
Data Parallelism in Linear
Regression using MPI

Course: CSE 708 Programming Massively Parallel Systems
by Dr. Russ Miller

Submitted by:

Ritika Rekhi (ritikare@buffalo.edu)

Linear Regression

• Linear Regression is used when we want to predict the value of one variable using the value of
another variable.

• The variable whose value we want to predict is called as the dependent variable.

• The variable that are used to predict the value of the above dependent variable is called as the
independent variable.

• Linear regression is widely applicable in fields like economics and finance, marketing,
healthcare, real estate, sports, and education, showcasing its versatility in data analysis and
predictive modeling.

• In this project, I will analyze a household power consumption dataset containing approximately 2M
records to predict current intensity of households based on various readings.

Source: https://www.ibm.com/topics/linear-regression

https://www.ibm.com/topics/linear-regression

Household Power Consumption

• Independent Variables
• Global Active Power : Household global minute-averaged active power (in kilowatt)

• Global Reactive Power: Household global minute-averaged reactive power (in kilowatt)

• Voltage: Minute-averaged voltage (in volt)

• Sub-metering 1: It corresponds to the kitchen, containing mainly a dishwasher, an oven and a microwave (hot plates are
not electric but gas powered).

• Sub-metering 2: It corresponds to the laundry room, containing a washing-machine, a tumble-drier, a refrigerator and a
light.

• Sub-metering 3: It corresponds to an electric water-heater and an air-conditioner.

• Dependent Variable
• Global Intensity: Household global minute-averaged current intensity (in ampere)

This dataset is a time series dataset which contains 2,075,259 measurements gathered between December 2006
and November 2010. Based on the definition of Linear Regression, the variables in our dataset would be
categorised as follows:

Source: https://www.kaggle.com/datasets/uciml/electric-power-consumption-data-set

https://www.kaggle.com/datasets/uciml/electric-power-consumption-data-set

• Based on the image on the right, it can be
clearly seen that the independent and the
dependent variables have a high
correlation value. Thus, the fitted line that
we would get after performing Linear
Regression would be able to give the value
of Global intensity accurately.

Figure 1: Image showing correlation between the dependent and the
independent variables.

Linear Regression Training Algorithm for a Single Machine

• Linear Regression is all about finding the best fit line that would help in predicting the value of new data points.
Since this problem has multiple independent variables, we would need to find the value for the formula below:

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+ 𝛽3𝑋3……. 𝛽𝑛𝑋𝑛

where, 𝛽0 is the y-intercept and 𝛽1, 𝛽2, 𝛽3 … 𝛽𝑛 are the coefficient of each independent variable.

• The dependent and independent variables also get converted to a matrix for calculations.
• This algorithm would be leveraging Stochastic Gradient Descent, which uses gradient descent on mini-batches

of data to get appropriate values of y-intercept and the independent variable coefficients. The formula used for
the calculation would be as follows:

𝑤𝑗 = 𝑤𝑗 + α σ𝑖(𝑦𝑖 − 𝑤𝑇𝑥𝑖)𝑥𝑖𝑗

where 𝑤𝑗 is the coefficient value corresponding to that independent variable or the y-intercept, α is the learning
rate with which we want to update the coefficient values each iteration, 𝑤𝑇 is the weight matrix having the y-
intercept values and independent variable coefficient values, σ𝑖(𝑦𝑖 − 𝑤𝑇𝑥𝑖) tells the difference between the
predicted and actual value and 𝑥𝑖𝑗 is the 𝑗 attribute value for the 𝑖 training example.

• Step 1: Initialize the y-intercept, coefficients of independent variables and initial loss.

• Step 2: Repeat the below steps for 100 epochs:
• Step 2a): Repeat the below steps for each of the data in the dataset:

• Step 2a.a): Get the record.
• Step 2a.b): Get the predicted value based on the weights.
• Step 2a.c): Calculate the error by comparing the predicted value with the actual value.
• Step 2a.d): Update the values of y-intercept and coefficients of independent variables.

• Step 3: Check the accuracy of the model against the test dataset.

2M 2M

100 Epochs

CPU(with only single core being used for running this algorithm)

Problems with this approach

• The size of the independent variables’ matrix is huge.

• As the size of the data grows, it might be possible we might run out of RAM to perform the
calculations.

• The time taken for convergence might also be longer as we might need to iterate over the same
data again and again until we get the desired loss.

• This can be performed in parallel instead of running the entire flow on a single machine.

Data Parallelism in Linear Regression using MPI

• Based on the previous algorithm, we can clearly offload some calculation to the other
machines.

• This way we will not run out of RAM when dealing with data that might increase in size.

• To perform data parallelism:
• The 2M records would be split among the different number of machines.
• Each machine will then operate on its own data.
• When the gradient will be calculated on each machine, they would share the gradient values

with other machines and each machine would then take an average of those values to update
the model parameters.

Linear Regression Algorithm in parallel

• Step 1: Initialize the y-intercept, coefficients of independent variables and initial loss.

• Step 2: Repeat the below steps for 100 epochs:
• Step 2a): Repeat the below steps for each of records in the data assigned to that node:

• Step 2a.a): Get the record.
• Step 2a.b): Get the predicted value based on the weights.
• Step 2a.c): Calculate the error by comparing the predicted value with the actual value.
• Step 2a.d): Update the values of y-intercept and coefficients of independent variables.
• Step 2a.e): After every nth record in the dataset:

• Step 3a.c): Share the gradient values with all the hosts.
• Step 3a.e): Update the values of y-intercept and coefficients of independent variables using the averaged gradient values.

• Step 3: Check the accuracy of the model against the test dataset.

2M

400K

400K

400K

100 Epochs

400K

400K

400K

20 Epochs

400K

100 Epochs

400K

100 Epochs

400K

100 Epochs

400K

Machine 1 Machine 2

Machine 3 Machine 4

Machine 5

Diagram flow for Parallelized Linear Regression

Mini-batch 1

Mini- batch 1

Mini-batch 1

Mini-batch 1

Mini-batch 1

Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

Mini-batch 1

Mini- batch 1

Mini-batch 1

Mini-batch 1

Mini-batch 1

Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

MPI Communication Flow

Implementation

• MPI_Allgather function was used to send the values to all the hosts so that all the machines are at the
same compute level at the same time.

• To ensure that the accuracy of the Linear regression model did not drop with increase in the number of
processosrs, a series of experiments were run with the processors communicating after every 50, 100
and 1000 records in the dataset.

• Based on the results, it was better to communicate after every 100th record in the dataset, so that the
accuracy of the model does not decrease with increase in the number of processors.

Results

Processors Run 1 with 1x
data -
Time(ms)

Run 2 with 2x
data -
Time(ms)

Run 3 with 3x
data -
Time(ms)

Run 4 with 4x
data -
Time(ms)

Run 5 with 5x
data -
Time(ms)

1 8688.3206 17169.6961 25625.2576 34155.8526 42771.9858

2 5946.6893 11815.9860 17879.3098 23786.1215 29469.7481

4 3936.2508 8037.9675 11834.9987 15961.6785 19906.5969

8 2877.2035 5163.2822 7685.0937 10344.8398 13039.2069

16 1603.8647 3082.4627 4570.6412 6127.9872 7751.8223

32 1052.9779 2004.4688 2948.6935 4016.9285 5044.8213

64 749.5328 1317.4484 1970.6555 2614.2083 3240.4022

Results- Amdahl’s Law

Results – Gustafson’s Law

Lessons Learned Data Parallelism for Linear Regression

• The data that is distributed among different processors should have all types of data to get a
better fitted line.

• When dealing with a time-series data, it is necessary that the order is maintained so that we get
accurate values for the coefficients of the independent variables.

• It is also necessary that there is sufficient amount of data available on each of the machines so
that the Linear Regression model is trained accurately.

	Slide 1: Data Parallelism in Linear Regression using MPI
	Slide 2: Linear Regression
	Slide 3: Household Power Consumption
	Slide 4
	Slide 5: Linear Regression Training Algorithm for a Single Machine
	Slide 6
	Slide 7
	Slide 8: Problems with this approach
	Slide 9: Data Parallelism in Linear Regression using MPI
	Slide 10: Linear Regression Algorithm in parallel
	Slide 11: Diagram flow for Parallelized Linear Regression
	Slide 12: MPI Communication Flow
	Slide 13: Implementation
	Slide 14: Results
	Slide 16: Results- Amdahl’s Law
	Slide 17: Results – Gustafson’s Law
	Slide 18: Lessons Learned Data Parallelism for Linear Regression

