK travels towards the source.

In contrast, the number of data transmissions with CCACK is much lower than

with MORE in all but 2 scenarios. In most scenarios it is close to the predicted

number, and in some cases, it is even lower. This shows the effectiveness of the coded

feedback mechanism in CCACK, combined with the online rate control mechanism

of Section 4.3.4.

Figure 4.7(b) shows an example (one scenario) of how data transmissions are dis-

tributed over the FNs. Nodes are sorted with respect to their ETX distance to the

destination, i.e., node 1 is the source and node 10 is the FN closest to the destination.

With MORE, the source and the FN closest to the source, perform many more trans-

missions than the remaining FNs, (2.5-7.6x and 1.4-4.6x, respectively). In contrast,

CCACK ensures that these nodes stop transmitting when the remaining downstream

FNs have received enough innovative packets. Overall, with CCACK, all 10 nodes

perform fewer transmissions than with MORE. The savings range from 17% (for node

9) up to 74% (for the source).

4.4.3 Multiple flows

We now evaluate CCACK and MORE with multiple concurrent flows. Here, in

addition to throughput, we compare the two protocols in terms of fairness, using
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(a) Average per-flow throughputs
(bars) and standard deviations
(lines).

(b) CDF of relative through-
put improvement of CCACK over
MORE.

Fig. 4.8. Throughput comparison between CCACK and MORE – multiple flows.

Jain’s fairness index (FI) [74]. Jain’s FI is defined as (
∑

xi)
2/(n ×

∑

x2
i ), where xi

is the throughput of flow i and n is the total number of flows. The value of Jain’s FI

is between 0 and 1, with values closer to 1 indicating better fairness.

Throughput comparison. Figures 4.8(a), 4.8(b) compare the throughput with

CCACK and MORE with 2, 3, and 4 flows. Figure 4.8(a) plots the average per-flow

throughput with the two protocols as a function of the number of flows. We observe

that CCACK outperforms MORE by 27% on average in the 2-flow case, and by 45%

on average in the 3-flow and 4-flow cases. Note that the gain of CCACK is higher

with a larger number of flows, when the congestion level becomes higher causing

substantial changes to the ETX values. given flow at nodes whose downstream nodes

have collectively received a sufficient number of packets, a large amount of bandwidth

is saved which can be used by the nodes or their neighbors for transmitting packets

for other flows. In contrast, the gain of MORE over traditional routing in [22] drops

as the number of concurrent flows increases.

Figure 4.8(b) plots the CDF of per-flow relative throughput improvement with

CCACK over MORE, as defined in Section 4.4.2, with 2, 3, and 4 flows. CCACK
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(a) Average per scenario FIs
(bars) and standard deviations
(lines).

(b) CDF of relative FI improve-
ment of CCACK over MORE.

Fig. 4.9. Fairness comparison between CCACK and MORE – multiple flows.

improves per-flow throughputs for more than 85% of the flows in all 3 cases (with 2,

3, and 4 flows). The median improvement is 33%, 55%, and 62%, respectively, with

2, 3, and 4 concurrent flows. Similar to the single flow experiments, some starving

flows with MORE show a several-fold improvement with CCACK, up to 4.7x, 9.1x,

and 21.4x, in the 2-, 3-, and 4-flow cases, respectively.7

Fairness comparison. Figures 4.9(a), 4.9(b) compare the fairness with CCACK

and MORE in case of 2, 3, and 4 concurrent flows. Figure 4.9(a) plots the average

FI with the two protocols. We observe that the average FI is the same with the two

protocols in the 2-flow case, but is higher with CCACK in the 3-flow, and 4-flow case

by 5.8% and 8.8%, respectively.

Figure 4.9(b) plots the CDF of per-scenario relative FI improvement with CCACK

over MORE, defined similarly to the relative throughput improvement in Section 4.4.2,

with 2, 3, and 4 flows. We observe that CCACK improves fairness in more scenarios

as the number of flows in the network increases – in 40% of the 2-flow scenarios, 65%

of the 3-flow scenarios, and 72% of the 4-flow scenarios. Similar to the throughput

7Note that the heavy tails of the 3-flow and 4-flow curves are not shown in Figure 4.8(b) for better
clarity.
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(a) Scatterplot of relative
throughput improvement vs.
relative FI improvement with 2,
3, and 4 flows.

(b) Per-flow throughputs with
MORE and CCACK for the 6 sce-
narios with the largest FI decrease
under CCACK. The throughputs
of different flows in each bar are
not additive.

Fig. 4.10. Investigating the relationship between throughput and fairness.

results, the improvement is very large for some scenarios: up to 74% with 3 flows,

and up to 124% with 4 flows. This shows again that CCACK improves throughput

for some challenged flows, which completely starve with MORE.

Throughput vs. fairness. We now investigate more closely the relationship be-

tween throughput and fairness. Figure 4.10(a) shows the scatterplots of the relative

total throughput improvement per-scenario vs. the relative FI improvement per-

scenario, in the 2-, 3-, and 4-flow experiments.

We observe that CCACK improves at least one of the two metrics in all but

two scenarios (two points in the 3rd quadrant of Figure 4.10(a)). There are a few

points in the 2nd quadrant for all three cases; these are scenarios, where CCACK

improves fairness, at the cost of a small total throughput decrease. The majority of

the points for the 2-flow case are gathered in the 1st and 4th quadrants, i.e., CCACK

either improves throughput at the cost of a (typically) small decrease in fairness, or it

improves both metrics. The majority of the points are gathered in the 1st quadrant
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for the 3-flow and 4-flow cases. This shows that as the number of flows increases,

CCACK improves both throughput and fairness in most scenarios.

We now take focus on a few points in the fourth quadrant in Figure 4.10(a),

corresponding to scenarios where FI is reduced by more than 20% with CCACK.

There are two 2-flow, one 3-flow, and three 4-flow scenarios (points). Note that all 6

points correspond to large throughput improvements, from 72% up to 499%. One may

wonder if these improvements are achieved at the cost of compromising the fairness,

i.e., the throughput of only one flow increases significantly, causing starvation to the

remaining flows.

Figure 4.10(b) shows that this is not the case. This figure plots the individual

per-flow throughputs with MORE and CCACK for these 6 scenarios. We observe

that CCACK improves throughput of all flows involved in all but 2 cases (2nd flow

in the 2 flows(1) scenario and 4th flow in the 4 flows (1) scenario). The reduction

in the FI actually comes from the fact that throughput improvement is much higher

for some flows than for some others, and not as a result of starvation of some flows.

Take the last scenario (4 flows (3)) as an example. CCACK improves throughput of

the first flow by 11x (from 85Kbps to 978Kbps), but also improves throughputs of

the other 3 flows by 183%, 108%, and 113%.

A closer look at the topology of that scenario reveals an interesting situation. The

first flow is a 1-hop flow, whose FN belt overlapped with the FN belt of the 4-th,

9-hop flow, near the source of the 4th flow. Apparently, the time required for the

destination of the 9-hop flow to decode a batch is much longer than for the destination

of the 1-hop flow. During this time, the source of the 9-hop flow keeps transmitting

coded packets – remember that MORE applies no rate control and assigns an infinite

TX credit to the source. These transmissions keep triggering new transmissions at

the FNs of the 9-hop flow. Now remember that each router in MORE serves flows

crossing it in a round robin fashion. Hence, those FNs of the 9-hop flow that also

forward packets for the 1-hop flow keep switching between the two flows. In other

words, a long flow keeps some routers busy preventing them from serving exclusively
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the 1-hop flow, although there is no need for these routers to forward packets of the

long flow all the time. As a result, the short flow achieves a low throughput of only

85Kbps. In contrast, with CCACK, the coded acknowledgment scheme quickly causes

the source and the first FNs of the 9-hop flow to stop transmitting packets, once the

remaining FNs collect enough packets. Hence, the FNs near the source are able to

forward packets only for the 1-hop flow, increasing its throughput to 978Kbps.

4.4.4 Which flows benefit the most from CCACK?

Finally, we examine which flows benefit the most from CCACK in single-flow and

multi-flow scenarios. Figures 4.11(a)-4.11(d) show the scatterplots for the individual

flow throughputs achieved with MORE and CCACK with 1, 2, 3, and 4 concurrent

flows in the network.

Single flow. In Figure 4.11(a), we observe that the majority of the points in the

single-flow case lie between the lines Y = 1.2X and Y = 1.7X, i.e., the throughput

gain of CCACK over MORE for a large range of absolute MORE throughput values

(100-350Kbps), is typically 20-70%, independent of the absolute throughput value

of MORE. In other words, when a single flow is present in the network, CCACK

benefits equally both low-throughput and medium-throughput flows. For flows of

higher absolute MORE throughput (>350Kbps), the gain of CCACK is smaller; for

these flows, the destination is 3-4 hops away from the source and MORE itself can

realize most of the gains over traditional routing. On the other hand, for a few flows

with very long path lengths (>7hops), the gains are higher than 100% – these are the

points on the left of the Y = 2X line in Figure 4.11(a). For these flows, throughput

with MORE can be as low as 55Kbps; in contrast, with CCACK there is no flow with

throughput lower than 130Kbps.

These high-gain points reveal an additional benefit of CCACK. Recall that with

both protocols, the destination sends an end-to-end ACK to the source after decoding

a batch to trigger the beginning of the next batch. In MORE, this ACK has to
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(a) Single flow. (b) Two flows.

(c) Three flows. (d) Four flows.

Fig. 4.11. Scatterplots of per-flow throughputs achieved with MORE and CCACK
with 1, 2, 3, and 4 concurrent flows.

compete with coded traffic as it travels towards the source, since nodes never stop

transmitting. With long paths, it may take a long time for the ACK to reach the

source, and this can lead to significant throughput degradation for these flows, as

has also been shown in [60]. In contrast, with CCACK, the ACK can quickly travel

towards the source without any contention if there is no other flow in the network,

since all nodes have already stopped transmitting, thanks to the coded feedback.

Multiple flows. In Figures 4.11(b), 4.11(c), and 4.11(d), we observe that, as the

number of flows increases, more points are gathered on the left of the Y = 1.7X line;
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in the 4-flow case, in Figure 4.11(d), a large fraction of points are gathered on the

left of the y = 2X line. Note that the absolute MORE throughputs for many of these

points are very low; in particular in the 3-flow and 4-flow cases, throughputs with

MORE are as low as only 5Kbps; in contrast, with CCACK, there is only one flow

with 41Kbps, and all the remaining flows achieve throughputs higher than 50Kbps.

In other words, many flows starve with MORE, as the number of flows in the network

increases, and CCACK significantly benefits those flows, with the gains being as high

as 21x. In contrast to the single-flow case, these are not necessarily flows with long

routing paths, as we saw in the example of Figure 4.10(b).

In contrast to CCACK flows, there is no clear trend for MORE flows of medium

to high throughput. The gain of many of those flows remains between 20% and 70%,

as in the single-flow case, since there is no room for further room for improvement in

a congested network. However, in the 3- and 4-flow scenarios, we also observe gains

higher than 70% for some flows of medium MORE throughput (200-400Kbps). On the

other hand, for many of those flows, and also for flows of higher MORE throughput,

the throughput is slightly reduced with CCACK – the number of points between the

lines Y = X and Y = 0.7X increases with the number of flows. This is because these

flows typically maintain high throughput with MORE by causing starvation to some

other flows. CCACK’s rate control algorithm reduces the throughputs of those flows

in favor of the most challenged flows, improving overall fairness in the corresponding

scenarios.

4.4.5 CCACK overhead

Finally, we estimate CCACK overhead compared to MORE. Similar to [22], we

discuss three types of overhead: coding, memory, and packet header overhead.

Coding overhead. Unavoidably, CCACK’s coding overhead is higher than MORE’s,

since routers have to perform additional operations both when transmitting and when

receiving a packet. However, all the additional CCACK operations are performed on
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Table 4.1 Coding overhead in CCACK in terms of GF(28) multiplications. Operations
marked with (*) are common in MORE and CCACK.

Operation Avg. Std. Dev.

Packet Transmission

Coded pkt construction (src/FNs)* 48000/27240 0/13128

ACK vector construction 11584 5369

Total (src/FNs) 59584/38824 5369/10021

Packet Reception

Independence check* 326 156

H tests 428 316

Rank of H pkts in Bu ∪ Bw 292 169

Total 1046 416

N -byte vectors instead of the whole K-byte payload. Therefore, in practical settings

(e.g., with N = 32 and K = 1500), the coding overhead of CCACK is expected to be

comparable to that of MORE.

To verify this, we measured the per-packet cost of the various operations per-

formed upon a packet transmission/reception averaged over all packets transmit-

ted/received at all nodes in the 90 simulation scenarios of Section 4.4.2. Table 4.1

provides the average values and the standard deviations. The costs are given in

terms of GF(28) multiplications, which are the most expensive operations involved in

coding/decoding [22].

The construction of an ACK vector in CCACK requires on average 11584 multi-

plications. The total coding cost in transmitting a packet (i.e., constructing a coded

packet and an ACK vector) in CCACK is only 24% higher than MORE’s, assuming

the worst case cost for packet encoding (48000 multiplications). If we use instead the

average packet encoding cost at FNs (27240 multiplications), the total cost of trans-
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mitting a packet in CCACK is only 38824 multiplications, i.e., lower than MORE’s

encoding cost at the source.8

When receiving a packet, the cost of checking for independence (also in MORE)

requires on average only 326 multiplications. The additional operations of performing

the H tests (if the received packet comes from downstream) and maintaining the

rank of the H packets in Bu ∪ Bw (if a received packet from downstream passes all

M H tests) require on average only 428 and 292 multiplications, respectively, i.e.,

their costs are comparable to the independence check cost. The total cost of packet

reception operations in CCACK is only 1.7% of the total packet transmission cost.

Hence, the bottleneck operation in CCACK is preparing a packet for transmission at

an FN with 32 innovative packets in Bv.

In [22], the authors found that the bottleneck operation in MORE (packet encod-

ing at the source) takes on average 270µs on a low-end Celeron 800MHz, limiting the

maximum achievable throughput with MORE to 44Mbps with a 1500 byte packet.

In CCACK, the cost of the bottleneck operation is 24% higher, so we can expect a

maximum achievable throughput of 35Mbps. Note that this value is still higher than

the effective bitrate of current 802.11a/g WMNs [75].

Memory overhead. Same as in MORE, each router in CCACK maintains an in-

novative packet buffer Bv for each flow, and also a 64KB look up table for reducing

the cost of the GF(28) multiplications [22]. With a packet size of 1500 bytes, the size

of Bv is 48KB. The extra overhead in CCACK comes from the two additional buffers

Bu and Bw, which store, however, only 32-byte vectors, and not whole packets. In

our implementation, the total size of Bu and Bv is 2× 5× 32× 32 = 10KB, which is

relatively small compared to the size of MORE’s structures.

Header overhead. The N-byte ACK vector and the total differential backlog ∆Qtot
nj

are the two fields we add to the MORE header. The differential backlog per flow is

bounded by the batch size N . With N = 32, two bytes are enough to support up

8Note that the source in CCACK does not have to construct an ACK vector, and hence the cost at
the source is the same as in MORE.
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to 2048 flows, and the total size of the two fields is equal to 34 bytes. However, in

CCACK, we do not include in the packet header the transmission credits for the FNs,

which are required in MORE. This can potentially make CCACK’s header smaller

than MORE’s depending on the number of FNs.

4.5 Protocol implementation and testbed evaluation

In this section, we describe an implementation of CCACK on the MAP testbed

and present experimental results comparing CCACK and MORE.

4.5.1 Implementation details

For the implementation of CCACK, we followed the same approach as in Sec-

tion 3.5.2. For ease of debugging, deployment, and evaluation, we implemented

CCACK at the application layer, using broadcast sockets, instead of at layer 2.5.

For a fair comparison, we also implemented MORE at the application layer, following

all the details in [22]. We note again that such an implementation unavoidably results

in some performance degradation for both protocols, compared to an implementation

closer to the MAC layer, from crossing the kernel-user boundary. Actually, the degra-

dation is larger for CCACK because its credit mechanism is closely coupled with the

MAC layer, as we explain later in this section. Most of the implementation details

are the same as in Section 3.5.2. We focus here on one additional challenge we faced

in the implementation of CCACK.

Removing the dependence on the MAC layer. In an ideal implementation at

layer 2.5, a node running either MORE or CCACK transmits a packet when (1) the

802.11 MAC allows and (2) the credit counter is positive. In our application layer

implementation, we cannot get any feedback from the MAC, and hence, we had to

modify the transmission policy for the two protocols.

In our implementation of MORE, the application instead delivers packets to the

IP when only the second condition holds and there is enough space in the socket
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buffer; from the IP layer, the packets are delivered to the wireless driver stored at the

card’s queue for transmission at a later time.9 Similar to a layer-2.5 implementation,

the credit counter is incremented every time a packet is received from an upstream

node, and decremented after every transmission.

Unlike in MORE, the credit counter in CCACK is incremented every time the

MAC layer signals a transmission opportunity. Since the application cannot know

when there is a transmission opportunity without access to the MAC layer, we ap-

proximate the number of transmission opportunities via the following heuristic. A

node increments its credit counter every time it hears a data packet transmission

from another node by a fraction of 1/N of the actual increment determined by the

rate control algorithm, where N is the number of nodes in the node’s neighborhood.

The intuition behind this is that with a fair MAC layer every node in a neighborhood

would roughly get an equal number of transmission opportunities. To avoid possible

deadlock situations, where every node in a neighborhood is waiting for another node

to transmit, we also use a timeout equal to one data packet transmission time, after

which a node always increments its credit counter.

4.5.2 Experimental setup

In the implementation of the two protocols, we used the same parameters as in

our simulation study in Section 4.4. In all the experiments, the bitrate of the wireless

cards was set to 2Mbps and the transmission power to 16dBm. We disabled RTS/CTS

for unicast frames as most operational networks do. With these settings, the length

of the shortest ETX paths between different nodes is 1-5 hops in length, and the loss

rates of the links vary from 0% to 91%, with an average value of 36%.

We experimented with 20 single-flow scenarios (i.e., randomly selected source-

destination pairs), 10 2-flow scenarios, and 6 3-flow scenarios. For each scenario,

we first ran the ETX module to collect the pairwise loss rates and ETX metric for

9We try to keep this time as short as possible by limiting the socket buffer size and the card’s queue
length to a couple of packets, as we have described in Section 3.5.2.
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each link of our testbed, and then we ran the two protocols, MORE and CCACK, in

sequence. With both protocols, the source sent a 2.3MB file consisting of 1460-byte

packets.

As we have explained in Section 4.4.1, the gain of CCACK over MORE is more

pronounced with flows over long paths, where the destination is several hops away

from the source. Unfortunately, the size of our testbed limited our choices in flow

selection. Hence, in the single-flow experiments described below, we also included

flows where the destination was 2 hops away from the source (unlike in Section 4.4.2,

where the minimum source-destination distance was 3 hops). Similarly, the small size

of the testbed resulted in a large fraction of the nodes being within sensing range

of each other; this prevented us from increasing the total number of flows beyond

three, since the medium became congested, resulting in very poor performance for

both protocols.10 These two limitations, along with the implementation limitations

we discussed in Section 4.5.1, are expected to limit the gains of CCACK over MORE,

compared to the simulations results in Section 4.4.

4.5.3 Experimental results

The testbed evaluation results are shown in Figures 4.12(a)-4.12(d).

Figures 4.12(a), 4.12(b) compare throughput with CCACK and MORE with 1,

2, and 3 flows. In Figure 4.12(a), we observe that CCACK outperforms MORE by

36% on average in the 1-flow scenarios, by 11% in the 2-flow scenarios, and by 15%

on average in the 3-flow scenarios. Figure 4.12(b) plots the CDF of per-flow rela-

tive throughput improvement with CCACK over MORE, as defined in Section 4.4.2,

with 1, 2, and 3 flows. CCACK improves per-flow throughputs for 72% of the flows

in the 1-flow scenarios, 55% of the flows in the 2-flow scenarios, and 75% of the

flows in the 3-flow scenarios. The median improvements are 18%, 3%, and 28%, re-

10As explained in [22], intra-flow network coding based protocols cannot increase the capacity of the
network and they can only improve throughput as long as the total load remains below the network
capacity.
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(a) Average per-flow throughputs
(bars) and standard deviations
(lines).

(b) CDF of relative through-
put improvement of CCACK over
MORE.

(c) Average per scenario FIs
(bars) and standard deviations
(lines).

(d) CDF of relative FI improve-
ment of CCACK over MORE

Fig. 4.12. Testbed evaluation results.

spectively, in the 1-, 2-, and 3-flow scenarios. These gains are lower than the ones

observed in the simulation results in Section 4.4, due to the limitations we discussed

in Section 4.5.2. In spite of these limitations though, our results still demonstrate

the benefit of CCACK over MORE in the case of challenged flows. We observe that

about 20% of the flows in 1-flow and 2-flow scenarios, and 17% of the flows in the

3-flow scenarios show a several-fold throughput improvement with CCACK, up to 3x,

2.4x, and 3.2x, respectively.
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Figures 4.12(c), 4.12(d) compare fairness with CCACK and MORE in case of 2,

and 3 concurrent flows. Figure 4.12(c) plots the average FI with the two protocols.

We observe that the average FI is higher with CCACK in both the 2-flow, and 3-

flow case by 5.7% and 18.9%, respectively. These values are actually higher than the

simulation results. Due to the small size of the testbed, the network gets more easily

congested, even with 2 flows and CCACK’s backpressure-inspired credit mechanism

is very effective in allocating the medium’s bandwidth fairly among contending flows.

Figure 4.12(d) plots the CDF of per-scenario relative FI improvement with CCACK

over MORE. CCACK improves fairness in 60% of the 2-flow scenarios, and 65% of

the 3-flow scenarios and the gains can be as high as 83% in some challenged scenarios.

4.6 Summary

The use of random linear network coding has significantly simplified the design of

opportunistic routing (OR) protocols by removing the need of coordination among for-

warding nodes for avoiding duplicate transmissions. However, network coding based

opportunistic routing protocols face a new challenge: How many coded packets should

each forwarder transmit? To avoid the overhead of feedback exchange, most prac-

tical existing network coding based opportunistic routing protocols compute offline

the expected number of transmissions for each forwarder using heuristics based on

periodic measurements of the average link loss rates and the ETX metric. Although

attractive due to their minimal coordination overhead, these approaches often suffer

significant performance degradation in dynamic wireless environments with continu-

ously changing levels of channel gains, interference, and background traffic.

In this chapter, we presented a novel approach to network coding based oppor-

tunistic routing through the design of CCACK, a new efficient network coding based

opportunistic routing protocol. Instead of avoiding feedback exchange, CCACK en-

codes feedback messages in addition to encoding data packets. A novel Cumulative

Coded Acknowledgment scheme allows nodes in CCACK to acknowledge network
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coded traffic to their upstream nodes in a simple and efficient way, oblivious to loss

rates, and with practically zero overhead. The cumulative coded acknowledgment

scheme in CCACK also enables an efficient credit-based, rate control algorithm. Our

experiments on a 22-node 802.11 WMN testbed show that compared to MORE, a

state-of-the-art network coding based opportunistic routing protocol, CCACK im-

proves both throughput and fairness, by up to 3.2x and 83%, respectively, with av-

erage improvements of 11-36% and 5.7-8.3%, respectively, for different numbers of

concurrent flows. Our extensive simulations show that the gains are much higher in

large networks, with longer routing paths between sources and destinations.
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5. HOW TO EVALUATE “EXOTIC” WIRELESS

ROUTING PROTOCOLS?

One common characteristic of the “exotic” optimization techniques such as oppor-

tunistic routing and network coding, is that they have moved many mechanisms such

as reliability and rate control, that used to be below or above the routing layer in

traditional protocols, to the routing layer. In this chapter, we show that the consoli-

dation of mechanisms from multiple layers into the routing layer poses new challenges

to the methodology for evaluating and comparing this new generation of routing pro-

tocols. We then discuss the diverse set of current practices in evaluating recently

proposed protocols and their strengths and weaknesses. Our discussion suggests that

there is an urgent need to carefully rethink the implications of the new merged-layer

routing protocol design and develop effective methodologies for meaningful and fair

comparison of these protocols. Finally, we make several concrete suggestions on the

desired evaluation methodology. In particular, we show that the traffic sending rate

plays a fundamental role and should be carefully controlled.

5.1 Renaissance of wireless routing protocol design

In this section, we give a brief overview of the evolution of routing protocol design

for multihop wireless networks. Different from Section 1.1, where our goal was to

give a brief background on the two techniques upon which we built our two proposed

protocols, Pacifier and CCACK, here we give a more comprehensive picture by cov-

ering all the “exotic” techniques (opportunistic routing, intra-flow network coding,

and inter-flow network coding), the two traditional techniques (reliability and rate

control) that were moved to the routing layer, and more protocols, aiming to empha-

size two main points: First, the shift in the main goals of routing protocol design
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as we passed from the mobile ad hoc network (MANET) era to the wireless mesh

network (WMN) era, and second, how this shift affected the evaluation methodology

of routing protocols.

The recent evolution of wireless networking from the ad hoc networking era to

the mesh networking era has ignited a new Renaissance of routing protocol design for

multihop wireless networks.

In the ad hoc networking era, the primary challenge faced by routing protocols

(e.g., DSR [14], AODV [15]) was to deal with frequent route breaks due to host mobil-

ity in a dynamic mobile environment. Accordingly, most research efforts were focused

on designing efficient route discovery/repair schemes to discover or repair routes with

minimum overhead. These protocols relied on 802.11 unicast (with its built-in ACK-

based local recovery scheme and exponential backoff) to deal with packet loss due to

channel errors or collisions.

The design goals of the ad hoc routing protocols also drove their evaluation

methodology. The comparison between different protocols was usually in terms of

Packet Delivery Ratio (PDR) and control overhead (e.g. [76, 77]). The offered load,

typically of some constant rate, was low so that the resulting data traffic and control

overhead do not exceed the network capacity. The main parameter varied in the

evaluations was the pause time of the random waypoint mobility model, which char-

acterized how dynamic the environment was. The focus of such a methodology was

to offer a direct comparison of various protocols’ ability to transfer data to the desti-

nation under host mobility, while incurring low control overhead. Interestingly, often

times the protocol comparisons boiled down to tradeoffs between PDR and control

overhead [76,77].

Transition to WMNs changed these rules. In a WMN, routers are static and hence

route changes due to mobility are not a concern anymore. The main performance

metric is now throughput, often times even at the cost of increased control overhead.

The first major effort towards the new design goal was on designing link-quality

path metrics (e.g., ETX [18], ETT [19]) that replaced the commonly used shortest-
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path metric. The protocols using these link-quality metrics still followed the layering

principle: the routing layer finds a good route, and 802.11 unicast is used to deliver

packets hop by hop.

Opportunistic routing. Seeking further throughput improvement, researchers looked

into new, “exotic” techniques, which largely abandoned the layering principle. The

first such technique was opportunistic routing. Instead of having a decoupled MAC

and routing layer, ExOR explored an inherent property of the wireless medium, its

broadcast nature. Instead of first determining the next hop and then sending the

packet to it, it broadcasts the packet so that all neighbors have the chance to hear it;

among those that received the packet, the node closest to the destination forwards

the packet. This also implies that some coordination is required, so that the neigh-

boring nodes can agree on who should rebroadcast the packet next. To reduce the

coordination overhead, ExOR proposed sending packets in batches.

Intra-flow network coding. The second “exotic” technique applied network cod-

ing to multihop wireless networks. With network coding, each mesh router randomly

mixes packets it has received before forwarding them. The random mixing ensures

with high probability that nodes will not forward the same packet, and hence co-

ordination overhead is minimized. Network coding has one more positive effect. It

resembles traditional Forward Error Correction (FEC) techniques, which offer relia-

bility through redundancy, with the extra advantage that it is applied at every hop,

and not end-to-end [23, 24]. Together, network coding eliminates the need for relia-

bility on a per-hop or per-packet basis. Since each coded packet contains information

about many packets, the destination can reconstruct the original data if it receives

sufficiently many packets.

Both techniques use unreliable 802.11 broadcast as the hop-by-hop forwarding

technique, which is a significant departure from traditional routing protocols. The

use of broadcast is a necessity for opportunistic routing as well as effective network

coding. With 802.11 broadcast, there is no reliability mechanism and no exponential

backoff to protect from packet loss due to either channel errors or collisions. However,
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it is not required either. The beauty of opportunistic routing is that we do not tie

each transmission to any particular next hop; if one node does not receive a packet

some other node will probably receive it. In addition, with network coding, we can

send infinite amount of redundancy until the destination can reconstruct the original

packets.

Since the MAC now does not have to deal with retransmissions and exponential

backoffs, it can send at much higher packet rates than in the unicast mode; it is

essentially limited only by carrier sensing. Sending at higher rates potentially implies

higher goodput. Since the design goal is focused on high throughput, this observation

has an immediate implication for the evaluation methodology of these new protocols:

instead of using a constant rate (CBR) of X packets per second, the source node

should send as fast as the MAC allows.

However, making the sources send as fast as the MAC allows has a serious side

effect. It can cause congestion in the network if the aggregate transmission rate of

the nodes exceeds the network capacity. As [58] showed, in contrast to the wired

Internet, where congestion is the result of a complex interaction among many flows,

in a wireless network, congestion can happen even with a single flow, in a simple

topology and even with 802.11 unicast. The use of broadcast in this new generation

of routing schemes simply worsens the situation, since the lack of exponential backoff

in the 802.11 broadcast mode means nodes never really slow down.

Rate control. With congestion, the queues of the nodes become full, causing sig-

nificant packet loss. We thus need to reintroduce the mechanism for preventing the

network from reaching this state: rate control. SOAR [55] is a new opportunis-

tic routing protocol that has a built-in rate control mechanism, both at the source

(using a sliding window) and at intermediate routers (using small queues to avoid

unpredictable queuing delays). Other protocols (e.g., [56, 78]) propose hop-by-hop,

backpressure-based mechanisms to limit the amount of traffic injected in the net-

work. Hence, rate control, which used to be the responsibility of higher layer protocols

(transport or application), is now brought down to the routing layer.
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Inter-flow network coding. The final frontier is that of increasing the network

capacity itself! The basic idea is again simple: a router can XOR packets from

different flows (hence inter-flow network coding as opposed to intra-flow network

coding discussed previously) and broadcast them. If the next hop of each flow has

already overheard all the mixed packets except for the one destined for it, it can XOR

them again with the XORed packet to obtain its own packet. COPE [79] was the

first protocol that brought this idea from theory into practice. By mixing packets

belonging to different flows and transmitting them as one, one reduces the total

number of transmissions required, and hence increases the “effective” capacity of the

network.

Since the technique stretches the capacity of the network, the most natural way

to show its improvement, i.e., the implied evaluation methodology, is to subject the

network to a traffic load (not too much) above the physical capacity, i.e., the net-

work should already be congested before network coding is turned on, which will

then increase the effective capacity just enough to eliminate the congestion. Viewed

differently, only in a congested network there will be many opportunities for packet

mixing at the intermediate routers, and coding will give a significant throughput

improvement compared to no coding.

Reliability. Since 802.11 broadcast is unreliable, with the exception of intra-flow

network coding, which embraces FEC, all other techniques, which rely on MAC-layer

broadcast, require some ARQ-based recovery mechanism. ExOR uses end-to-end

retransmissions by going through the same batch of packets until 90% of them are re-

ceived by the destination; SOAR and COPE use asynchronous cumulative hop-by-hop

acknowledgments; COPE also relies partly on 802.11 unicast (known as pseudobroad-

cast [79]). Hence, in addition to rate control, one more mechanism, reliability, which

used to be the responsibility of either upper (end-to-end) or lower (hop-by-hop) layers,

is now brought to the routing layer.

In summary, the “exotic” techniques used in new routing protocols for WMNs

have largely abandoned the layering principle and adopted a merged-layer approach,
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Fig. 5.1. The evolution of the protocol stack. Part of the MAC layer functionality is
moved to the routing layer (network sublayer 1). Transport layer is also blurred into
the routing layer (network sublayer 3)

as shown in Figure 5.1. Mechanisms that used to be at lower or higher layers are now

blended into the routing layer. This consolidation of mechanisms and techniques into

the routing layer has made the evaluation of routing protocol performance a much

subtler task than before. For example, some mechanisms and techniques may be

conflicting: inter-flow network coding desires traffic load to be above the network

capacity while rate control targets the exact opposite.

In the next section, we discuss the diverse set of current practices in evaluating

this new generation of routing protocols. We show that, in contrast to traditional

routing protocols, there have been no clear guidelines that drive the evaluation of these

protocols; often times each new protocol is evaluated with a different methodology.

5.2 State of affairs

There have been many high-throughput routing protocols for WMNs proposed

over the last few years. We review here the evaluation methodologies used in a rep-
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Table 5.1 Methodologies used in evaluating recent high-throughput WMN routing
protocols.

Protocols Evaluation Methodology Example

Unreliable

Make both protocols reliable
ExOR [20]

but in different ways

Evaluate for a wide range of sending rates,
COPE [79]

with deteriorating PDR

Compare a protocol with rate control
SOAR [55]

against a protocol without rate control

Old ad hoc methodology: keep the sending rate
ROMER [80]

fixed below capacity, measure PDR

Reliable

Compare a reliable protocol
MORE [22]

against an unreliable protocol

Compare a reliable protocol against
noCoCo [78]

an unreliable protocol under TCP

Modify an unreliable protocol to incorporate
noCoCo [78]

the same reliability mechanism of a new protocol

resentative subset of them, as summarized in Table 5.1. We separate two classes of

protocols: unreliable protocols, in Section 5.2.1 and reliable protocols, in Section 5.2.2.

A protocol is defined as reliable if it guarantees 100% PDR to the destination through

local or end-to-end recovery mechanisms (retransmissions or redundancy); otherwise,

it is defined as unreliable. Finally, we briefly discuss an orthogonal issue in the evalua-

tion of both classes of protocols, the use of MAC autorate adaptation, in Section 5.2.3.

5.2.1 Evaluation of unreliable protocols

In the case of unreliable protocols, the main objective is high throughput perceived

by the destinations, i.e., high goodput. The new trend in the evaluation methodology
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is to saturate the network, letting the sources send as fast as possible so that the

traffic load in the network exceeds the available capacity; then measure the maximum

amount of traffic the protocol can deliver to the destination.

However, such a methodology is flawed in that it completely deemphasizes the

PDR metric. The fact that certain applications do not require 100% PDR does not

mean that reliability is a factor that can be completely neglected. Many applications

have certain lower bounds for reliability; for example the quality of a video deteriorates

with packet loss, and hence if the PDR drops below a threshold, the video quality

becomes unacceptable.

Practice 1: Making both protocols reliable. ExOR guarantees reliable end-to-

end delivery of 90% of each batch; every node keeps retransmitting packets belonging

to a given batch until they are acknowledged by a node closer to the destination.

The last 10% of the packets could incur a lot of overhead if they were sent through

ExOR, and hence they are sent through traditional routing, which does not offer any

guarantee for end-to-end reliability.

The authors argued that a direct comparison of ExOR with traditional routing

would be unfair and they conducted the experiments in a way that guaranteed 100%

PDR with both of them. In each case, the size of the file to be downloaded was 1MB.

Instead of using traditional routing to carry the last 10% of the file, the evaluation of

ExOR was based on the transmission of a 1.1 MB file, so as to compensate for loss.

In contrast, the traditional routing protocol was only used to determine the route

offline. The 1MB file was then transferred sequentially hop-by-hop, thus eliminating

collisions, and also packet drops due to queue overflows.1

While this methodology was largely fair, it eliminated one important feature of

traditional routing that does not exist in ExOR: spatial reuse. To avoid duplicate

transmissions, nodes in ExOR are assigned priorities, and only one node transmits

at a time – hence, coordination is achieved at the cost of reduced spatial reuse. In

contrast, with traditional routing simultaneous transmissions can take place across

1The packet losses due to channel errors were masked in the testbed through 802.11 retransmissions.
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the network as long as they do not interfere with each other. This advantage can turn

into a drawback in the presence of a large number of hidden terminals. In other words,

by trying to make the comparison fair by adding reliability to traditional routing, the

authors also removed one feature of traditional routing. Whether this feature harmed

traditional routing depends on the particular environment used for the evaluation.

Practice 2: No rate control - varying the sending rate. COPE in [79] was

compared against a traditional routing protocol (Srcr), under UDP traffic.2 In an

802.11a network with a nominal bitrate of 6Mbps, the experiment was repeated for

gradually increased total offered load. The aggregate throughput over the total offered

load for the two protocols was then presented, as shown in Figure 5.2 (Figure 12

in [79]).

We make several observations on Figure 5.2. First, the advantage of COPE is best

shown when the traffic load in the network is pushed beyond the capacity. Since it is

not clear what the traffic load is, the best thing is to measure throughput for varying

offered load, as done by the authors. As expected, at low loads, COPE performs

similarly to traditional routing. As the load increases, COPE offers on average 3-4x

throughput improvement over traditional routing. Second, like traditional routing,

the goodput of COPE also peaks when the offered load is around the effective capac-

ity of the network (now higher because of inter-flow network coding), and decreases

quickly as the load further increases, and the PDR value, which can be easily cal-

culated by dividing the y value by the x value, deteriorates sharply, possibly below

the acceptable level of many applications. Third, if the protocols have rate control

mechanisms, ideally the goodput should remain constant when the offered load is

increased to beyond the network capacity. Since neither protocol has rate control, we

witness the decline of the goodput.

Practice 3: Comparing a protocol with rate control against a protocol

without. SOAR applies sliding window-based rate control at the sources, trying

2 [79] also evaluated COPE and Srcr under TCP. In that case, although the two protocols are
unreliable, reliability is provided by the transport layer.
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Fig. 5.2. Evaluation of COPE and traditional routing in an ad hoc network for UDP
flows. Reproduced Figure 12 from [79].

to discover the optimal sending rate online. In contrast, traditional routing has no

rate control. This immediately creates a challenge for a fair comparison of the two

protocols. Faced with this challenge, the authors decided to perform the evaluation

in a saturated network, where each source transmits at 6Mbps, same as the nominal

bitrate of the network.

Saturating the network creates an adverse situation for traditional routing, which

is expected to perform poorly under these conditions and suffer significant packet loss

due to queue overflows. In contrast, SOAR adapts the sending rate online, based on

the network conditions. SOAR was shown to offer a large throughput improvement

over traditional routing (one example is shown in Figure 5.3, Figure 14(b) in [55]).

However, it is not clear what part of the improvement is because of the opportunistic

forwarding and what part is because of the rate control.

Practice 4: Old methodology (for evaluating ad hoc protocols). ROMER [80]

is another opportunistic routing protocol which exploits link bitrate diversity in order

to maximize throughput. It uses the 802.11 unicast autorate adaptation mechanism,

and tries to send traffic over high rate links, in contrast to ExOR and SOAR, which

always use a fixed link bitrate. ROMER was evaluated under yet another methodology

different from ExOR and SOAR. The authors compared the PDR (and throughput
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gain) achieved by ROMER over traditional routing, following the old methodology

for ad hoc protocol evaluation. The parameter varied is the link failure probability,

while the source sending rate is kept constant (and the value is unclear).

Due to the autorate adaptation, it is difficult to estimate the capacity of the net-

work used for the evaluation. The high delivery rates achieved (at least) by ROMER

(in Figure 5.4, Figure 5 in [80]) make us conjecture that the sending rate was not

high enough to congest the network, in contrast to in [55] and [79]. However, a single

sending rate does not reveal the maximum gain achieved by ROMER, in particular

if this rate is far below the capacity of the network.

5.2.2 Evaluation of reliable protocols

Traditional routing protocols left to the transport layer the responsibility for end-

to-end reliability. However, TCP, the de facto reliable transport layer protocol for

the wired Internet, has been reported to perform poorly in multihop wireless net-

works [81–90], especially in environments with many hidden terminals and highly

lossy links. The reason is that TCP performs congestion control in addition to re-

liability and correlates these two mechanisms. High packet loss causes TCP flows

to suffer timeouts and excessive backoff, and it prevents them from increasing their
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window size and utilizing the wireless medium efficiently. This is the reason many

new protocols ignore TCP, and incorporate mechanisms for end-to-end reliability at

the network layer instead.

Practice 5: Comparing a reliable with an unreliable protocol. In [22], MORE

is compared against traditional routing showing a median throughput gain of 95%.

The authors used UDP traffic for both protocols sent at the maximum possible data

rate, i.e., the source transmitted as fast as the MAC allowed. As we have already

explained, in a highly congested environment, 802.11 unicast cannot help traditional

routing to recover from packet drops due to queue overflows. In contrast, with MORE

there is no queuing. With a batch size of k packets, every MORE router only needs

to keep k linearly independent packets in a buffer; linearly dependent packets do not

include any new information and can be safely dropped. Hence, a MORE router does

not experience losses due to queue overflows, no matter how fast it receives packets

from its upstream nodes. In addition, the FEC element contained in network coding

masks packet losses due to collisions and channel errors through redundancy. Thus,

a reliable protocol was compared against an unreliable one.

This does not necessarily mean that the comparison favored MORE over tradi-

tional routing. In the evaluation of the two protocols, a fixed size file was sent from
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the source to the destination with each protocol, however with traditional routing

only a fraction of this file is finally delivered to the destination. Depending on the

fraction of the file that is lost and the time taken for the transfer, this evaluation

could favor any of the two protocols. In other words, adding an end-to-end reliability

mechanism to traditional routing would increase the numerator of the throughput for-

mula (the amount of data delivered) but it would also increase the denominator (the

time taken for the total transfer); this could lead to either an increase or a decrease

to the throughput achieved with traditional routing.

Practice 6: Running an unreliable protocol under TCP. An easy way to

provide end-to-end reliability with an unreliable routing protocol is to run it under

TCP; no change is required to the protocol itself. This is one of the approaches

followed by [78] in the evaluation of noCoCo. noCoCo improves COPE by scheduling

the transmissions at the nodes in order to maximize the gain from inter-flow network

coding. Coupled with scheduling in noCoCo is a backpressure, hop-by-hop congestion

control mechanism. The main idea is that a node does not transmit a new packet

before the next hop implicitly or explicitly acknowledges the reception of the previous

transmission. This mechanism eliminates queue overflows and packet dropping and

guarantees end-to-end reliable packet delivery. Hence, in noCoCo, sources do not

transmit as fast as the MAC allows; their sending rates are limited by the congestion

control mechanism.

In the evaluation, noCoCo was compared against COPE [79] and traditional rout-

ing. The main goal was to quantify the gains of coordinated network coding used in

noCoCo against opportunistic network coding, used in COPE. TCP was used with

COPE and traditional routing to provide reliability (and congestion control) at the

transport layer. However, TCP is known to perform poorly in multihop wireless net-

works; in addition, it was shown to interact poorly with COPE and limit the coding

opportunities and consequently the throughput gain [79]. Hence, this methodology

again blurred the true gain from coordinated coding, since different congestion control
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and reliability mechanisms are used. The authors acknowledged this point and noted

that it should be taken into account when trying to interpret the results.

Practice 7: Modifying an unreliable protocol. To finally isolate the gain from

coordinated coding, the authors of noCoCo also modified traditional routing and

COPE to use the same backpressure-based algorithm for congestion control and reli-

ability, thus removing the negative side-effects of TCP.

5.2.3 Use (or no use) of autorate adaptation

802.11 unicast allows a sender to change the bit rate automatically, based on the

quality of the link to the receiver. On the other hand, the majority of the “exotic”

optimization techniques are based on 802.11 broadcast, and hence most of the new

routing protocols based on these techniques (with the exception of ROMER) do not

use autorate adaptation. For “fair” comparison, the evaluation of these protocols

often disables autorate adaptation for the traditional, unicast routing, e.g., in [20,55,

78, 79] (one notable exception is [22]). We argue the contrary; the methodology is

unfair to traditional routing if it can benefit from autorate adaptation.

5.3 Recommendations

We have witnessed the inconsistencies in the current evaluation methodologies of

the new generation of routing protocols. In the following, we make recommendations

for more consistent and meaningful evaluation methodologies.

The importance of rate control. Rate control is fundamental for the optimal

operation of any (unreliable or reliable) protocol, as it ensures that the traffic load

does not exceed the network capacity limit.

Figure 5.5 shows our envisioned throughput performance for well designed un-

reliable protocols. Traditional routing under UDP has no rate control mechanism

incorporated. When the offered load exceeds the network capacity, packets start get-
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Fig. 5.5. Envisioned throughput performance for well designed unreliable protocols
(with built-in rate control), in contrast to traditional routing and high-throughput
protocols without rate control.

ting dropped due to congestion, possibly reducing the throughput much below its

possible maximum value. New protocols with “exotic” techniques are expected to of-

fer a dramatic increase to the throughput; they can even increase the capacity bound

(e.g., from inter-flow network coding). However, without rate control, congestion can

build up and throughput will also start decreasing when the (new) capacity point

is exceeded. By adding appropriate rate control, the goodput is expected to remain

constant when the offered load is beyond the capacity. One implication of this design

guideline is that there may be no need to vary the offered load beyond the capacity

point any more.

For reliable protocols, PDR remains 100% but the argument for rate control is

still valid. When reliability is provided through the traditional way (ARQ), some

rate control is implicitly imposed, since retransmissions are given priority over new

packets. However, when reliability is part of the “exotic” technique (e.g., intra-flow

network coding embraces FEC), the source may never slow down, unless explicitly

forced by rate control. In any case, exceeding the capacity of the network will lead

to unpredictable behavior which will appear either in the form of increased delays,

severe unfairness among flows, or reduced throughput. As an example, the gain of
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MORE over traditional routing in [22] is reduced in the presence of multiple flows.

A related recommendation is that a protocol should also be evaluated with multiple

flows, e.g., as in [22,55], as the rate control for each flow becomes more challenging.

Note that the best method for applying rate control in wireless networks is still

an open problem and is out of the scope of this paper. In general, online mechanisms

(both end-to-end, e.g., sliding-window based [55], and hop-by-hop, e.g., backpressure

based [56, 78]) or even offline computations [58] can be applied. Interestingly, the

importance of rate control has attracted significant interest in recent years in the

theory community in the form of cross-layer optimizations (e.g. [91]). However, these

theoretical works often make simplistic assumptions about the wireless channel and

the interference model in trying to formulate and to solve the formulated optimization

problems.

Isolating the benefit from new optimization techniques. The evaluation of

a new protocol that exploits a new optimization technique should try to isolate the

gain from this “exotic” technique, alone. The tricky part here is that in adding a

new optimization technique, a new protocol often incorporates other old techniques

brought down to the routing layer from the upper layers, such as end-to-end reliability

and rate control. To isolate the benefit of the new optimization, such techniques

should be also incorporated in the traditional routing protocols. Similarly, comparing

a reliable protocol against an unreliable one should be avoided; if the new protocol

includes a mechanism for end-to-end reliability, a similar mechanism should be added

to the old protocol.

Separating rate control from end-to-end reliability. When comparing a new

reliable protocol to an unreliable one, the simplest method to add end-to-end reliabil-

ity to the unreliable (traditional or not) routing protocol is to run it under TCP [78].

While this approach is simple, as no modification to the protocol itself is required, it

may obscure the performance gain.

If the new protocol includes only reliability but no online congestion control (e.g.,

as is the case with FEC-style reliability), it is overkill to run the old protocol under
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TCP which includes both mechanisms which interact with each other. In this case,

the throughput gap between the new and the old protocols may appear larger as a

result of poor performance of TCP congestion control.

If the new protocol includes both reliability and online rate control (e.g., as is

the case with ARQ-style reliability), it can be compared against the old protocol

under TCP as a base-case comparison. Even so, since it is known that TCP performs

poorly in wireless environments, it may still be unclear what the real gain from the

new “exotic” technique is.

We advocate that in both cases, one should attempt to incorporate the relia-

bility/rate control features of the new protocol to the old protocol, following the

methodology of [78]. In this case, the comparison will be able to isolate the gain from

the “exotic” technique exploited in the new protocol. We acknowledge this is not al-

ways easy to do. In some cases the reliability and congestion control mechanisms are

disjoint components of the new protocol, not related to the new “exotic” technique

used (e.g., in noCoCo). In this case reliability is typically provided in the traditional

way (through retransmissions). This disjoint mechanism should be also incorporated

to the old protocol used for comparison. In other cases, the reliability component of

the new protocol may be part of the “exotic” technique itself (e.g., in MORE), and

not a disjoint ARQ component. In such cases, the reliability component should be

carefully added to the old protocol, for example, by adding FEC, and not by running

it under TCP, so that the comparison is not affected by the negative effects of TCP’s

rate control mechanism.

How to incorporate rate control to traditional routing? Similar arguments

against TCP apply here. If two unreliable protocols are compared, one with a rate

control component and one without, running the second protocol under TCP is not

a good solution, because the reliability mechanism is not required. What should be

done is again incorporating the rate control mechanism of the new protocol to the

old protocol. For example, in the evaluation of SOAR, the window-based rate control
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mechanism used in SOAR could be easily incorporated to traditional routing; in that

case the comparison would isolate the gain of opportunistic forwarding.

MAC autorate adaptation. We argue that a good practice is for new “exotic”

protocols to make an attempt to incorporate autorate adaptation. We acknowledge

this is not an easy task and perhaps it is not always feasible. Even in those cases,

we argue autorate adaptation should always be enabled for the case of traditional

routing; an “exotic” protocol should be shown to outperform traditional routing both

with and without autorate adaptation.

5.4 Summary

In this chapter, we discussed the resulting diverse set of current practices in the

evaluation of “exotic” WMN routing protocols. We showed that, in contrast to tra-

ditional routing protocols, there have been no clear guidelines that drive the evalu-

ation of these protocols; often times each new protocol is evaluated with a different

methodology, with its own strengths and weaknesses. We then made several concrete

suggestions for a more consistent and meaningful evaluation methodology.

Finally, we postulate that a fundamental reason for the complexity of evaluating

high-throughput WMN routing protocols is that the research community still does not

have a unified framework for understanding the interactions of MAC layer, congestion,

interference, network coding, and reliability. WMN routing schemes are still being

proposed as point solutions in a space of options; the real problem goes beyond how

to evaluate them, but rather lies in how to understand the fundamental roles of their

constituent parts.
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6. CONCLUSIONS

The recent evolution of wireless networking from the ad hoc networking era to the

mesh networking era has ignited a new Renaissance of routing protocol design for

multihop wireless networks. The change in the design goals and the continuous de-

mand for “high throughput” has led to a set of “exotic” optimization techniques, such

as opportunistic routing and network coding, which took two important departures

from traditional routing. First, they abandoned the notion of the wireless link, by

exploiting wireless broadcast at the MAC layer. Second, they largely abandoned the

layering principle, adopting a cross-layer approach.

The new class of routing protocols exploiting these “exotic” techniques promises

a dramatic increase to overall network throughput compared to traditional routing

protocols. Nonetheless, a careful consideration of the design and evaluation method-

ology of these new protocols reveals a different picture: the first “exotic” routing

protocols are a proof of concept, often working particularly well only for a specific

scenario, but suffering from several limitations that may severely limit their gains in

different scenarios. In addition, the first “exotic” routing protocols have almost solely

focused on unicast routing and have ignored multicast. Overall, there is a long way

ahead in turning proof of concept to robust, practical, complete protocols.

This thesis takes a significant step towards this direction. We have designed,

implemented and evaluated two robust, practical, “exotic” routing protocols that ad-

vance the state-of-the-art for multicast and unicast routing. In addition, we revealed

the challenges that this new class of protocols pose to the evaluation methodology,

showed the limitations of the current practices, and made suggestions for a more

meaningful evaluation methodology.

In contrast to the significant innovations in high-throughput unicast routing, high-

throughput multicast routing has received little attention. This thesis fills this gap
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by proposing Pacifier, the first high throughput reliable multicast routing protocol

for file download applications, that require 100% Packet Delivery Ratio (PDR). One

fundamental challenge to supporting high-throughput, reliable multicast is the “cry-

ing baby” problem, when one receiver with a particularly poor connection slows down

the rest of the receivers. Pacifier is the first protocol to efficiently address this chal-

lenge for file download applications, where the strict reliability requirement makes

this problem particularly challenging. Extensive performance evaluation shows that

Pacifier significantly outperforms MORE, the only “exotic” routing protocol for mul-

ticast, which ignores this problem.

A fundamental challenge faced by all network coding based opportunistic rout-

ing protocols is determining how many coded packets each forwarding node should

transmit while minimizing the coordination overhead. Existing protocols, including

Pacifier, address this challenge by combining network coding with offline loss rate

based heuristics to eliminate the overhead of feedback exchange, often at the cost

of reduced performance in dynamic wireless environments. This thesis proposes a

novel solution to this challenge through the design of the CCACK protocol. CCACK

introduces an online Cumulative Coded ACKnowledgment scheme that allows the

protocol to sustain high performance in dynamic wireless environments, with practi-

cally zero overhead.

An additional contribution of this thesis is that both protocols have been proto-

typed and evaluated on MAP (Mesh@Purdue), a 22-node experimental 802.11a/b/g

WMN testbed at Purdue University. Thus, the contributions of this thesis are shown

to have direct practical application and significance. To facilitate further research on

this newly emerged area of “exotic” routing protocol design, we have made the source

code of our Pacifier implementation publicly available.1

An additional contribution of this thesis lies in the evaluation methodology of

this new class of “exotic” routing protocols. This thesis is the first to examine the

1At the time of this thesis, the code has been downloaded by 17 research groups from 5 different
countries.
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diverse set of current practices in evaluating recently proposed protocols, identify

their strengths and weaknesses, and show the urgent need to carefully rethink the

implications of the new merged-layer routing protocol design and develop effective

methodologies for meaningful and fair comparison of these protocols. Finally, we

make several concrete suggestions on the desired evaluation methodology.

6.1 Open issues and future work

The work presented in this dissertation raises a number of interesting questions

specific to the techniques presented and inspires future research directions.

6.1.1 Open challenges in the design of “exotic” routing protocols for

WMNs

Compatibility with traffic other than file transfers. The majority of the initial

“exotic” routing protocols (e.g., ExOR, MORE) were explicitly designed for file trans-

fer applications. Similarly, the work in this thesis focused on file transfer applications

for multicast (Pacifier) or unicast (CCACK). One open question is whether this type

of batch based protocols are appropriate for other types of traffic, e.g., video stream-

ing. Streaming applications have very different requirements from file transfers. On

one hand, they do not require 100% PDR (though a high PDR is always desirable

since it improves the user-perceived quality of the stream); on the other hand, they

pose strict requirements in terms of packet delay and jitter. Due to these differences,

it is not clear whether “exotic” routing protocols that guarantee 100% PDR, e.g.,

MORE, CCACK, or Pacifier can work with streaming applications.

Focusing on multicast, Pacifier cannot be used to address the “crying baby” prob-

lem in streaming applications, since the round robin batching scheme would violate

the deadlines associated with video frames. Recently, theoretical work [92] has shown

that network coding combined with multi-resolution streaming can address this prob-

lem more efficiently than multi-resolution streaming alone. Thus, one interesting fu-
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ture research direction is to look into practical aspects of this integration (a traditional

technique coupled with an “exotic” one) and design a practical protocol that will ef-

ficiently address the “crying baby” problem for streaming applications in WMNs.

“Exotic” routing protocols in multi-rate wireless mesh networks. The ma-

jority of the “exotic” wireless protocols proposed so far suffer from one drawback:

they work only with a single MAC bitrate (one notable exception is ROMER [80],

however, its performance has only been evaluated using simulations). The reason, as

we have explained in Section 5.2.3, is that this class of protocols use 802.11 broadcast

at the MAC layer, which, in contrast to unicast, does not support rate adaptation.

Enabling rate adaptation for broadcast based “exotic” unicast/multicast protocols is

one of the next significant challenges in the area of mesh networking. Preliminary

work has unsuccessfully tried to address this challenge through offline selection of

the optimal rate at each node after periodic loss measurements [93]. In contrast, the

lessons learned from unicast rate adaptation algorithms (which adapt the rate in very

short time scales) suggest that the right approach is through online feedback. Our

CCACK protocol was a first demonstration of how network coding can help to effec-

tively compress useful feedback for broadcast based “exotic” routing protocols instead

of completely eliminating it. We believe that this type of coded feedback is the key to

a successful integration of rate adaptation algorithms with “exotic” broadcast based

protocols.

“Exotic” routing protocols over “exotic” radios. “Exotic” routing protocols

have been designed to work on top of traditional 802.11 radios. As hardware tech-

nology advances and the demand for spectrum continues to grow, novel radios are

enhanced with many additional “exotic” features. Such “exotic” features include

MIMO technology (e.g., in the new 802.11n standard), smart steerable and adaptive

beamforming directional antennas for spatial separation, cognitive radios for dynami-

cally changing the frequency space a signal occupies to utilize white spaces, and even

radios and protocols that exploit interference rather than avoiding it [94]. How much

gain we can expect from such radio innovations in a multihop network remains an
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open question. In the context of routing protocol design, additional important ques-

tions are raised: can “exotic” routing protocols be efficiently combined with exotic

radios, given that several “exotic” radios (e.g., directional antennas or cognitive ra-

dios) preclude the use of wireless broadcast? What changes do we have to make to

the current “exotic” routing protocols? How should we design the next generation

routing protocols in order to extract the maximum possible gains from such “exotic”

radios?

Integration of exotic routing protocols in the networking stack. Existing net-

work coding based routing protocols have been implemented as user-level programs,

either communicating with the wireless interface using raw sockets (e.g., MORE) or

directly at the application layer (e.g., Pacifier). Although such implementations al-

low for faster modification and easier experimentation, they inevitably suffer some

performance degradation from frequently crossing the kernel-user boundary. As a

consequence, all testbed evaluations so far have used only the lowest MAC bitrates.

In order to evaluate the impact of rate adaptation, or to explore the synergy with

“exotic” radios that offer significantly higher bitrates, “exotic” routing protocols have

to be placed in the correct place in the networking stack. Identifying the right place

is itself a challenging question, as these protocols require collaboration with the lower

layers, while at the same time they often implement functions such as end-to-end rate

control or reliability which used to be the responsibility of upper layers.

6.1.2 “Exotic” techniques in other types of networks

The practical advantages of network coding (intra- or inter-flow) have been mainly

demonstrated in multihop wireless networks. However, other types of wireless net-

works can also benefit from these “exotic” techniques. The key idea is again to exploit

the broadcast property of the wireless medium along with opportunistic overhearing.

As an example, network coding can be used to design efficient retransmission

schemes in single-hop networks, e.g., 802.11 WLANs or cellular networks. Under
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high loss rates, e.g., in the presence of a large number clients, the simple retransmis-

sion mechanism of 802.11 unicast can cause significant overhead and severely limit

the throughput of the WLAN, as the AP may spend a significant portion of the air-

time retransmitting lost packets. This motivates the need for novel, more efficient

retransmission schemes. We illustrate how coding can help in improving the efficiency

of the retransmission mechanism in a WLAN with the following example. Consider

an AP and two clients C1, C2. The AP has two packets, p1, p2, one for each client,

respectively. In a lossy wireless network, it may happen that both packets are lost

and the AP would have to retransmit both of them. However, due to the broadcast

nature of the wireless medium, it can also happen that C1 received the packet p2

destined to C2 and C2 received the packet p1 destined to C1. In that case, the AP

can XOR the two packets and broadcast one the combined packet p1 ⊕ p2. Then

C1 can extract its own packet p1 by XORing p1 ⊕ p2 with p2 and similarly, C2 can

extract p2 by XORing p1⊕p2 with p1, thus saving one transmission. This simple idea

can be extended beyond the two-client example, further improving the retransmission

efficiency.

The potential benefits of network coding based retransmission schemes have been

demonstrated theoretically and experimentally through the design of MU-ARQ [95]

and ER [96], respectively. However, similar to the case of multihop WMNs, these first

coding based retransmission protocols for WLANs are simply proof of concept, often

resorting to simple heuristics, and cannot realize the full potential of the inter-flow

network coding. We are currently working towards developing a novel network coding

based retransmission protocol that will successfully address the limitations of these

first protocols. Our approach combines the two types of network coding (intra- and

interflow) with the goal of designing a systematic coding strategy rather than simple

heuristics to achieve optimal theoretical performance and at the same time allow for

a practical implementation.
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