CSE 708: FALL 2024
FINAL PRESENTATION

On Parallelizing Maximal Clique Enumeration
(Bron-Kerbosch)

Utkarsh Kumar

13 December 2024

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

IMaximal Cliques: what & why?

* Aclqueis a sub graph/graph which is complete: all nodes are connected to each other

* A maximal clique should satisfy the following:

The vertices are subset of given graph where the subset is complete (clique part)

Adding any new node will mean destroying the complete connectivity (maximal part)

* [Moon & Moser, 1965]* proved that any n-vertex graph has a maximum of 3" (n/3) maximal cliques

* Application areas include:

Social network analysis
Bio-informatics

Telecomm & network design
Fraud detection
Recommender system

Scientific collaborations

*Moon, John W., and Leo Moser. "On cliques in graphs." Israel journal of Mathematics 3 (1965): 23-28.

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Maximal Cliques: 1llustrated example

I e X & ~ & ¢,
(a) Input Graph G (b) Non-Maximal Clique in G (¢) Maximal Clique in G
We can still add d, and not For f to be considered a

. break the completeness candidate to add, it should
Diagram from: Apurba Das, Seyed-
Vahid Sanei-Mehri, and Srikanta have been connected to 9\
Tirthapura. 2020. Shared-memory \\
Parallel Maximal Clique b

Enumeration from Static and
Dynamic Graphs. ACM Trans. 3 R4
Parallel Comput. 7, 1, Article 5 ,’

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

But how do we find maximal clique? The naive way:

Step 1: Let V be the set of vertices of the graph G = (V, E).
Step 2: Generate all possible subsets S C V.
Step 3: For each subset S:

(a) Check if S is a clique:
e For all u,v € S, ensure (u,v) € E.
(b) If S is a clique, check if it is maximal:
e Ensure there is no vertex w € V'\ S such that S U {w} is also

a clique.

Step 4: Output all subsets S that are maximal cliques.

Complexity Analysis

e Subset Generation: Generating all subsets S C V takes 2" time,
where n = |V/|.

e Clique Verification: For each subset S of size k, verifying if S is a

clique involves checking (’2“) = @ edges.

e Maximal Check: For a subset S, verifying maximality involves check-
ing n — k vertices outside S.
Overall Complexity:
02" k),

where k is the average size of the subsets being processed.

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

So first, lets speed up serially if possible: enter Bron-Kerbosch

Step 1: Input: Graph G = (V, E).
Step 2: Initialize:

e R = (): The current clique (starts empty).

e P =V: The set of candidate vertices that can be added to R to
form a larger clique.

e X = (): The set of excluded vertices that have already been pro-
cessed to avoid duplication.

Step 3: Recursive Function: Call BronKerbosch(R, P, X):
(a) If PUX = 0, then:

e Output R as a maximal clique.

(b) Select a pivot vertex u € PUX (heuristically chosen to minimize
the size of P\ N(u)).

(c) For each vertex v € P\ N(u):

e Add v to the current clique: R' = RU {v}.
e Recurse on the subgraph induced by neighbors of v:

BronKerbosch(R', PN N(v), X N N(v)).

e Move v from P to X after returning from recursion.

Step 4: Output: All maximal cliques found during recursion.

O

Where,

R (Current Clique): The growing set of vertices forming a clique.

P (Candidates): The set of vertices that can potentially extend R to form a
larger clique.

X (Excluded): The set of vertices that have already been processed to ensure no
duplicate cliques are found.

Bron-Kerbosch has a worst case run time of O(3"3) which is far superior to the
naive implementation

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Bron-Kerbosch example

Maximal Clique Found: {1, 2, 3, 4, 7}
Maximal Clique Found: {3, 4, 5}
Maximal Clique Found: {2, 3, 4, 6, 7}

» 71, X=I[1)
71, X=I1

BK(R=[2,
R=[2, 6

BK(R=[6], » 71, X=I1)
R=[6],F 71, X=[1

BK(R=[2,
R=[2, 3,
BK(R=[2, [71, X=[1)
R=[2 71, X=[1

BK(R=[2,

R=[2, 3, . k:ﬁln PiVOt nOde

5, 6, 71, X=I[1)
6, 71, X=I1

BK(R=[1, » 71, X=[1)
R=[1, 2 71, X= BK(R=[S 1, X=[1)
t 1 o R=[5 xX=[1
BK(R=[1, . 71, X=[1)
R=[1, 2, 71, X=[1

[1, X=[1)
» X=I1

BK(R=[1, [71, X=[1)
R=[1, 2, 71, X=I1

BK(R=[1, P=[1, X=[1)
R=[1, 2, [1, X=[1

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Parallelization scheme: coarse grained

Algorithm 1 Coarse-Grained Parallel Bron-Kerbosch

procedure PARALLELBRONKERBOSCH(R, P, X, graph) P ar alleli 7 ation SCh eme: coarse gr ain e d

1
2 Input: R, P, X (sets), adjacency list of the graph graph.
3 Output: All maximal cliques in the graph.

4 Initialize MPI environment

5: rank < process rank in MPI world

6

7

8

9

O
size + total number of MPI processes
if rank = 0 then > Master process
Select pivot u € PU X
Compute tasks < P\ N(u) > Divide recursive branches
10: Distribute tasks to size — 1 worker processes
11: else > Worker processes Here’s the thing:
iz gﬁigftzs;l,gfgfl{{é from master Eyen before? we get into scaling, the speed up using the
14; Compute P’ < PN N(v), X' + X N N(v) given algorithm doesn’t make sense: the results are very
15: SEQUENTIALBRONKERBOSCH(R', P!, X', graph) poor
16: Send results back to master
17: end if
18: if rank = 0 then > Master process collects results Its like there is insignificant speed up for power-law
19: Gather results from all workers graphs
20: Combine all maximal cliques ’
21: Output maximal cliques
22 endif The given coarse-grained parallelism is very very weak
23: Finalize MPI environment
24: end procedure _ _ _ _ _ _ _ _ _ ______ _ ______________
25: |pr0cedure SEQUENTIALBRONKERBOSCH(R, P, X, graph) > Sequential K Why is the function SEQUENTIALBRONKERBOS CH()

I'version for subproblems

' ' 29
26! if PUX = 0 then needed if we are going parallel??

|

|

|
27:) Report R as a maximal clique :
28:1 else |
29:: for each v € P do !
30:) R + RU{v} ;
31:1 P+~ PNN(), X'+~ XN N(v) |
32:: SEQUENTIALBRONKERBOSCH(R', P’, X', graph) I
33, P+« P\{v}, X « XU{v} ;
34:1 end for |
35:! end if :

|
36:;end procedure

Here’s why:

BK(R=[6], » 71, X=I1)
R=[6], 71, X=[1

Assigned to worker 1

BK(R=[2, [71, X=[1)
R=[2 1, X=

BK(R=[2, =T1,
R=[2, 3, [1. X=[1

This is the only place we are parallelizing

BK(R=[], P=L
R=[]1, P=[1,

» 6, 71, X=I[1)
6, 71, X=I1

BK(R=[11, > 71, X=I1)
R=[11,

Assigned to worker 3

BK(R=[[1, X=[1)
R=[3, , X=[1

BK(R=[1,
R=[1, 2,

BK(R=[1,
R=[1, 2,

=[1, X=[1)
[1, X=[1

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

But what about
notoriously branching graphs

Maximal Clique Found: {1, 2, 3, 4, 7}
Maximal Clique Found: {3, 4, 5}
Maximal Clique Found: {8, 6} °
Maximal Clique Found: {2, 3, 4, 6, 7}
Maximal Clique Found: {8, 9}
Maximal Clique Found: {9, 10, 11}

10 11

BK(R=[9 X=[10])
R=[9, X=[10]
BK(R=[1,
R=[1, 2,

BK(R=[9]
R=[9],
L, 171, X=[1)
T R=[1, 2,
BK(R=[1 s, 101}
R=[11 [9, 10]

11, X—IBJ)

v 71, X=[1)
X=[1

BK(R=[1,2

R=[1, 2

BK(R=[9,
R=[9, 1

1, X=[1)
X=[1

Pivot node

BK(R[]P[IZ! 8.9,10 =
=I[1, P=[1, 8, 9, 10, 111, X=[1

F = = = = = = _—eem mm Em\mm e Em Em = — e = Em =

71, X=[D

1 x=0) BK'{R=2[2,6 , 7], X=[1)

IBK(R=[1 [7] xX=[1) =0z 71, X=01
R=[11P 71, X=01

BK(R=[2, » 71, X=[1)
R=[2, 3, 71, X=I1

BK(R=[6], P 7, 81, X=ID
R=[6], P » 8], X=[1

BK(R=[2, [71, X=[1)

R=[2, 3, 71, X=[] I

BK(R= 1, X=[1)
R=[6 X=[1

BT oo
But now multiple branching, has
potential for gomg more parallel

BK(R=

BK(R=|
R=[8

BK(R=[Xi
R=[10

X=[

61)

=[6]

1, X=I1)
x=[]

1, X=[91)

X=[2]

Algorithm 1 Coarse-Grained Parallel Bron-Kerbosch
1: procedure PARALLELBRONKERBOSCH(R, P, X, graph)
2: Input: R, P, X (sets), adjacency list of the graph graph.
3 Output: All maximal cliques in the graph.
4 Initialize MPI environment
5: rank < process rank in MPI world
6
7
8
9

O
stze < total number of MPI processes
if rank = 0 then > Master process
Select pivot u € PU X
Compute tasks < P\ N(u) > Divide recursive branches
10: Distribute tasks to size — 1 worker processes
11: else > Worker processes
12: Receive assigned task v from master
13: Compute R’ < RU {v}
14: Compute P' <+~ PN N(v), X' + X N N(v)
15: SEQUENTIALBRONKERBOSCH(R’,P’,X’,graph) The 1Ssue Wlth thlS lmplementatlon 1S:
16 end&;?d results back to master If we do not choose a good pivot node (or even if we do),
18: if rank = 0 then > Master process collects results the multiple branchln for each recursion call may
> Shie e ot explode in some processor-JUSRATIEURINGMERS
21; Output maximal cliques completely not utilize some more.....
22: end if
23: Finalize MPI environment
24: end procedure This 1s not a good way to parallelize!
25: procedure SEQUENTIALBRONKERBOSCH(R, P, X, graph) > Sequential
version for subproblems

6 fPUX=Qthen Hence, we do dynamic parallelization, where the
27: Report R as a maximal clique . ; . .
2. else algorithm when detecting multiple branches assigns
29: for each v € P do !
o e RU) tasks on the go!
31: P+~ PNN(), X'+~ XN N(v)
32: SEQUENTIALBRONKERBOSCH(R', P’, X', graph)
33: P+ P\ {v}, X « XU{v}
34: end for
35: end if

36: end procedure

Algorithm 1 Coarse-Grained Parallel Bron-Kerbosch

1: procedure PARALLELBRONKERBOSCH(R, P, X, graph)

2: Input: R, P, X (sets), adjacency list of the graph graph.
3 Output: All maximal cliques in the graph.

4 Initialize MPI environment

5: rank < process rank in MPI world

6 stze < total number of MPI processes
7 if rank = 0 then

8 Select pivot u € PU X

9 Compute tasks < P\ N(u)

10: Distribute tasks to size — 1 worker processes

11: else > Worker processes
12: Receive assigned task v from master

13: Compute R’ < RU {v}

14: Compute P' <+~ PN N(v), X' + X N N(v)

15: SEQUENTIALBRONKERBOSCH(R', P!, X', graph)

16: Send results back to master

17: end if

18: if rank = 0 then > Master process collects results
19: Gather results from all workers

20: Combine all maximal cliques

21: Output maximal cliques

22: end if

23: Finalize MPI environment

24: end procedure

25: procedure SEQUENTIALBRONKERBOSCH(R, P, X, graph) > Sequential

version for subproblems
26: if PUX = () then

27: Report R as a maximal clique

28: else

29: for each v € P do

30: R +— RU{v}

31: P+~ PNN(), X'+~ XN N(v)

32: SEQUENTIALBRONKERBOSCH(R', P’, X', graph)
33: P+ P\ {v}, X « XU{v}

34: end for

35: end if

36: end procedure

Alporithm 1 Dynamic Parallel Bron-Kerbosch using MPI

> Master process

> Divide recursive branches

Note that the function
SEQUENTIALBRONKE
RBOSCHY{() is missing

1: procedure MasTERPROCESS|num_proes)

2 Initialize task queue with the root task (R=0,P =V, X =0}
3 active workers « num_procs — 1

4 while active_workers = 0 do

5 Receive TASK _ REQUEST from any worker w

6 if task queue is not empty then

7 task + Dequeue task from task queue

8 Send TASK_ASSIGN with task to worker w

9

: else
10: Send NO_TASK signal to worker w
11: active_workers + active workers — 1
12: end if
13: Receive NEW_SUBPROBLEM or RESULT messages
14: if NEW_SUBPROBLEM received then
15: Enqueue received subproblem into task queue
16: end if
17: if RESULT received then
18: Store maximal elique in results list
18: end if
20): end while
21: for each worker w do
23: Send TERMINATE signal to worker w
23: end for
24: Output all stored maximal cliques

25: end procedure
26: procedure WoRKERPROCESS(rank)

7 while true do

28: Send TASK_REQUEST to master

29 Wait for message from master

30: if message is TASK_ASSIGN then

31: task +— Received task (R, P, X

32: if PUX =0 then

33: Send RESULT with R to master
34 else

35: Select pivot u from PU X

36: G +— P N{u) & Vertices to explore
3T for each v € @ do

38: R+ RuU{v}

39: P+ PNN(p), X'+ XN N(v)
40: Send NEW_SUBPROBLEM (R’ P', X'} to master
41: end for

42: end if

43: else if message is NO_TASK then

44: Break

45: else if message is TERMINATE then
46: Break

47T end if

48: end while
49: end procedure

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Let’s break 1t down

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Master Initialization and Task Management

MasterProcess () :
Initialize task_queue with root task (R={}, P=V(G), X={})

active_workers = num_procs — 1

Continuously respond to worker requests
while active_workers > 0:
Receive TASK REQUEST from any worker
if task_queue is not empty:
Assign a subproblem for immediate processing
task = Dequeue(task_queue)
Send TASK_ASSIGN(task) to that worker
else:
No current tasks available
Worker becomes idle, and may be done if no tasks

return
Send NO.TASK to that worker
active_workers —= 1

Once all workers signaled no more tasks (active_workers
finalize by sending TERMINATE signals.
for each worker:

Send TERMINATE

// Task is a struct containing (R, P, X) subsets and sizes.
void master_process(int num_procs) {

int active_workers = num_procs - 1;

init_task_queue();

enqueue_task(root_task); // (R={}, P=V, X={})

MPI_Status status;
while (active_workers > 0) {
int request;
// Workers request task
MPI_Recv(&request, 1, MPI_INT, MPI_ANY_SOURCE,
TASK_REQUEST, MPI_COMM_WORLD, &status);

if (!is_empty(task_queue)) {
Task task = dequeue_task(task_queue);
MPI_Send(&task, sizeof(Task), MPI_BYTE,
status.MPI_SOURCE, TASK _ASSIGN, MPI_COMM_WORLD);
} else {
// No tasks available at this moment
MPI_Send(NULL, ©, MPI_BYTE,
status.MPI_SOURCE, NO_TASK, MPI_COMM_WORLD);

active_workers--;

}

// Send termination signal to all workers
for (int i = 1; i < num_procs; i++) {
MPI_Send(NULL, ©, MPI_BYTE, i, TERMINATE, MPI_COMM WORLD);

}

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Master Initialization and Task Management

MasterProcess () :
Initialize task_queue with root task (R={}, P=V(G), X={})
active_workers = num_procs — 1

Continuously respond to worker requests
while active_workers > 0:
Receive TASKREQUEST from any worker
if task_queue is not empty:
Assign a subproblem for immediate processing
task = Dequeue(task_queue)
Send TASK_ASSIGN(task) to that worker
else:
No current tasks available
Worker becomes idle, and may be done if no tasks

return
Send NO.TASK to that worker
active_workers —= 1

Once all workers signaled no more tasks (active_workers
finalize by sending TERMINATE signals.
for each worker:

Send TERMINATE

0),

Global Task Pool Setup: The master starts with a single root subproblem
representing the entire graph. Initially, R=Q), P=V(G), X=Q0

On-Demand Assignment: Workers pull tasks by sending TASK_REQUEST. If
the queue has tasks, the master immediately assigns one

Idle Workers: If no tasks are currently available, the master sends NO_TASK,
effectively marking that worker as temporarily idle. Once all workers become idle
and no new tasks arrive, the master concludes that the entire search is complete

Dynamic Adaptation: Because workers will generate more tasks as they expand
nodes, the queue may repopulate over time. Idle workers can become active again
when new NEW_SUBPROBLEM messages from other workers arrive

Termination: Once no tasks remain and all workers are known to be idle, the
master sends TERMINATE to finalize execution.

the master only gives out

In a coarse-grained approach, the master would _ %,

, risking poor load balance if some subproblems are inherently larger. Here,

tasks, ensuring more uniform workload distribution

and continually re-collects and redistributes

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Worker internals

WorkerProcess () :
while true:

Request a task from the master
Send TASK REQUEST to master

Wait for response
message = Receive from master

if message =— TASK_ASSIGN(task):
Process the assigned task
(R, P, X) = task
if (P UX) — empty:
Found a maximal clique
Send RESULT(R) to master
else:
Perform one step of recursion (task expansion)
subproblems = ExpandTask(R, P, X)
Return new subproblems to master
for each subproblem in subproblems:
Send NEW SUBPROBLEM(subproblem) to master

After this, loop again to request a new task
else if message NO_TASK:
No work available currently
Worker remains idle until TERMINATE is received
or can re—request after a barrier if implemented
break
else if message — TERMINATE:
Master signals completion
break

void worker_process(int rank) {
MPI_Status status;
while (1) {
int req = 1;
MPI_Send(&req, 1, MPI_INT, @, TASK_REQUEST, MPI_COMM_WORLD);

Task task;

MPI_Recv(&task, sizeof(Task), MPI_BYTE, ©, MPI_ANY_TAG,
MPI_COMM_WORLD, &status);

if (status.MPI_TAG == TASK_ASSIGN) {
// Check if this leads to a maximal clique
if (task.P_size == @ && task.X_size == 0) {
// Maximal clique found
MPI_Send(&task.R, task.R_size * sizeof(Vertex),
MPI_BYTE, ©, RESULT, MPI_COMM_WORLD);
} else {

// Expand one step and return new subproblems
expand_task(task);
}
} else if (status.MPI_TAG == NO_TASK) {
// No current work, worker becomes idle
// Could wait or just break if using a barrier approach
break;
} else if (status.MPI_TAG == TERMINATE) {
// Search completed
break;

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Worker internals

WorkerProcess () :
while true:

Request a task from the master
Send TASK REQUEST to master

Wait for response
message = Receive from master

if message =— TASK_ASSIGN(task):
Process the assigned task
(R, P, X) = task
if (P UX) — empty:
Found a maximal clique
Send RESULT(R) to master
else:
Perform one step of recursion (task expansion)
subproblems = ExpandTask(R, P, X)
Return new subproblems to master
for each subproblem in subproblems:
Send NEW SUBPROBLEM(subproblem) to master

After this, loop again to request a new task
else if message =— NO_TASK:
No work available currently
Worker remains idle until TERMINATE is received
or can re—request after a barrier if implemented
break
else if message — TERMINATE:
Master signals completion
break

The worker requests tasks when free. This is opposed to the coarse-grained model
where tasks are assigned once at the start

After receiving a task, the worker only performs one level of expansion. It either:
* Reports a maximal clique if no further branches exist
* Generates new tasks and returns them to the global pool

By returning new subproblems promptly, the worker never gets overloaded. Other
workers can process these subproblems, achieving dynamic load balance

Advantage Over Coarse-Grained: Instead of a worker being stuck in a long
recursion (potentially minutes or hours), it always returns to the master for the
next assignment. This ensures that slow-growing or complex parts of the recursion

tree do not stay with one worker but are spread out among multiple workers over
time.

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

' Expanding task in one step

void expand_task(Task t) {
int u = choose_pivot(t.P, t.X);
VertexSet Q = set_difference(t.P, neighbors(u));

ExpandTask (R, P, X): // For each v in Q, create a new subproblem
Select a pivot u from (P U X) for (int i = @; i < Q.size; i++) {
u = choose_pivot (P, X) int v = Q[i];

Q=P \ N(u) Task new_task;

// Copy R, then add v
memcpy (new_task.R, t.R, t.R_size * sizeof(Vertex));
new_task.R[new_task.R_size = t.R_size] = v;
new_task.R_size = t.R_size + 1;

subproblems = []
for each v in Q:
R1 = R union {v}

Pl =P intersect N(v) // Compute P' and X' as intersection with N(v)

X1 =X intersect N(v) new_task.P_size = intersect_with_neighbors(new_task.P, t.P, v);
subproblems.add((R1, P1, X1)) new_task.X_size = intersect_with_neighbors(new_task.X, t.X, v);
return subproblems // Send new subproblem to master

MPI_Send(&new_task, sizeof(Task), MPI_BYTE, O,
NEW_SUBPROBLEM, MPI_COMM_WORLD);

University at Buffalo

Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

‘We analyze average of 10 parallel runs for speed ups (X)
with respect to serial on an 8-core parallel:

%Density/#Nodes 10,000 30,000 50,000 80,000 100,000 On average:
1% 9.53 8 9.11 8.11 « At worst, the speed
oso ks _sis e U
10% 13.09 9.22 8.23 9.65 times
20% 12.25 11.23 8.9 10.15 10.43 * Less dense graphs
30% 808 953 1801 895 995 sRow better results as
50% 9.32 7.95 8.16 _ problem creation

LN
N
LN
N
N
21 ,/
V3 N
’ LY
.

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

' Strong scaling N = 10,000

Speed Up with Respect to Serial Execution

Densities @
30T o 1% —o
—o— 5%
—o— 10%
25 | —o— 20%
—o— 30% —
—— 50% —e
20}
o
- —0
k5
o 15t —z
o
w
10} /
5)
0 B 111 1 1 1] 1
24 8 16 32 04 128

Processors

University at Buffalo
Department ¢
and Engineeri

School of Engineering an:

Speed Up with Respect to Serial for Different n

n=30,000

20
—e
15 - —-
[=9
=1
=]
w
U
& 10 A
Density
—— 1%
—a— 5%
5 —o— 10%
—— 20%
—8— 30%
—8— 50%
0 mT T T T T T
P48 16 32 64 128
Processors
n=80,000
25 —i
20
—
—®
—
2 15+ o
o
]
i)
&
10 >
5 -
0 - T T T T T T
8 16 32 64 128

Processors

n=50,000

25 A

20

10 ~

T T
P4 8 16 32 64 128
Processors

n=100,000

oAl

T
16 32 64 128
Processors

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences
O

' Strong scaling Density = 10%

Speed Up Across Processors for 10% Density

75 Nodes (n) °
—— n=30,000
—8— n=50,000
—8— n=80,000
—8— n=100,000
20 1
—9
__-._
15 - *
[= R
>
=
b
@
[= R
ul
10 ~
5 —
D E TT T T T
128

T
16 32 o4
Processors

o
oo -

University at Buffalo

Department of Computer Science
and Engineering
o

School of Engineering and Applied Sciences

Weak scaling measurements from the experiments

Nodes/Core = 2,500

Nodes/Core = 5,000

Nodes/Core = 10,000

Speedup

Speedup

T T
8 10
Number of Cores

1 2 3 4 5 6 7 8
Number of Cores

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Making workers communicate amongst themselves:

strong scaling improvements

» Instead of sending task to master, each worker
maintains a local queue of created jobs

* When a worker 1s free, it searches for list in
worker + 1 if they have any jobs in the queue

* In case of a job, the worker will steal the job
and execute

Please note- This 1s inconclusive, even 1f it 1s
promising. One data point improvement does not
generalize across all graphs

30

25 4

20 +

10

N=10,000; Density = 10%
Strong Scaling Comparison: Original vs. Worker-stealing Load Balancing

—&— Original
—8— Stealing
—8
24 8 16 32 64 128
Number of Cores
AEN
N
\
\
\
N
\
N
\
26 K4 .

University at Buffalo

Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

' What’s next?

* Load balancing is a promising avenue:
* Worker stealing logic needs to be better

* We should be able to dynamically predict load requirements based on node characteristics

* Read level statistics:

* When reading the graph we can note certain stats in O(E) to inform us of the structure and keep
workers ready

* GPU worker stealing:

* Worker stealing for maximal enumeration on GPU is unexplored, given GPUs massive parallelism
and different memory hierarchy it offers a lot more options

	Slide 1: Cse 708: fall 2024 final presentation
	Slide 2: Maximal Cliques: what & why?
	Slide 3: Maximal Cliques: illustrated example
	Slide 4: But how do we find maximal clique? The naïve way:
	Slide 5: So first, lets speed up serially if possible: enter Bron-Kerbosch
	Slide 6: Bron-Kerbosch example
	Slide 7: Bron-Kerbosch example
	Slide 8: Parallelization scheme: coarse grained
	Slide 9: Parallelization scheme: coarse grained
	Slide 10: Bron-Kerbosch example
	Slide 11: But what about notoriously branching graphs
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Let’s break it down
	Slide 16: Master Initialization and Task Management
	Slide 17: Master Initialization and Task Management
	Slide 18: Worker internals
	Slide 19: Worker internals
	Slide 20: Expanding task in one step
	Slide 21: We analyze average of 10 parallel runs for speed ups (X) with respect to serial on an 8-core parallel:
	Slide 22: Strong scaling N = 10,000
	Slide 23
	Slide 24: Strong scaling Density = 10%
	Slide 25: Weak scaling measurements from the experiments
	Slide 26: Making workers communicate amongst themselves: strong scaling improvements
	Slide 27: What’s next?

