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another

• Durability: results survive failures.



Transactions

Transaction

Execution of a user program in a DBMS.

Transaction properties

• Atomicity: all-or-nothing execution

• Consistency: database consistency is preserved

• Isolation: concurrently executing transactions have no effect on one
another

• Durability: results survive failures.



Transactions

Transaction

Execution of a user program in a DBMS.

Transaction properties

• Atomicity: all-or-nothing execution

• Consistency: database consistency is preserved

• Isolation: concurrently executing transactions have no effect on one
another

• Durability: results survive failures.



Schedules

Transaction (DBMS view)
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• RW: unrepeatable reads

• WW: overwriting uncommitted data.
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The effect of aborted transactions has to be completely undone.

Problems

• a transaction depending on an aborted transaction may have already
committed (unrecoverable schedule)

• aborting a transaction requires aborting other transactions
(cascading aborts).
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Strict two-phase locking

Rules

1 before an object is accessed, an appropriate lock on the object(read:
shared mode, write: exclusive mode) needs to be obtained

2 lock in exclusive mode: no other transaction can lock the object in
any mode

3 lock in shared mode: other transactions can lock the object in
shared mode

4 a transaction cannot lock an object more than once

5 all the locks are held until the end of transaction.

Guarantees

• schedule serializability

• schedule recoverability

• no cascading aborts
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Locks are stored in a lock table (managed by DBMS), lock requests are
queued.

Lock/unlock: atomic operations.
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Deadlocks

Deadlock

A set of transactions such that each waits for a lock held by another one.

Handling deadlocks

• prevention:
• object ordering
• transaction priorities
• obtaining all the locks at the beginning

• detection:
• identifying cycles in the waits-for graph or timeout, and
• abort transaction.

Handling starvation

• FIFO lock queues.
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• media failure

Memory levels

• disk blocks

• main memory buffers

• local variables

• the same object may have a copy at each level
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Basic transaction operations

Operations

• INPUT(X): Copy the disk block containing the object X to a buffer.

• READ(X,A): Copy the object X to a local variable A (preceded by
INPUT(X) if necessary).

• WRITE(X,A): Copy the value of the local variable A to the object X
(preceded by INPUT(X) if necessary).

• OUTPUT(X): Copy the block containing X from buffer to disk.

Assumption: each object fits into one block.
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Recording all the operations in an append-only log (also stored on disk).

Log records

• <START T>

• <COMMIT T>

• <ABORT T>

• <T,X,old,new>
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UNDO/REDO logging

UNDO/REDO rule

Before modifying an object X on disk on behalf of a transaction T, a log
update record <T,X,old,new> needs to be written to disk.

Recovery

1 Redo all the committed transactions in the order earliest-first.

2 Undo all the incomplete transactions in the order latest-first.

Checkpointing

1 Write <START CKPT (T1,...Tk)> log record, where T1,...Tk are
all the active transactions, and flush the log.

2 Flush all dirty buffers.

3 Write <END CKPT> log record, and flush the log.
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Transactions

• subtransactions executing at different sites

• all subtransactions commit or none does (commit protocol)

• site and link failures.

Two-phase commit

A site is designated as a coordinator, other participating sites are
subordinates.



Distributed transactions

Transactions

• subtransactions executing at different sites

• all subtransactions commit or none does (commit protocol)

• site and link failures.

Two-phase commit

A site is designated as a coordinator, other participating sites are
subordinates.



Distributed transactions

Transactions

• subtransactions executing at different sites

• all subtransactions commit or none does (commit protocol)

• site and link failures.

Two-phase commit

A site is designated as a coordinator, other participating sites are
subordinates.



Protocol

1 Coordinator: send a PREPARE message to each subordinate

2 Subordinate: receive PREPARE and decide to commit or abort:
• commit: write a prepare log record, flush log, reply YES;
• abort: write an abort log record, flush log, reply NO.

3 Coordinator:
• all subordinates reply YES: write a commit log record, flush log, send

a COMMIT message to each subordinate;
• one replies NO or times out: write an abort log record, flush log,

send an ABORT message to each subordinate.

4 Subordinate:
• receive COMMIT: write a commit log record, flush log, send ACK to

coordinator, commit;
• receive ABORT: write an abort log record, flush log, send ACK,

abort.

5 Coordinator: receive ACK from all subordinates: write end log
record.
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