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• A clique is a sub graph/graph which is complete: all nodes are connected to each other

• A maximal clique should satisfy the following:

• The vertices are subset of given graph where the subset is complete (clique part)

• Adding any new node will mean destroying the complete connectivity (maximal part)

• [Moon & Moser, 1965]* proved that any n-vertex graph has a maximum of 3^(n/3) maximal cliques

• Application areas include:

• Social network analysis

• Bio-informatics

• Telecomm & network design

• Fraud detection

• Recommender system

• Scientific collaborations

Maximal Cliques: what & why?

*Moon, John W., and Leo Moser. "On cliques in graphs." Israel journal of Mathematics 3 (1965): 23-28.
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Maximal Cliques: illustrated example

For f to be considered a 

candidate to add, it should 

have been connected to a
Diagram from: Apurba Das, Seyed-

Vahid Sanei-Mehri, and Srikanta 

Tirthapura. 2020. Shared-memory 
Parallel Maximal Clique 

Enumeration from Static and 
Dynamic Graphs. ACM Trans. 

Parallel Comput. 7, 1, Article 5

We can still add d, and not 

break the completeness
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But how do we find maximal clique? The naïve way:
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So first, lets speed up serially if possible: enter Bron-Kerbosch

Where,

R (Current Clique): The growing set of vertices forming a clique.

P (Candidates): The set of vertices that can potentially extend R to form a 

larger clique.

X (Excluded): The set of vertices that have already been processed to ensure no 

duplicate cliques are found.

Bron-Kerbosch has a worst case run time of O(3n/3) which is far superior to the 

naïve implementation
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Bron-Kerbosch example

Maximal Clique Found: {1, 2, 3, 4, 7}
Maximal Clique Found: {3, 4, 5}

Maximal Clique Found: {2, 3, 4, 6, 7}
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Bron-Kerbosch example

Pivot node
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Parallelization scheme: coarse grained
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Here’s the thing:

Even before we get into scaling, the speed up using the 

given algorithm doesn’t make sense: the results are very 

poor

Its like there is insignificant speed up for power-law 

graphs.

The given coarse-grained parallelism is very very weak

Why is the function SEQUENTIALBRONKERBOSCH() 

needed if we are going parallel??

Parallelization scheme: coarse grained
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Bron-Kerbosch example

This is the only place we are parallelizing

Here’s why:

Assigned to worker 1

Assigned to worker 2

Assigned to worker 3
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But what about 
notoriously branching graphs

Maximal Clique Found: {1, 2, 3, 4, 7}
Maximal Clique Found: {3, 4, 5}

Maximal Clique Found: {8, 6}

Maximal Clique Found: {2, 3, 4, 6, 7}

Maximal Clique Found: {8, 9}

Maximal Clique Found: {9, 10, 11}
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Pivot node

But now multiple branching, has 

potential for going more parallel!!
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The issue with this implementation is:
If we do not choose a good pivot node (or even if we do), 

the multiple branching for each recursion call may 

explode in some processors, be gentle in others, may 

completely not utilize some more…..

This is not a good way to parallelize!

Hence, we do dynamic parallelization, where the 

algorithm when detecting multiple branches assigns 

tasks on the go!
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Note that the function 

SEQUENTIALBRONKE

RBOSCH() is missing
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Let’s break it down
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Master Initialization and Task Management
// Task is a struct containing (R, P, X) subsets and sizes.
void master_process(int num_procs) {
    int active_workers = num_procs - 1;
    init_task_queue();
    enqueue_task(root_task); // (R={}, P=V, X={})

    MPI_Status status;
    while (active_workers > 0) {
        int request;
        // Workers request task
        MPI_Recv(&request, 1, MPI_INT, MPI_ANY_SOURCE,
                 TASK_REQUEST, MPI_COMM_WORLD, &status);

        if (!is_empty(task_queue)) {
            Task task = dequeue_task(task_queue);
            MPI_Send(&task, sizeof(Task), MPI_BYTE,
                     status.MPI_SOURCE, TASK_ASSIGN, MPI_COMM_WORLD);
        } else {
            // No tasks available at this moment
            MPI_Send(NULL, 0, MPI_BYTE,
                     status.MPI_SOURCE, NO_TASK, MPI_COMM_WORLD);
            active_workers--;
        }
    }

    // Send termination signal to all workers
    for (int i = 1; i < num_procs; i++) {
        MPI_Send(NULL, 0, MPI_BYTE, i, TERMINATE, MPI_COMM_WORLD);
    }
}
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Master Initialization and Task Management

• Global Task Pool Setup: The master starts with a single root subproblem 

representing the entire graph. Initially, R=⦰, P=V(G), X=⦰

• On-Demand Assignment: Workers pull tasks by sending TASK_REQUEST. If 

the queue has tasks, the master immediately assigns one

• Idle Workers: If no tasks are currently available, the master sends NO_TASK, 

effectively marking that worker as temporarily idle. Once all workers become idle 

and no new tasks arrive, the master concludes that the entire search is complete

• Dynamic Adaptation: Because workers will generate more tasks as they expand 

nodes, the queue may repopulate over time. Idle workers can become active again 

when new NEW_SUBPROBLEM messages from other workers arrive

• Termination: Once no tasks remain and all workers are known to be idle, the 

master sends TERMINATE to finalize execution.

In a coarse-grained approach, the master would distribute large chunks of the recursion

tree just once, risking poor load balance if some subproblems are inherently larger. Here, 
the master only gives out one step at a time and continually re-collects and redistributes 

tasks, ensuring more uniform workload distribution
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Worker internals
void worker_process(int rank) {
    MPI_Status status;
    while (1) {
        int req = 1;
        MPI_Send(&req, 1, MPI_INT, 0, TASK_REQUEST, MPI_COMM_WORLD);
        
        Task task;
        MPI_Recv(&task, sizeof(Task), MPI_BYTE, 0, MPI_ANY_TAG,
                 MPI_COMM_WORLD, &status);

        if (status.MPI_TAG == TASK_ASSIGN) {
            // Check if this leads to a maximal clique
            if (task.P_size == 0 && task.X_size == 0) {
                // Maximal clique found
                MPI_Send(&task.R, task.R_size * sizeof(Vertex),
                         MPI_BYTE, 0, RESULT, MPI_COMM_WORLD);
            } else {
                // Expand one step and return new subproblems
                expand_task(task);
            }
        } else if (status.MPI_TAG == NO_TASK) {
            // No current work, worker becomes idle
            // Could wait or just break if using a barrier approach
            break;
        } else if (status.MPI_TAG == TERMINATE) {
            // Search completed
            break;
        }
    }
}
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Worker internals

• The worker requests tasks when free. This is opposed to the coarse-grained model 

where tasks are assigned once at the start

• After receiving a task, the worker only performs one level of expansion. It either:

• Reports a maximal clique if no further branches exist

• Generates new tasks and returns them to the global pool

• By returning new subproblems promptly, the worker never gets overloaded. Other 

workers can process these subproblems, achieving dynamic load balance

• Advantage Over Coarse-Grained: Instead of a worker being stuck in a long 

recursion (potentially minutes or hours), it always returns to the master for the 

next assignment. This ensures that slow-growing or complex parts of the recursion 

tree do not stay with one worker but are spread out among multiple workers over 

time.
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Expanding task in one step

void expand_task(Task t) {
    int u = choose_pivot(t.P, t.X);
    VertexSet Q = set_difference(t.P, neighbors(u));

    // For each v in Q, create a new subproblem
    for (int i = 0; i < Q.size; i++) {
        int v = Q[i];
        Task new_task;
        // Copy R, then add v
        memcpy(new_task.R, t.R, t.R_size * sizeof(Vertex));
        new_task.R[new_task.R_size = t.R_size] = v;
        new_task.R_size = t.R_size + 1;

        // Compute P' and X' as intersection with N(v)
        new_task.P_size = intersect_with_neighbors(new_task.P, t.P, v);
        new_task.X_size = intersect_with_neighbors(new_task.X, t.X, v);

        // Send new subproblem to master
        MPI_Send(&new_task, sizeof(Task), MPI_BYTE, 0, 
                 NEW_SUBPROBLEM, MPI_COMM_WORLD);
    }
}
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We analyze average of 10 parallel runs for speed ups (X) 
with respect to serial on an 8-core parallel:

On average:
• At worst, the speed 

ups are > 6 times

• At best, it is up to 15 

times

• Less dense graphs 
show better results as 

there are less sub 

problem creation
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Strong scaling N = 10,000
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Strong scaling Density = 10%
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Weak scaling measurements from the experiments
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Making workers communicate amongst themselves: 
strong scaling improvements

• Instead of sending task to master, each worker 
maintains a local queue of created jobs

• When a worker is free, it searches for list in 

worker + 1 if they have any jobs in the queue

• In case of a job, the worker will steal the job 

and execute

Please note- This is inconclusive, even if it is 
promising. One data point improvement does not 

generalize across all graphs

N= 10,000; Density = 10%
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• Load balancing is a promising avenue:

• Worker stealing logic needs to be better

• We should be able to dynamically predict load requirements based on node characteristics

• Read level statistics:

• When reading the graph we can note certain stats in O(E) to inform us of the structure and keep 

workers ready

• GPU worker stealing:

• Worker stealing for maximal enumeration on GPU is unexplored, given GPUs massive parallelism 
and different memory hierarchy it offers a lot more options

What’s next?
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