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Problem statement

= Given a graph, Let G = (V, E) be a directed graph, |V| = n,
|IE| = m, let s be a distinguished vertex of the graph, and w
be the non-negative value to the weight of each edge,
which represents the distance between the two vertexes.

» Single source shortest path: The single source shortest
path (SSSP) problem is that of computing, for a given
source vertex s and a destination vertex t, the weight of a

path that obtains the minimum weight among all the
possible paths.
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Dijkstra’s algorithm

= Dijkstra’s algorithm is a

graph search algorithm D .

that solves single-source @) = &~

shortest path for a graph
with nonnegative QNG T
weights. 0

= Widely used in network

900 5
routing protocol, e.qg.,

Open Shortest Path First Fig. 1 24-node U.S. mesh network
(OSPF) protocol.
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Dijkstra’s algorithm
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Dijkstra’s algorithm-1st round
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Dijkstra’s algorithm-3'9 round
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Dijkstra’s algorithm-6" round
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Sequential Dijkstra’s algorithm

Create a cluster cl[V]
Given a source vertex s
While (there exist a vertex that is not in the cluster cl[V])
{
FOR (all the vertices outside the cluster)
Calculate the distance from non-member vertex
to s through the cluster
END

Select the vertex with the shortest path and add it to
the cluster




Dijkstra’s algorithm

= Running time 0(V?)

— In order to obtain the routing table, we need O(V) rounds iterations
(until all the vertices are included in the cluster). In each round, we
will update the value for O(V) vertices and select the closest
vertex, so the running time in each round is O(V). So, the total

running time is 0(V?2).

» Disadvantages:
— If the scale of the network is too large, then it will cost a long time

to obtain the result.
- For some time-sensitive app or real-time services, we need to

reduce the running time.
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Parallel Dijkstra’s algorithm

= Approach:
— Each core identifies its closest vertex to the source vertex;
— Perform a parallel prefix to select the globally closest vertex;
— Broadcast the result to all the cores;
— Each core updates its cluster list.




Parallel Dijkstra’s algorithm
= Step 1: find
the closest
node in my
subgroup.
" Ste ”2|usef cluster /_\
ara el prefix
f|nd trl?e A : :
global closest. |
— ’



Parallel Dijkstra’s algorithm

Create a cluster cl[V]

Given a source vertex s

Each core handles a subgroup of V/P vertices

While (there exist a vertex that is not in the cluster cl[V])

{

FOR (vertices in my subgroup but outside the cluster)

Calculate the distance from non-member vertex to s
through the cluster,;
Select the vertex with the shortest path as the local
closest vertex;

END

Use the parallel prefix to find the global closest vertex
among all the local closest vertices from each core.
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Parallel Dijkstra’s algorithm

2
= Running time 0O (V? + V- log(P))
— P Is the number of cores used. In order to obtain the routing table,
we need O(V) rounds iteration (until all the vertices are included In
the cluster). In each round, we will update the value for O(V)
vertices using P cores running independently, and use the parallel
prefix to select the global closest vertex, so the running time in

each round is O(V/P)+O(log(P)). So, the total running time is
2
0 (% +V -log(P)).




Simulation results and analysis

» Experiment 1:

— Run on one 32-core node, with different size of mesh network model (50*50,
100*100, 150*150).

— Analyze the performance in terms of different size of network

= Experiment 2:

— The mesh network size is fixed-150*150. The task is run on one 32-core node,
three 12-core nodes, sixteen 2-core nodes, respectively.

— Analyze the performance in terms of different distribute way.

» Implement using OpenMP and all the statistics are the
average values for 10 rounds of running.
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Experiment 1

* The running time

— It is obvious that, for the large size
network (150*150), the running time
IS decreasing as the number of
cores increases until it reaches the :
smallest value, then the running
time will increase because of the
communication latency.

— For middle size network (100*100),
the phenomenon of a reducing
running time is not that obvious.

=50*50
\ el 100*100
e 150%150
— For a small size network (50*50), ﬁ
the running time is even increasing —_—
as the number of cores increases, S
because the communication latency The number of cores

outperforms the benefit from using T
more cores. Fig. 3 The running time v.s. the number of cores
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Experiment 1
* The speed up

— The speed up is increasing as the
number of cores increases until it
reaches the maximum value, then
the speed up is decreasing.

— The speed up is increasing because
of using more cores.

w =] =l =]

— The speed up is decreasing because i, [ A f—
the communication latency 25 ™~ —=—100100
outperforms the benefit from using 2 | N oo
more cores. .

0 T T T T

— As the network size increases, the
number of cores used to get the
maximum speed up increases. (As
shown in the figure, 50*50-4 cores, Fig. 4 The speed up v.s. the number of cores
100*100-8 cores, 150*150-16 cores)

The number of cores
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Experiment 1

* The cost
— The cost is increasing because the
speed up (or the benefit of a
reduced running time) cannot 20
outperforms the cost of using more * ﬁ
cores. N /
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Fig. 5 The cost v.s. the number of cores




Experiment 2

* The running time

— The running time is decreasing
as the number of cores
Increases when all the cores are
In the same node.

— When cores from different nodes
are used, the running time is
Increasing dramatically  as
shown for 16*2-core and 3*12-
core
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Fig. 6 The running time v.s. the number of cores
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Experiment 2

* The speed up

— The speed up is increasing as
the number of cores increases If

the cores are from the same 8
node. : A
— When cores from different g, \ \\
nodes are used, the speed up is g. \ o—162-core
decreasing significantly as 2s \ —m—312-core
shown for 16*2-core and 3*12- : ,( : T ATsRcore
core. :
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Fig. 7 The speed up v.s. the number of cores




Experiment 2

= The cost
— The cost is increasing as the
number of cores increases.
— The cost of a 16*2-core is much . .
higher than the cost of 3*12-core 350 /
and 1*32-core. 3o /
§ 0 / e 16 2-cOre
'E izz / , e 3*] 2 core
100 / / s 1*32-cOrE
' ’ The n:|m ber nfcnres b N

Fig. 3 The cost v.s. the number of cores
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