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ABSTRACT
Wide-area transfer of large data sets is still a big challenge
despite the deployment of high-bandwidth networks with
speeds reaching 100 Gbps. Most users fail to obtain even
a fraction of theoretical speeds promised by these networks.
Effective usage of the available network capacity has be-
come increasingly important for wide-area data movement.
We have developed a“data transfer scheduling and optimiza-
tion system as a Cloud-hosted service”, StorkCloud, which
will mitigate the large-scale end-to-end data movement bot-
tleneck by efficiently utilizing underlying networks and ef-
fectively scheduling and optimizing data transfers. In this
paper, we present the initial design and prototype imple-
mentation of StorkCloud, and show its effectiveness in
large dataset transfers across geographically distant storage
sites, data centers, and collaborating institutions.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed Systems

General Terms
Design, Algorithms, Performance

Keywords
Big data; software as a service (SaaS); Cloud computing;
end-to-end throughput optimization; data scheduling.

1. INTRODUCTION
As big-data processing and analysis dominates the usage

of Cloud systems today, the need for Cloud-hosted data
scheduling and optimization services increases. According
to a recent study by Forrester Research [31], 77% of the
106 large IT organizations operate three or more datacen-
ters and run regular backup and replication services among
these sites. More than half of these organizations have over
a petabyte of data in their primary datacenter and expect
their inter-datacenter throughput requirements to double or
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triple over the next couple of years [27]. There has been
a very similar trend in scientific applications for the last
decade. Large scientific experiments such as environmental
and coastal hazard prediction [23], climate modeling [21],
genome mapping [7], and high-energy physics simulations [15,
4] generate data volumes reaching petabytes per year. Data
collected from remote sensors and satellites, dynamic data-
driven applications, and digital libraries and preservations
are also producing extremely large datasets. This “data
deluge” necessitates collaboration and sharing among the
national and international research and industrial organiza-
tions, which results in frequent large-scale data movement
across widely distributed sites.

Several national and regional optical networking initia-
tives such as Internet2, ESnet, XSEDE, and LONI provide
high-speed network connectivity to their users. Recent de-
velopments in networking technology provide scientists with
high-speed optical links reaching 100 Gbps in capacity [1].
Regardless, the majority of users fail to obtain even a frac-
tion of the speeds promised by these networks due to issues
such as sub-optimal protocol tuning, inefficient end-to-end
routing, disk bottlenecks, and processing limitations. For
example, Garfienkel reports that sending a 1 TB forensics
dataset from Boston to the Amazon S3 storage system took
several weeks [17]. For this reason, many companies prefer
sending their data through a shipment service provider such
as UPS or FedEx rather than using the Internet [14].

We have developed a Cloud-hosted data transfer and op-
timization service, StorkCloud, which will mitigate the
large-scale end-to-end data movement bottleneck by effi-
ciently scheduling and optimizing data transfer tasks, and
effectively utilizing underlying networks. This Cloud-hosted
data transfer and optimization service is based on our expe-
rience with Stork Data Scheduler [26, 25].

StorkCloud provides a Software-as-a-Service (SaaS) ap-
proach to the planning, scheduling, monitoring, and man-
agement of data placement tasks over wide-area networks. It
implements application-level models, algorithms, and tools
to predict the best combination of protocol and end-system
parameters for end-to-end data-flow optimization of wide-
area transfers. Optimizations include the number of parallel
data streams; control channel pipelining and transfer con-
currency levels; as well as integration of disk and CPU speed
parameters into the performance model to predict the opti-
mal number of disk (data striping) and CPU (parallelism)
combinations for the best end-to-end performance. In this
paper, we present the initial design and prototype imple-
mentation of StorkCloud.



2. STORKCLOUD DESIGN
The major components of StorkCloud include a multi-

protocol transfer scheduler with modular throughput opti-
mizers for queuing, scheduling, and optimizing data trans-
fers; a transfer monitoring service (TMS) for providing the
clients with real-time transfer updates; a directory listing
service (DLS) for prefetching and caching remote directory
metadata in the Cloud to minimize response time to the
users; and a pluggable protocol interface which can commu-
nicate and negotiate with different data transfer protocols
and storage systems. StorkCloud schedules, optimizes,
and monitors data transfer requests from users through its
thin clients (such as smartphone and tablet apps and a Web
interface). It exposes APIs through an HTTP Represen-
tational State Transfer (REST) interface that clients may
utilize to interact with services provided by StorkCloud.
This makes the development of thin clients for StorkCloud
very simple. Figure 1 presents an overview of the major
StorkCloud components and their interaction.

2.1 StorkCloud Scheduler
StorkCloud’s scheduler is a modular, multi-protocol task

scheduler which handles queuing and execution of data trans-
fer jobs and ensures their timely completion. The scheduler’s
plug-in interface allows arbitrary protocol support to be im-
plemented as standalone modules and easily introduced to
the system. The scheduler inherits much of its functionality
from the Stork Data Scheduler [25]. As the core component
of the StorkCloud system, its job is to take in transfer
requests and provide information about transfer progress.

All communication between StorkCloud components is
done with ClassAds [2] – a textual data representation for-
mat that is easy to parse and generate. The use of a text-
based format allows for a standard communications interface
that is accessible in any programming language capable of
text manipulation. Serialized ClassAds are human-readable,
allowing for easy debugging of communications code and in-
terfacing with the scheduler using common utilities such as
netcat or Telnet.

This led to a straightforward way of communicating be-
tween the scheduler and its plug-ins, which is necessary for
exchanging information such as job progress. The informa-
tion passed to the scheduler can be displayed to users or
services interested in the progress of a job. This feature is
used, for example, by the StorkCloud thin client interfaces
to display job progress visually.

StorkCloud’s scheduler can perform protocol-agnostic
optimization of data transfers. Optimization modules, like
transfer modules, can be plugged into the server, and incom-
ing jobs can request an optimizer be used for the transfer.
Optimization modules advertise which parameters they op-
timize, and transfer modules can either accept or reject the
optimizer accordingly. If a transfer module allows an opti-
mization to be used, it queries the optimizer for sample pa-
rameters, runs a sample, and reports the throughput back to
the optimizer. The optimizer uses the reported information
to determine parameters for the next sampling, and contin-
ues until either the transfer is complete or it is done sam-
pling. This design allows optimizers to be protocol-agnostic;
as long as the transfer module supports the features the op-
timizer exposes, neither needs to know the other’s imple-
mentation details.
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Figure 1: StorkCloud system components

2.2 Transfer Monitoring Service (TMS)
StorkCloud’s Transfer Monitoring Service (TMS) pro-

vides clients with real-time monitoring information on the
status of the data transfer jobs submitted. StorkCloud
provides library utilities to help modules with bookkeeping
and reporting transfer performance. Transfer modules are
able to use these tools to generate useful and interesting
progress information by simply reporting whenever files and
blocks have been transferred. The timing and calculations
necessary to generate progress information are performed by
the library using this data, allowing the transfer modules to
report job progress in a uniform way and freeing module
implementors from having to track progress themselves. We
are planning to extend this utility further in the future to
produce other information as well – for example, estimated
time until transfer completion.

StorkCloud will also provide additional reliability to
Cloud data transfers via data transfer checkpointing, check-
summing, and alternative protocol fallback mechanisms, which
will be especially useful in large file transfers. We are devel-
oping an error reporting framework to distinguish the locus
of failure (e.g, network, server, client, software, hardware),
classify problems as transient or permanent, and provide
recovery possibilities. These error detection, classification,
and recovery mechanisms will provide greater reliability and
agility to transfers performed by StorkCloud.

2.3 Directory Listing Service (DLS)
StorkCloud’s Directory Listing Service (DLS) provides

a multi-protocol file listing and metadata access service via
a REST interface. Conceptually, DLS is an intermediate
layer between clients and the remote servers which performs
metadata operations on the client’s behalf. In that sense,
DLS acts as a centralized metadata server hosted in the
Cloud. When a client wants to list a directory or access
file metadata on a remote server, it sends a request contain-
ing necessary information (i.e., URL of the directory to list,
along with credentials) to DLS, and DLS responds with the
requested data.



During this process, DLS first checks if the requested
metadata is available in its cache. If it is available in the
cache (and the provided credentials match the associated
cached credentials), DLS sends the cached information to
the client without remotely connecting. Otherwise, it con-
nects to the remote server, retrieves the requested metadata,
and sends it to the client. Meanwhile, several levels of subdi-
rectories will be prefetched at the background. Any cached
metadata information will be periodically checked with the
remote server to ensure freshness of the information. Clients
also have the option to refresh/update the DLS cache on de-
mand to make sure they are accessing the server directly, by-
passing the cache. In future work, DLS’s caching mechanism
will be integrated with several optimization techniques in or-
der to improve cache consistency and access performance.

Using thin client interfaces as a frontend for DLS, users
can visually browse two remote listings simultaneously and
initiate transfers with the press of a button.

2.4 Pluggable Protocol Interface
StorkCloud acts as a broker between clients and remote

storage systems and protocols. In addition to the protocols
StorkCloud supports out of the box, the Pluggable Proto-
col Interface allows users to develop custom modules to sup-
port different systems easily. Modules can be coded in any
language recognized by the operating system, however users
who want to have tighter integration with the system and
better communication performance may implement transfer
modules in Java to communicate directly with the Stork-
Cloud scheduler in memory.

We are implementing a mechanism to enable inter-protocol
translations to support data access from the Cloud to a wide
variety of storage systems and data transfer protocols. To
provide interoperability between different protocols, Cloud
storage will be used as a temporary parking place for the
data, while translation between the protocols is performed
by StorkCloud. In the future, we may also offer direct ac-
cess to file data through our HTTP interface, allowing other
applications to support multiple transfer protocols using our
service.

2.5 Throughput Optimization
StorkCloud also features a number of optimization algo-

rithms implemented as optimization modules. We developed
three highly-accurate models [38, 37, 22] which require as
few as three sampling points to provide accurate predictions
for the optimal parallel stream number. These models are
demonstrably more accurate than existing models [19, 29]
at predicting parallelism levels that maximize throughput.
We have developed algorithms to determine the best sam-
pling size and the best sampling points for data transfers by
using bandwidth, Round-Trip Time (RTT), or Bandwidth-
Delay Product (BDP) [33]. Our algorithms provide opti-
mal throughput for wide-area links up to 10 Gbps band-
width [34]. Currently, we are testing and tuning these mod-
els for higher bandwidth networks (40–100 Gbps) as well.

Tuning protocol parameters such as pipelining, parallelism,
and concurrency levels significantly affects achievable net-
work throughput. However, setting the optimal numbers
for these parameters is a challenging problem, since poorly-
tuned parameters can cause either under- or overutilization
the network.

Among these parameters, pipelining specifically targets

the problem of transferring a large numbers of small files.
In most TCP-based transfers, the entire transfer must be
acknowledged before starting the next transfer. This may
cause a delay of more than one RTT between individual
transfers. With pipelining, multiple unacknowledged trans-
fers can be active in the network pipe at any time and the de-
lay between individual transfers is minimized. Parallelism
sends different chunks of the same file over parallel data
channels (TCP streams) and achieves high throughput by
aggregating multiple streams and getting an unfair share of
the available bandwidth. Concurrency refers to sending
multiple files simultaneously through the network using dif-
ferent data channels at the same time.

The models developed in our previous work lay the foun-
dations of the StorkCloud optimizers presented in this
paper, where we combine parallel stream optimization with
pipelining and concurrency to achieve best possible network
throughput. Different network channels can be used to trans-
fer different portions (chunks) of the same dataset with dif-
ferent parameter combinations.

3. STORKCLOUD OPTIMIZERS
StorkCloud does not only provide data transfer as a ser-

vice but also provides heuristic algorithms to optimize the
data transfer throughput, called “optimizers”. We designed
StorkCloud in a modular way such that different optimiz-
ers may be used/specified for different needs. For example,
if a user has access to a dedicated network, then fairness is
not an issue as long as the transfer throughput improves.
On the other hand, saturating the network and end-system
resources for a single user’s transfers is not considered to be
fair and may even violate the resource utilization policies in
shared networks.

In this paper, we present two StorkCloud optimizers:
(i) the “Single-Chunk Concurrency (SCC)” approach which
divides the set of files into chunks based on file size, and
then transfers each chunk with its optimal parameters; and
(ii) the “Multi-Chunk Concurrency (MCC)” approach which
likewise creates chunks based on the file size, but rather than
scheduling each chunk separately, it co-schedules and runs
small-file chunks and large-file chunks together in order to
balance and minimize the effect of poor performance of small
file transfers.

3.1 Single-Chunk Concurrency (SCC)
Files with different sizes need different set of parameters

for optimized transfers. As an example, pipelining and data
channel caching would help mostly to small file transfers,
whereas parallel streams would be beneficial if the files are
large enough. Optimal concurrency levels for different file
sizes would be different as well.

To analyze the effects of different parameters on the trans-
fer of different file sizes, we conducted experiments for each
parameters separately, as shown in Figure 2. We created a
mixed dataset consisting of 10,000 x 1MB files, 100 x 100MB
files and 10 x 10GB files for the XSEDE network; and an-
other mixed dataset consisting of 10,000 x 1MB files, 100 x
100MB files and 10 x 1GB files for the LONI network. A
smaller data set is sued for the LONI network due to disk
storage limitations on LONI. We initially transferred each
dataset by only changing one parameter (i.e. pipelining, par-
allelism or concurrency) at a time to observe the individual
effect of each parameter.



Algorithm 1 Partitioning files into chunks based on file size

Require: List of all files and Bandwidth Delay Product

1: function partitionFiles(allFiles,BDP)
2: Partition Small, Middle, Large, Huge
3: while allF iles.size() > 0 do
4: Filef = allF iles.pop()
5: if f.size < BDP

10 then

6: Small.add(f)
7: else if f.size < BDP

2 then

8: Middle.add(f)
9: else if f.size < BDP ∗ 20 then
10: Large.add(f)
11: else
12: Huge.add(f)
13: end if
14: end while
15: PartitionList p;
16: p.add(Small),p.add(Middle),p.add(Large),p.add(Huge)
17: mergePartitions(p)
18: return Small,Middle,Large,Huge
19: end function

Require: Partition p, BDP, buffer size and maximum allowed con-
currency

20: function findOptimalParameters(p)
21: pipelining,parallelism,concurrecy
22: Density d = findDensityofPartition(p)
23: avgFileSize = findAverage(p)
24: if d == SMALL then

25: pipelining =
l

BDP
avgF ileSize

m
− 1

26: parallelism = Min(
l

BDP
bufferSize

m
,

l
avgF ileSize
bufferSize

m
) + 1

27: concurrency = Min( BDP
avgF ileSize , p.count(), maxConcurrency)

28: else if d == MIDDLE then

29: pipelining =
l

BDP
avgF ileSize

m
30: parallelism = Min(

l
BDP

bufferSize

m
,

l
avgF ileSize
bufferSize

m
) + 1

31: concurrency = Min( BDP
avgF ileSize , p.count(), maxConcurrency)

32: else if d == LARGE then

33: pipelining =
l

BDP
avgF ileSize

m
+ 1 . This chunk should

have pipelining

34: parallelism = Min(
l

BDP
bufferSize

m
,

l
avgF ileSize
bufferSize

m
) + 2

35: concurrency = Min(2, p.count(), maxConcurrency)
36: else if d == HUGE then

37: pipelining =
l

BDP
avgF ileSize

m
− 1 . Pipelining will be zero

in most cases

38: parallelism = Min(
l

BDP
bufferSize

m
,

l
avgF ileSize
bufferSize

m
) + 2

39: concurrency = Min(2, p.count(), maxConcurrency)
40: end if

return pipelining,parallelism,concurrency
41: end function

Although LONI and XSEDE network results in Figure 2
are little different, there is no doubt that concurrency is the
most dominant parameter for all file sizes. This is the rea-
son why we present our experiment results in section 4.1
on “Performance Evaluation of the Optimizers” with a focus
on concurrency. For small files, pipelining is another domi-
nant parameter especially when RTT is high which can be
inferred by comparing Figure 2(a) with Figure 2(d). Par-
allelism is the second most dominant parameter for 100MB
and 10GB files as it fulfills buffer requirement when TCP
buffer size is less than BDP (e.g happens in XSEDE net-
work as given in Table 1) and provides disk striping if the
end-system makes use of disk striping on its storage system.

For stated reasons, instead of setting the same parame-
ter combination for all files in a mixed dataset, we partition
the dataset into chunks based on the file size and the Band-
width Delay Product (BDP), and use different parameter
combination for each chunk.

Algorithm 2 Single-Chunk Concurrency (SCC)

Require: source url, destination url, bandwidth, roundtrip time and
maximum allowed buffer size

1: function transfer(source,destination,BW,RTT,BufferSize)
2: BDP = BW*RTT
3: allFiles = fetchFilesFromServer()
4: partitions = partitionFiles(allFiles,BDP)
5: while partitions.count() > 0 do
6: Partition p = partitions.pop()
7: parameters = getOptimalParameters(p, BDP )
8: transfer(p,parameters)
9: end while
10: end function

Algorithm 3 Multi-Chunk Concurrency (MCC)

Require: source url, destination url, bandwidth, roundtrip time and
maximum allowed buffer size

1: function transfer(source,destination,BW,RTT,BufferSize)
2: BDP = BW*RTT
3: allFiles = fetchFilesFromServer()
4: partitions = partitionFiles(allFiles,BDP)
5: if partitions has HUGE$LARGE partition then
6: allocateChannel(HUGE,LARGE,1); . Allocate a channel

for huge&large chunk
7: if partitions.contains SMALL&MIDDLE partition then
8: allocateChannels(SMALL,MIDDLE,concurrency-1); .

If there exist small&middle size chunk then allocate rest of chan-
nels

9: else
10: allocateChannel(LARGE,HUGE,1);
11: end if
12: else
13: allocateChannel(SMALL,MIDDLE,concurrency) .

if there is no large chunk, then share given channels within small
chunks

14: end if
15: while partitions.count() > 0 do
16: Partition p = partitions.pop()
17: if p.allocatedChannel > 0 then
18: transfer(partitions.get(i))
19: end if
20: end while
21: end function

As shown in Algorithm 1, we initially partition files into
different chunks, then we check if each chunk has sufficient
number of files using the mergePartitions subroutine. We
merge a chunk with another if it is deemed to be too small
to be a separate chunk. After partitioning files, we calculate
the optimal parameter combination for each chunk. Pipelin-
ing and concurrency are the most effective parameters for
small files to overcome poor utilization, so it is especially
important to choose the best pipelining and concurrency
values for small file transfers. We set the pipelining values
by considering BDP and average file size of each chunk (lines
25, 29, 33 and 37); set the parallelism values by considering
BDP, average file size, and the TCP buffer size (lines 26, 30,
34, and 38); and set the concurrency values by considering
BDP, average file size, number of files in each chunk, and
the maximum concurrency level (lines 27, 31, 35, and 39) in
Algorithm 1.

As the average file size of a chunk increases, we decrease
the pipelining value since it does not improve performance
any more, and rather it can cause performance degradation
by decreasing effects of concurrency. The method of select-
ing parallelism prevents using unnecessarily large parallelism
level for small files and insufficiently small parallelism level
for large files. Concurrency is set to larger values for small
files, whereas it is limited to smaller values for large files,



Specs XSEDE (Gordon & Lonestar) LONI (Quenbee & Painter)

Bandwidth 10 Gbps 10 Gbps
RTT 60 ms 10 ms
TCP Buffer Size 32 MB 16 MB
BDP 75 MB 9 MB

Table 1: Network specifications of test environments
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Figure 2: The effect of pipelining, parallelism, and concurrency on throughput

as higher concurrency values might cause unfair share of
end-system and network resources. After obtaining optimal
parameters for each chunk, SCC transfers each chunk sepa-
rately as shown on lines 5-8 of Algorithm 2.

3.2 Multi-Chunk Concurrency (MCC)
In the Multi-Chunk Concurrency (MCC) method, the fo-

cus is mainly on minimizing the effect of small file chunks on
the overall throughput. Based on Figure 2 and the SCC test
results, we deduced that even after choosing the best param-
eter combination for each chunk, throughput obtained dur-
ing the transfer of the small file chunks (named as SMALL
and MIDDLE in Algorithm 1) is significantly worse com-
pared to large chunks (named as LARGE and HUGE in Al-
gorithm 1). Depending on the weight of small files’ size over
the total dataset size and concurrency level, overall through-
put can be much less than the throughput of the large file
chunk transfers. Thus, we developed the Multi-Chunk Con-
currency (MCC) method which aims to minimize the effect
of low throughput caused by the small files.

The idea behind MCC is to transfer multiple chunks con-
currently on different channels, where one of the chunks is
small and the other one is large so that small chunks do not
affect the overall throughput significantly. Although we par-
titioned files into four chunks in Algorithm 1 to be more spe-
cific on parameter selection, SMALL and MIDDLE chunks
follow a similar pattern in terms of poor transfer perfor-
mance compared to LARGE and HUGE chunks. The MCC
algorithm also considers fairness in resource sharing, so it
first calculates how many concurrent processes are needed

for each chunk using Algorithm 1. Then, if both small and
large chunks exist, it opens only one channel for large chunks
and uses rest of the available channels for small chunks as
implemented on lines 5-9. Otherwise channels are shared be-
tween small and large chunks as shown on lines 10,13. The
purpose of this is to achieve high performance without vi-
olating fairness policies too much. Furthermore, we do not
close a channel after a transfer has completed on it. Instead,
we recycle the channels to help other chunks which are either
waiting to be run or are running slowly.

4. PERFORMANCE EVALUATION
In this section we present the performance evaluation re-

sults for the two StorkCloud optimizers we have intro-
duced in the previous section, as well as the performance
and scalability of the Directory Listing Service (DLS).

4.1 Performance of Optimizers
Figure 3 shows the effect of combining pipelining, paral-

lelism and concurrency parameters on the transfer of dif-
ferent file sizes. The parameters in these experiments are
chosen in a way that the best performing parameter values
in the prior experiment are used as a fixed value in the suc-
cessive experiment where other parameters are changed. In
other words, we first tested effect of pipelining for each files
size given in Figure 3(a) and 3(d), then we fixed pipelining
values in Figure 3(b) and 3(e) to the best values obtained
from Figure 3(a) and 3(d). We fixed both pipelining and
parallelism in a similar way in Figure 3(c) and 3(f) when
observing the concurrency effect. Although Figure 3 is not



 0

 500

 1000

 1500

 2000

 2500

 3000

 1  2  4  8  16  32  64

Th
ro

ug
hp

ut
 (M

bp
s)

Pipelining

(a) Pipelining (XSEDE)

1M
10M

100M
1G

10G

 0

 500

 1000

 1500

 2000

 2500

 3000

 1  2  4  8  16  32  64

Th
ro

ug
hp

ut
 (M

bp
s)

Parallelism

(b) Parallelism with fixed pipelining (XSEDE)

1M
10M

100M
1G

10G

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1  2  4  8

Th
ro

ug
hp

ut
 (M

bp
s)

Concurrency

(c) Concurrency with fixed parallelism&pipelining (XSEDE)

1M
10M

100M
1G

10G

 0

 200

 400

 600

 800

 1000

 1200

 1  2  4  8  16  32  64

Th
ro

ug
hp

ut
 (M

bp
s)

Pipelining

(d) Pipelining (LONI)

1M
10M

100M
1G

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1  2  4  8  16  32  64

Th
ro

ug
hp

ut
 (M

bp
s)

Parallelism

(e) Parallelism with fixed pipelining (LONI)

1M
10M

100M
1G

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 1  2  4  8  16  32

Th
ro

ug
hp

ut
 (M

bp
s)

Concurrency

(f) Concurrency with fixed parallelism&pipelining (LONI)

1M
10M

100M
1G

Figure 3: Effect of combining parameters on throughput
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Figure 4: StorkCloud transfer performance on XSEDE and LONI

the optimal way of choosing parameter values, it gives a good
approximation to the best possible value without running all
possible parameter combinations.

We tested our algorithms on XSEDE and LONI testbeds,
with specifications shown in Table 1. We used a mixed file
size dataset with approximately 11,000 files with a total file
size of about 140 GB. We ran two versions of our algorithms
which are differentiated by either setting or not setting the
TCP buffer size in transfers. Also, we compared their perfor-
mance using up to 10 concurrency level as opening too many
channels is neither fair nor allowed by testbed policies. We
compared the performance of our algorithms with Globus
Online when the concurrency is fixed to two, as Globus On-
line uses fixed two channels for all chunks it creates [5].

In Figure 4(a), we can see that both optimizers outper-
form Globus Online even when concurrency is fixed to two.
Moreover, setting the buffer size to the maximum allowed
value affects the throughput considerably when concurrency
is set to more than two. Even though setting the buffer
size improves the performance of large chunks regardless of
concurrency level, when concurrency is less than four, small
chunks dominate to overall throughput. As concurrency in-

creases, small files are transferred faster, so overall through-
put improves significantly.

The SCC optimization method performs better than the
MCC in almost all cases. When concurrency is set to two
or less, the difference is not too much due to the effect of
many small files. However, the difference is more apparent
when the concurrency level is more than two as it is able to
suppress effect of small files poor performance effectively.

Results obtained on the LONI testbed are slightly dif-
ferent than XSEDE testbed. While increasing the concur-
rency level improves throughput, we were unable to see a
sharp bounce in LONI tests as we observed in Figure 3
that concurrency does not improve throughput as much as
it does in XSEDE network. This is basically because the
disk read/write speed in LONI systems is lower than that
of systems in the XSEDE testbed. Also, we observed that
TCP slow start phase takes too long on the LONI testbed
even though the round trip time is around 10 ms. Thus,
transfer throughput cannot reach high values unless using
very large files, such as 50GB or more.
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Figure 5: DLS versus Globus Online metadata access times

4.2 Performance of DLS
StorkCloud’s Directory Listing Service (DLS) enables

prefetching and caching of remote directory metadata in
the Cloud to minimize response time to the users when
traversing remote directory trees. In order to test the perfor-
mance and scalability of DLS, we deployed the DLS server
on Amazon EC2 and compared its directory traversal ac-
cess times (latency) with Globus Online. We ran our thin
client on DidcLab@UB and the remote directories to be tra-
versed were located on Trestles@XSEDE. In Figure 5(a),
we see the results of accessing and listing 1000 directories
through StorkCloud DLS versus Globus Online. The first
time these directories are traversed, StorkCloud responds
slightly faster to the user’s query compared to Globus On-
line, since these directories are not in the cache of DLS yet.
But, if the same user or any other user request access to any
portion of that directory tree again, the requested metadata
will be in the cache of DLS and access through StorkCloud
will be an order of magnitude faster compared to Globus
Online.

Figure 5(b) shows the scaling effect when a user requests
to access and traverse a directory tree with different num-
ber of subdirectories in it (i.e. 1, 10, 100, 1000, and 10000
respectively). The latency given in this figure is average
value of multiple access requests for each data point. With
the increased number of directories to traverse, we see the
prefetching and caching effect of StorkCloud to be more
effective and scalable compared to Globus Online.

5. RELATED WORK
The effort most comparable to our work is Globus On-

line [5], which provides data management as SaaS and of-
fers fire-and-forget file transfers through thin clients (such
as Web browsers) over the Internet. However, Globus On-
line only performs transfers between GridFTP servers, does
not provide any throughput prediction capabilities, and its
transfer optimizations are mostly done statically [5]. The
data throughput estimation and optimization services pro-
vided by StorkCloud can feed information to data transfer
services such as Globus Online, allowing for dynamic trans-
fer optimization and thus more efficient transfers.

Liu et al. [28] developed a tool which optimizes multi-file
transfers by opening multiple GridFTP threads. The tool in-
creases the number of concurrent flows up to the point where
transfer performance degrades. That work only focuses on
using threading to increase performance when transferring

files; other transfer parameters (e.g., buffer size and parallel
streams) are not optimized. One issue with the technique is,
in cases where the average file size is very small, hundreds
of threads may be needed, which might result in system in-
stability.

Chen et al. [13] offer a number of solutions to optimize
bulk data transfer between data centers motivated by the
fact that the dominant component of inter-datacenter traf-
fic is background bulk data traffic. Other approaches aim to
improve throughput by opening multiple flows over multiple
paths between source and destination [30, 20, 35], however
there are cases where individual data flows fail to achieve op-
timal throughput because of end-system bottlenecks. Sev-
eral others propose solutions that improve utilization of a
single path by means of parallel streams [6, 18, 29, 36,
9], pipelining [3, 16, 10], and concurrent transfers [28, 26,
24]. Although using parallelism, pipelining, and concurrency
may improve throughput in certain cases, an optimization
algorithm [34, 28, 5] should also consider system configura-
tion, since end-systems may present factors (e.g., low disk
I/O speeds or over-tasked CPUs) which can introduce bot-
tlenecks.

Some components of our system (e.g., DLS) take advan-
tage of prefetching and caching in order to reduce access
time and improve responsiveness. These techniques have
been widely studied in the past in different contexts [11, 12,
32, 8]. Our work aims to offer a single logical-view proxy
for caching and serving directory metadata information as a
Cloud service. In a proxy caching system such as ours, re-
sponses from remote servers to metadata requests are cached
and periodically updated. The cached responses are served
to users who request the same data, reducing latency and
network load.

6. CONCLUSIONS AND FUTURE WORK
We have presented the initial design and prototype im-

plementation of StorkCloud, which mitigates the large-scale
end-to-end data movement bottleneck by efficiently utilizing
underlying networks and effectively scheduling and optimiz-
ing data transfers. It provides a Cloud-hosted data schedul-
ing and optimization service with enhanced functionality
such as data aggregation and connection caching; early er-
ror detection and recovery; scheduled storage management;
and end-to-end performance optimization services which will
benefit a diverse set of data-intensive Cloud computing ap-
plications.



Some upcoming features include automatic transfer mod-
ule chaining and temporary data parking in the Cloud. Mod-
ule chaining will allow transfers between arbitrary protocols
by using one transfer module to retrieve data and simulta-
neously using another to send it. Data parking will allow
transfers that might fail only at the receiving end to be re-
sumed without needing further contact with the sending end
by having the Cloud store file contents until the receiving
end becomes active again. We also plan on implementing a
number of caching and prefetching heuristics in DLS and our
smartphone and Web clients that aim to improve interface
responsiveness and overall user experience.
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