
A Comparison of Global Sequence

Alignment Algorithms for Shared and

Distributed Memory Machines
Max Farrington

What is global sequence alignment?
• Global sequence alignment is a bioinformatics technique for

aligning two [or more] protein sequences with respects to the
whole sequence.

• Every alignment is evaluated by maintaining a scoring matrix.

• Positive and negative scores are granted based on matches or

mismatches.

- Based on the use case, you can change the scoring

scheme (ex: +1 match, -1 insertion/deletion, -1 mismatch)

• The best alignment is then found by backtracing from the bottom

right
2

https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm

What is it actually used for?
• When comparing the sequences of two subjects that share a

common ancestor, you can view the mismatches, insertions, and
deletions as mutations from that ancestor.

• You can then derive the importance of specific subsequences by

how they are preserved in descendants of that ancestor.

• Millions of subsequences have also been tagged/identified for

specific behavior.

- You can find similarities between untagged/tagged

sequences to find known genes in a sequence.

3

https://en.wikipedia.org/wiki/Sequence_alignment

Why is it a good parallel
programming problem?
• To compute the running score, there are minimal data dependencies, allowing

for computation to be done in parallel either row/column-wise, or along the
anti-diagonal.

• These methods have tradeoffs in terms of efficiency and space complexity.

- For anti-diagonal solutions, you only need to store the current and

previous anti-diagonal to get the score, which changes in size as you fill
the matrix. This is possible since you are only taking the maximum of
cells to the top, left, and top left of a given cell.

- For row/column wise solutions you need to store the current and

previous row, but the size stays fixed. Getting a value for a cell is more
complicated in parallel, but load balancing is better than the antidiagonal
method.

4

https://www.researchgate.net/figure/Anti-diagonal-method-an
d-dependency-of-the-cells_fig11_222408669

How the algorithm relates to
parallel prefix
• Parallel prefix takes a binary associative operator (such as +, -,

*, MAX(), etc.) and an array of n elements, and for each
element, computes and stores a running total based on the
chosen operator.

• In the case of the Needleman Wunsch algorithm, we are

effectively keeping a running total, but the value in each spot
depends on the max value of its neighbors that have already
been computed.

• Needleman Wunsch also allows for negative values in the

matrix, so the work can very easily be split into chunks with the
preceding values communicated via parallel prefix.

5

https://link.springer.com/chapter/10.1007/978-3-031-12597-3_21

Aluru et all.

Parallel example - mpi

6

A A C T G G A A

0 -2 -4 -6 -8 -10 -12 -14 -16

C -2 -1 (1) -3 (1) -9* (1)

A -4

T -6

G -8

Gap penalty: -2, mismatch: -1, match 1
A = AACTGGAA
B = CATG

w[1] = Max(T[0,0] + Match(B[0],A[0]) ,T[0,1] - 2)
= -1

x[j] = max(-1 + 1(2), -∞) = 1

T[1,1] = 1 - 1(2) = -1

w[2] = Max(T[0,1] + Match(B[0],A[1]) ,T[0,2] - 2)
= -3

x[j] = max(-3 + 2(2), 1) = 1

T[1,2] = 1 - 2(2) = -3

w[5] = Max(T[0,4] + Match(B[0],A[4]) ,T[0,5] - 2)
= -9

x[j] = max(-9 + 5(2), -∞) = 1

T[1,5] = 1 - 5(2) = -9

0 1 2 3 4 5 6 7 8

7

A A C T G G A A

0 -2 -4 -6 -8 -10 -12 -14 -16

C -2 -1 (1) -3 (1) -3* (3) -5* (3) -9* (1) -11* (1) -15* (1) -15* (1)

A -4

T -6

G -8

Gap penalty: -2, mismatch: -1, match 1
A = AACTGGAA
B = CATG

0 1 2 3 4 5 6 7 8

Parallel example - mpi

8

A A C T G G A A

0 -2 -4 -6 -8 -10 -12 -14 -16

C -2 -1 (1) -3 (1) -3* (3) -5* (3) -9* (1) -11* (1) -15* (1) -15* (1)

A -4

T -6

G -8

Gap penalty: -2, mismatch: -1, match 1
A = AACTGGAA
B = CATG

Prefix time!

Binary associative operator -
Max(x)

0 1 2 3 4 5 6 7 8

Parallel example - mpi

9

A A C T G G A A

0 -2 -4 -6 -8 -10 -12 -14 -16

C -2 -1 (1) -3 (1) -3 (3) -5 (3) -7 (3) -9 (3) -11 (3) -13 (3)

A -4

T -6

G -8

Gap penalty: -2, mismatch: -1, match 1
A = AACTGGAA
B = CATG

Now, recompute x[j] using the
value received during the prefix
scan, and use for calculating
T[i,j]

Additionally, share the last
value in your local row with the
processor next to you

0 1 2 3 4 5 6 7 8

Parallel example - mpi

10

A A C T G G A A

0 -2 -4 -6 -8 -10 -12 -14 -16

C -2 -1

A -4

T -6

G -8

Gap penalty: -2, mismatch: -1, match 1
A = AACTGGAA
B = CATG

0 1 2 3 4 5 6 7 8

Parallel example - openmp

Wavefront algorithm
starting from M[1][1]

M[1][1] = Max(
M[0][1] + penalty,
M[1][0] + penalty,
M[0][0] + Match(A[0],B[0])) = -1

11

A A C T G G A A

0 -2 -4 -6 -8 -10 -12 -14 -16

C -2 -1 -3

A -4 -1

T -6

G -8

Gap penalty: -2, mismatch: -1, match 1
A = AACTGGAA
B = CATG

0 1 2 3 4 5 6 7 8

Parallel example - openmp

Wavefront algorithm on
second antidiagonal

M[1][2] = Max(
M[0][2] + penalty,
M[2][1] + penalty,
M[1][0] + Match(A[1],B[2])) = -1

M[2][1] = Max(
M[1][1] + penalty,
M[2][0] + penalty,
M[1][0] + Match(A[1],B[0])) = -3

Benchmarking and
scalability

Runtime analysis - mpi

13

n/p 100000 120000 140000 160000 180000 200000
1 94.972 142.176 194.823 257.642 318.329 470.006
2 73.5367 108.38 126.419 171.986 240.79 280.597
4 49.3603 70.1906 95.9919 125 158.477 217.044
8 24.1509 34.7976 46.5727 60.3988 85.1384 115.308

16 14.2428 20.195 25.385 33.2346 52.0935 75.9925
32 7.85093 10.6655 15.6509 19.5389 24.7102 28.8214

Speedup - mpi

14

100000 120000 140000 160000 180000 200000

1 1 1 1 1 1 1

2 1.29 1.31 1.54 1.5 1.32 1.68

4 1.92 2.03 2.03 2.06 2.01 2.17

8 3.93 4.09 4.18 4.27 3.74 4.08

16 6.67 7.04 7.67 7.75 6.11 6.18

32 12.1 13.33 12.45 13.19 12.88 16.31

Efficiency - mpi

15

100000 120000 140000 160000 180000 200000

1 1 1 1 1 1 1

2 0.65 0.66 0.77 0.75 0.66 0.84

4 0.48 0.51 0.51 0.52 0.5 0.54

8 0.49 0.51 0.52 0.53 0.47 0.51

16 0.42 0.44 0.48 0.48 0.38 0.39

32 0.38 0.42 0.39 0.41 0.4 0.51

Runtime analysis - OpenMP
1 2 4 8 16 32 56

100000 242.477 120.287 61.7209 31.1008 17.5827 12.856 12.9571

120000 383.087 183.703 95.7509 43.4616 28.0965 20.1859 17.533

140000 510.382 249.488 133.274 63.9765 39.8006 27.8714 24.8244

160000 728.152 365.687 207.714 105.315 76.8874 62.5928 49.3791

180000 896.089 463.543 228.322 118.692 70.8847 48.5388 43.3767

200000 1273.36 607.803 302.292 149.379 108.307 75.1523 53.5564

Speedup - OpenMP

P/|S| 1 2 4 8 16 32 56

100000 1.00 2.02 3.93 7.80 13.79 18.86 18.71

120000 1.00 2.09 4.00 8.81 13.63 18.98 21.85

140000 1.00 2.05 3.83 7.98 12.82 18.31 20.56

160000 1.00 1.99 3.51 6.91 9.47 11.63 14.75

180000 1.00 1.93 3.92 7.55 12.64 18.46 20.66

200000 1.00 2.10 4.21 8.52 11.76 16.94 23.78

Efficiency - OpenMP
P/|S| 1 2 4 8 16 32 56

100000 1.00 1.01 0.98 0.97 0.86 0.59 0.33

120000 1.00 1.04 1.00 1.10 0.85 0.59 0.39

140000 1.00 1.02 0.96 1.00 0.80 0.57 0.37

160000 1.00 1.00 0.88 0.86 0.59 0.36 0.26

180000 1.00 0.97 0.98 0.94 0.79 0.58 0.37

200000 1.00 1.05 1.05 1.07 0.73 0.53 0.42

Conclusions
• Clear Strong and weak scaling up to 16 processors for almost all

sequence lengths from 100000-20000 with Openmp.

- Strong and weak scaling begins to fall off around 32

processes.

• Cost of communication vs thread coordination apparent when

comparing efficiency of OpenMP and MPI.

-While Openmp seems to have much better scaling, MPI

implementation is clearly much faster. This would only be
further accentuated with multiple processes per node with
MPI.

• Still more testing to be done! 19

References
• https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_al

gorithm

• https://en.wikipedia.org/wiki/Sequence_alignment

• https://www.researchgate.net/figure/Anti-diagonal-method-and-d

ependency-of-the-cells_fig11_222408669

• https://link.springer.com/chapter/10.1007/978-3-031-12597-3_21

• Srinivas Aluru, Natsuhiko Futamura, Kishan Mehrotra, Parallel

biological sequence comparison using prefix computations,

• https://bioboot.github.io/bimm143_W20/class-material/nw/

20

https://en.wikipedia.org/wiki/Sequence_alignment
https://www.researchgate.net/figure/Anti-diagonal-method-and-dependency-of-the-cells_fig11_222408669
https://www.researchgate.net/figure/Anti-diagonal-method-and-dependency-of-the-cells_fig11_222408669
https://link.springer.com/chapter/10.1007/978-3-031-12597-3_21

