
‘-

1

On Parallelizing Maximal Clique Enumeration

(Bron-Kerbosch)

Utkarsh Kumar

13 December 2024

CSE 708: FALL 2024

FINAL PRESENTATION

‘-

2

• A clique is a sub graph/graph which is complete: all nodes are connected to each other

• A maximal clique should satisfy the following:

• The vertices are subset of given graph where the subset is complete (clique part)

• Adding any new node will mean destroying the complete connectivity (maximal part)

• [Moon & Moser, 1965]* proved that any n-vertex graph has a maximum of 3^(n/3) maximal cliques

• Application areas include:

• Social network analysis

• Bio-informatics

• Telecomm & network design

• Fraud detection

• Recommender system

• Scientific collaborations

Maximal Cliques: what & why?

*Moon, John W., and Leo Moser. "On cliques in graphs." Israel journal of Mathematics 3 (1965): 23-28.

‘-

3

Maximal Cliques: illustrated example

For f to be considered a

candidate to add, it should

have been connected to a
Diagram from: Apurba Das, Seyed-

Vahid Sanei-Mehri, and Srikanta

Tirthapura. 2020. Shared-memory
Parallel Maximal Clique

Enumeration from Static and
Dynamic Graphs. ACM Trans.

Parallel Comput. 7, 1, Article 5

We can still add d, and not

break the completeness

‘-

4

But how do we find maximal clique? The naïve way:

‘-

5

So first, lets speed up serially if possible: enter Bron-Kerbosch

Where,

R (Current Clique): The growing set of vertices forming a clique.

P (Candidates): The set of vertices that can potentially extend R to form a

larger clique.

X (Excluded): The set of vertices that have already been processed to ensure no

duplicate cliques are found.

Bron-Kerbosch has a worst case run time of O(3n/3) which is far superior to the

naïve implementation

‘-

6

Bron-Kerbosch example

Maximal Clique Found: {1, 2, 3, 4, 7}
Maximal Clique Found: {3, 4, 5}

Maximal Clique Found: {2, 3, 4, 6, 7}

‘-

7

Bron-Kerbosch example

Pivot node

‘-

8

Parallelization scheme: coarse grained

‘-

9

Here’s the thing:

Even before we get into scaling, the speed up using the

given algorithm doesn’t make sense: the results are very

poor

Its like there is insignificant speed up for power-law

graphs.

The given coarse-grained parallelism is very very weak

Why is the function SEQUENTIALBRONKERBOSCH()

needed if we are going parallel??

Parallelization scheme: coarse grained

‘-

10

Bron-Kerbosch example

This is the only place we are parallelizing

Here’s why:

Assigned to worker 1

Assigned to worker 2

Assigned to worker 3

‘-

11

But what about
notoriously branching graphs

Maximal Clique Found: {1, 2, 3, 4, 7}
Maximal Clique Found: {3, 4, 5}

Maximal Clique Found: {8, 6}

Maximal Clique Found: {2, 3, 4, 6, 7}

Maximal Clique Found: {8, 9}

Maximal Clique Found: {9, 10, 11}

‘-

12

Pivot node

But now multiple branching, has

potential for going more parallel!!

‘-

13

The issue with this implementation is:
If we do not choose a good pivot node (or even if we do),

the multiple branching for each recursion call may

explode in some processors, be gentle in others, may

completely not utilize some more…..

This is not a good way to parallelize!

Hence, we do dynamic parallelization, where the

algorithm when detecting multiple branches assigns

tasks on the go!

‘-

14

Note that the function

SEQUENTIALBRONKE

RBOSCH() is missing

‘-

15

Let’s break it down

‘-

16

Master Initialization and Task Management
// Task is a struct containing (R, P, X) subsets and sizes.
void master_process(int num_procs) {
 int active_workers = num_procs - 1;
 init_task_queue();
 enqueue_task(root_task); // (R={}, P=V, X={})

 MPI_Status status;
 while (active_workers > 0) {
 int request;
 // Workers request task
 MPI_Recv(&request, 1, MPI_INT, MPI_ANY_SOURCE,
 TASK_REQUEST, MPI_COMM_WORLD, &status);

 if (!is_empty(task_queue)) {
 Task task = dequeue_task(task_queue);
 MPI_Send(&task, sizeof(Task), MPI_BYTE,
 status.MPI_SOURCE, TASK_ASSIGN, MPI_COMM_WORLD);
 } else {
 // No tasks available at this moment
 MPI_Send(NULL, 0, MPI_BYTE,
 status.MPI_SOURCE, NO_TASK, MPI_COMM_WORLD);
 active_workers--;
 }
 }

 // Send termination signal to all workers
 for (int i = 1; i < num_procs; i++) {
 MPI_Send(NULL, 0, MPI_BYTE, i, TERMINATE, MPI_COMM_WORLD);
 }
}

‘-

17

Master Initialization and Task Management

• Global Task Pool Setup: The master starts with a single root subproblem

representing the entire graph. Initially, R=⦰, P=V(G), X=⦰

• On-Demand Assignment: Workers pull tasks by sending TASK_REQUEST. If

the queue has tasks, the master immediately assigns one

• Idle Workers: If no tasks are currently available, the master sends NO_TASK,

effectively marking that worker as temporarily idle. Once all workers become idle

and no new tasks arrive, the master concludes that the entire search is complete

• Dynamic Adaptation: Because workers will generate more tasks as they expand

nodes, the queue may repopulate over time. Idle workers can become active again

when new NEW_SUBPROBLEM messages from other workers arrive

• Termination: Once no tasks remain and all workers are known to be idle, the

master sends TERMINATE to finalize execution.

In a coarse-grained approach, the master would distribute large chunks of the recursion

tree just once, risking poor load balance if some subproblems are inherently larger. Here,
the master only gives out one step at a time and continually re-collects and redistributes

tasks, ensuring more uniform workload distribution

‘-

18

Worker internals
void worker_process(int rank) {
 MPI_Status status;
 while (1) {
 int req = 1;
 MPI_Send(&req, 1, MPI_INT, 0, TASK_REQUEST, MPI_COMM_WORLD);

 Task task;
 MPI_Recv(&task, sizeof(Task), MPI_BYTE, 0, MPI_ANY_TAG,
 MPI_COMM_WORLD, &status);

 if (status.MPI_TAG == TASK_ASSIGN) {
 // Check if this leads to a maximal clique
 if (task.P_size == 0 && task.X_size == 0) {
 // Maximal clique found
 MPI_Send(&task.R, task.R_size * sizeof(Vertex),
 MPI_BYTE, 0, RESULT, MPI_COMM_WORLD);
 } else {
 // Expand one step and return new subproblems
 expand_task(task);
 }
 } else if (status.MPI_TAG == NO_TASK) {
 // No current work, worker becomes idle
 // Could wait or just break if using a barrier approach
 break;
 } else if (status.MPI_TAG == TERMINATE) {
 // Search completed
 break;
 }
 }
}

‘-

19

Worker internals

• The worker requests tasks when free. This is opposed to the coarse-grained model

where tasks are assigned once at the start

• After receiving a task, the worker only performs one level of expansion. It either:

• Reports a maximal clique if no further branches exist

• Generates new tasks and returns them to the global pool

• By returning new subproblems promptly, the worker never gets overloaded. Other

workers can process these subproblems, achieving dynamic load balance

• Advantage Over Coarse-Grained: Instead of a worker being stuck in a long

recursion (potentially minutes or hours), it always returns to the master for the

next assignment. This ensures that slow-growing or complex parts of the recursion

tree do not stay with one worker but are spread out among multiple workers over

time.

‘-

20

Expanding task in one step

void expand_task(Task t) {
 int u = choose_pivot(t.P, t.X);
 VertexSet Q = set_difference(t.P, neighbors(u));

 // For each v in Q, create a new subproblem
 for (int i = 0; i < Q.size; i++) {
 int v = Q[i];
 Task new_task;
 // Copy R, then add v
 memcpy(new_task.R, t.R, t.R_size * sizeof(Vertex));
 new_task.R[new_task.R_size = t.R_size] = v;
 new_task.R_size = t.R_size + 1;

 // Compute P' and X' as intersection with N(v)
 new_task.P_size = intersect_with_neighbors(new_task.P, t.P, v);
 new_task.X_size = intersect_with_neighbors(new_task.X, t.X, v);

 // Send new subproblem to master
 MPI_Send(&new_task, sizeof(Task), MPI_BYTE, 0,
 NEW_SUBPROBLEM, MPI_COMM_WORLD);
 }
}

‘-

21

We analyze average of 10 parallel runs for speed ups (X)
with respect to serial on an 8-core parallel:

On average:
• At worst, the speed

ups are > 6 times

• At best, it is up to 15

times

• Less dense graphs
show better results as

there are less sub

problem creation

‘-

22

Strong scaling N = 10,000

‘-

23

‘-

24

Strong scaling Density = 10%

‘-

25

Weak scaling measurements from the experiments

‘-

26

Making workers communicate amongst themselves:
strong scaling improvements

• Instead of sending task to master, each worker
maintains a local queue of created jobs

• When a worker is free, it searches for list in

worker + 1 if they have any jobs in the queue

• In case of a job, the worker will steal the job

and execute

Please note- This is inconclusive, even if it is
promising. One data point improvement does not

generalize across all graphs

N= 10,000; Density = 10%

‘-

27

• Load balancing is a promising avenue:

• Worker stealing logic needs to be better

• We should be able to dynamically predict load requirements based on node characteristics

• Read level statistics:

• When reading the graph we can note certain stats in O(E) to inform us of the structure and keep

workers ready

• GPU worker stealing:

• Worker stealing for maximal enumeration on GPU is unexplored, given GPUs massive parallelism
and different memory hierarchy it offers a lot more options

What’s next?

	Slide 1: Cse 708: fall 2024 final presentation
	Slide 2: Maximal Cliques: what & why?
	Slide 3: Maximal Cliques: illustrated example
	Slide 4: But how do we find maximal clique? The naïve way:
	Slide 5: So first, lets speed up serially if possible: enter Bron-Kerbosch
	Slide 6: Bron-Kerbosch example
	Slide 7: Bron-Kerbosch example
	Slide 8: Parallelization scheme: coarse grained
	Slide 9: Parallelization scheme: coarse grained
	Slide 10: Bron-Kerbosch example
	Slide 11: But what about notoriously branching graphs
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Let’s break it down
	Slide 16: Master Initialization and Task Management
	Slide 17: Master Initialization and Task Management
	Slide 18: Worker internals
	Slide 19: Worker internals
	Slide 20: Expanding task in one step
	Slide 21: We analyze average of 10 parallel runs for speed ups (X) with respect to serial on an 8-core parallel:
	Slide 22: Strong scaling N = 10,000
	Slide 23
	Slide 24: Strong scaling Density = 10%
	Slide 25: Weak scaling measurements from the experiments
	Slide 26: Making workers communicate amongst themselves: strong scaling improvements
	Slide 27: What’s next?

