
Transactions

Transaction

Execution of a user program in a DBMS.

Transaction properties

• Atomicity: all-or-nothing execution

• Consistency: database consistency is preserved

• Isolation: concurrently executing transactions have no effect on one
another

• Durability: results survive failures.



Transactions

Transaction

Execution of a user program in a DBMS.

Transaction properties

• Atomicity: all-or-nothing execution

• Consistency: database consistency is preserved

• Isolation: concurrently executing transactions have no effect on one
another

• Durability: results survive failures.



Transactions

Transaction

Execution of a user program in a DBMS.

Transaction properties

• Atomicity: all-or-nothing execution

• Consistency: database consistency is preserved

• Isolation: concurrently executing transactions have no effect on one
another

• Durability: results survive failures.



Schedules

Transaction (DBMS view)

• list of actions (read or write)

• terminated by commit or abort

Schedule

• interleaving of multiple transactions

• action order within transaction preserved

• complete: commit/abort for every transaction

• serial: no interleaving of actions from different transactions

• serializable: equivalent to a serial schedule (assuming all
transactions commit).



Schedules

Transaction (DBMS view)

• list of actions (read or write)

• terminated by commit or abort

Schedule

• interleaving of multiple transactions

• action order within transaction preserved

• complete: commit/abort for every transaction

• serial: no interleaving of actions from different transactions

• serializable: equivalent to a serial schedule (assuming all
transactions commit).



Schedules

Transaction (DBMS view)

• list of actions (read or write)

• terminated by commit or abort

Schedule

• interleaving of multiple transactions

• action order within transaction preserved

• complete: commit/abort for every transaction

• serial: no interleaving of actions from different transactions

• serializable: equivalent to a serial schedule (assuming all
transactions commit).



Conflicts

Conflict

• a pair of actions of different transactions on the same object

• one action is a write

• a conflict orders the transactions

Conflicts influence serializability

• WR: reading uncommitted data

• RW: unrepeatable reads

• WW: overwriting uncommitted data.



Conflicts

Conflict

• a pair of actions of different transactions on the same object

• one action is a write

• a conflict orders the transactions

Conflicts influence serializability

• WR: reading uncommitted data

• RW: unrepeatable reads

• WW: overwriting uncommitted data.



Conflicts

Conflict

• a pair of actions of different transactions on the same object

• one action is a write

• a conflict orders the transactions

Conflicts influence serializability

• WR: reading uncommitted data

• RW: unrepeatable reads

• WW: overwriting uncommitted data.



Reading uncommitted data

T1 debit(A,1000), credit(B,1000)

T2 increase A by 10%, increase B by 10%

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

Commit

R(B)

W(B)

Commit



Reading uncommitted data

T1 debit(A,1000), credit(B,1000)

T2 increase A by 10%, increase B by 10%

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

Commit

R(B)

W(B)

Commit



Reading uncommitted data

T1 debit(A,1000), credit(B,1000)

T2 increase A by 10%, increase B by 10%

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

Commit

R(B)

W(B)

Commit



Unrepeatable read

T3 credit(A,1000)

T4 credit(A,2000)

T3 T4

R(A)

R(A)

W(A)

Commit

W(A)

Commit



Unrepeatable read

T3 credit(A,1000)

T4 credit(A,2000)

T3 T4

R(A)

R(A)

W(A)

Commit

W(A)

Commit



Unrepeatable read

T3 credit(A,1000)

T4 credit(A,2000)

T3 T4

R(A)

R(A)

W(A)

Commit

W(A)

Commit



Overwriting uncommitted data

T5 book(F1,AA), book(F2,AA)

T6 book(F1,Delta), book(F2,Delta)

T5 T6

W(F1)

W(F1)

W(F2)

Commit

W(F2)

Commit



Overwriting uncommitted data

T5 book(F1,AA), book(F2,AA)

T6 book(F1,Delta), book(F2,Delta)

T5 T6

W(F1)

W(F1)

W(F2)

Commit

W(F2)

Commit



Overwriting uncommitted data

T5 book(F1,AA), book(F2,AA)

T6 book(F1,Delta), book(F2,Delta)

T5 T6

W(F1)

W(F1)

W(F2)

Commit

W(F2)

Commit



Aborted transactions

The effect of aborted transactions has to be completely undone.

Problems

• a transaction depending on an aborted transaction may have already
committed (unrecoverable schedule)

• aborting a transaction requires aborting other transactions
(cascading aborts).



Aborted transactions

The effect of aborted transactions has to be completely undone.

Problems

• a transaction depending on an aborted transaction may have already
committed (unrecoverable schedule)

• aborting a transaction requires aborting other transactions
(cascading aborts).



Aborted transactions

The effect of aborted transactions has to be completely undone.

Problems

• a transaction depending on an aborted transaction may have already
committed (unrecoverable schedule)

• aborting a transaction requires aborting other transactions
(cascading aborts).



Aborted transactions

The effect of aborted transactions has to be completely undone.

Problems

• a transaction depending on an aborted transaction may have already
committed (unrecoverable schedule)

• aborting a transaction requires aborting other transactions
(cascading aborts).



Aborted transactions

The effect of aborted transactions has to be completely undone.

Problems

• a transaction depending on an aborted transaction may have already
committed (unrecoverable schedule)

• aborting a transaction requires aborting other transactions
(cascading aborts).



Unrecoverable schedule

T7 debit(A,100)

T8 increase A by 10%, increase B by 10%

T7 T8

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

Commit

Abort



Unrecoverable schedule

T7 debit(A,100)

T8 increase A by 10%, increase B by 10%

T7 T8

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

Commit

Abort



Unrecoverable schedule

T7 debit(A,100)

T8 increase A by 10%, increase B by 10%

T7 T8

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

Commit

Abort



Strict two-phase locking

Rules

1 before an object is accessed, an appropriate lock on the object(read:
shared mode, write: exclusive mode) needs to be obtained

2 lock in exclusive mode: no other transaction can lock the object in
any mode

3 lock in shared mode: other transactions can lock the object in
shared mode

4 a transaction cannot lock an object more than once

5 all the locks are held until the end of transaction.

Guarantees

• schedule serializability

• schedule recoverability

• no cascading aborts



Strict two-phase locking

Rules

1 before an object is accessed, an appropriate lock on the object(read:
shared mode, write: exclusive mode) needs to be obtained

2 lock in exclusive mode: no other transaction can lock the object in
any mode

3 lock in shared mode: other transactions can lock the object in
shared mode

4 a transaction cannot lock an object more than once

5 all the locks are held until the end of transaction.

Guarantees

• schedule serializability

• schedule recoverability

• no cascading aborts



Strict two-phase locking

Rules

1 before an object is accessed, an appropriate lock on the object(read:
shared mode, write: exclusive mode) needs to be obtained

2 lock in exclusive mode: no other transaction can lock the object in
any mode

3 lock in shared mode: other transactions can lock the object in
shared mode

4 a transaction cannot lock an object more than once

5 all the locks are held until the end of transaction.

Guarantees

• schedule serializability

• schedule recoverability

• no cascading aborts



Locking

Locks are stored in a lock table (managed by DBMS), lock requests are
queued.

Lock/unlock: atomic operations.

Problems

• deadlocks

• starvation.



Locking

Locks are stored in a lock table (managed by DBMS), lock requests are
queued.

Lock/unlock: atomic operations.

Problems

• deadlocks

• starvation.



Locking

Locks are stored in a lock table (managed by DBMS), lock requests are
queued.

Lock/unlock: atomic operations.

Problems

• deadlocks

• starvation.



Locking

Locks are stored in a lock table (managed by DBMS), lock requests are
queued.

Lock/unlock: atomic operations.

Problems

• deadlocks

• starvation.



Deadlocks

Deadlock

A set of transactions such that each waits for a lock held by another one.

Handling deadlocks

• prevention:
• object ordering
• transaction priorities
• obtaining all the locks at the beginning

• detection:
• identifying cycles in the waits-for graph or timeout, and
• abort transaction.

Handling starvation

• FIFO lock queues.



Deadlocks

Deadlock

A set of transactions such that each waits for a lock held by another one.

Handling deadlocks

• prevention:
• object ordering
• transaction priorities
• obtaining all the locks at the beginning

• detection:
• identifying cycles in the waits-for graph or timeout, and
• abort transaction.

Handling starvation

• FIFO lock queues.



Deadlocks

Deadlock

A set of transactions such that each waits for a lock held by another one.

Handling deadlocks

• prevention:
• object ordering
• transaction priorities
• obtaining all the locks at the beginning

• detection:
• identifying cycles in the waits-for graph or timeout, and
• abort transaction.

Handling starvation

• FIFO lock queues.



Deadlocks

Deadlock

A set of transactions such that each waits for a lock held by another one.

Handling deadlocks

• prevention:
• object ordering
• transaction priorities
• obtaining all the locks at the beginning

• detection:
• identifying cycles in the waits-for graph or timeout, and
• abort transaction.

Handling starvation

• FIFO lock queues.



Database recovery

Types of failures

• transaction abort

• system crash

• media failure

Memory levels

• disk blocks

• main memory buffers

• local variables

• the same object may have a copy at each level



Database recovery

Types of failures

• transaction abort

• system crash

• media failure

Memory levels

• disk blocks

• main memory buffers

• local variables

• the same object may have a copy at each level



Database recovery

Types of failures

• transaction abort

• system crash

• media failure

Memory levels

• disk blocks

• main memory buffers

• local variables

• the same object may have a copy at each level



Database recovery

Types of failures

• transaction abort

• system crash

• media failure

Memory levels

• disk blocks

• main memory buffers

• local variables

• the same object may have a copy at each level



Basic transaction operations

Operations

• INPUT(X): Copy the disk block containing the object X to a buffer.

• READ(X,A): Copy the object X to a local variable A (preceded by
INPUT(X) if necessary).

• WRITE(X,A): Copy the value of the local variable A to the object X
(preceded by INPUT(X) if necessary).

• OUTPUT(X): Copy the block containing X from buffer to disk.

Assumption: each object fits into one block.



Basic transaction operations

Operations

• INPUT(X): Copy the disk block containing the object X to a buffer.

• READ(X,A): Copy the object X to a local variable A (preceded by
INPUT(X) if necessary).

• WRITE(X,A): Copy the value of the local variable A to the object X
(preceded by INPUT(X) if necessary).

• OUTPUT(X): Copy the block containing X from buffer to disk.

Assumption: each object fits into one block.



Basic transaction operations

Operations

• INPUT(X): Copy the disk block containing the object X to a buffer.

• READ(X,A): Copy the object X to a local variable A (preceded by
INPUT(X) if necessary).

• WRITE(X,A): Copy the value of the local variable A to the object X
(preceded by INPUT(X) if necessary).

• OUTPUT(X): Copy the block containing X from buffer to disk.

Assumption: each object fits into one block.



Basic transaction operations

Operations

• INPUT(X): Copy the disk block containing the object X to a buffer.

• READ(X,A): Copy the object X to a local variable A (preceded by
INPUT(X) if necessary).

• WRITE(X,A): Copy the value of the local variable A to the object X
(preceded by INPUT(X) if necessary).

• OUTPUT(X): Copy the block containing X from buffer to disk.

Assumption: each object fits into one block.



Basic transaction operations

Operations

• INPUT(X): Copy the disk block containing the object X to a buffer.

• READ(X,A): Copy the object X to a local variable A (preceded by
INPUT(X) if necessary).

• WRITE(X,A): Copy the value of the local variable A to the object X
(preceded by INPUT(X) if necessary).

• OUTPUT(X): Copy the block containing X from buffer to disk.

Assumption: each object fits into one block.



Basic transaction operations

Operations

• INPUT(X): Copy the disk block containing the object X to a buffer.

• READ(X,A): Copy the object X to a local variable A (preceded by
INPUT(X) if necessary).

• WRITE(X,A): Copy the value of the local variable A to the object X
(preceded by INPUT(X) if necessary).

• OUTPUT(X): Copy the block containing X from buffer to disk.

Assumption: each object fits into one block.



Logging

Recording all the operations in an append-only log (also stored on disk).

Log records

• <START T>

• <COMMIT T>

• <ABORT T>

• <T,X,old,new>



Logging

Recording all the operations in an append-only log (also stored on disk).

Log records

• <START T>

• <COMMIT T>

• <ABORT T>

• <T,X,old,new>



Logging

Recording all the operations in an append-only log (also stored on disk).

Log records

• <START T>

• <COMMIT T>

• <ABORT T>

• <T,X,old,new>



UNDO/REDO logging

UNDO/REDO rule

Before modifying an object X on disk on behalf of a transaction T, a log
update record <T,X,old,new> needs to be written to disk.

Recovery

1 Redo all the committed transactions in the order earliest-first.

2 Undo all the incomplete transactions in the order latest-first.

Checkpointing

1 Write <START CKPT (T1,...Tk)> log record, where T1,...Tk are
all the active transactions, and flush the log.

2 Flush all dirty buffers.

3 Write <END CKPT> log record, and flush the log.



UNDO/REDO logging

UNDO/REDO rule

Before modifying an object X on disk on behalf of a transaction T, a log
update record <T,X,old,new> needs to be written to disk.

Recovery

1 Redo all the committed transactions in the order earliest-first.

2 Undo all the incomplete transactions in the order latest-first.

Checkpointing

1 Write <START CKPT (T1,...Tk)> log record, where T1,...Tk are
all the active transactions, and flush the log.

2 Flush all dirty buffers.

3 Write <END CKPT> log record, and flush the log.



UNDO/REDO logging

UNDO/REDO rule

Before modifying an object X on disk on behalf of a transaction T, a log
update record <T,X,old,new> needs to be written to disk.

Recovery

1 Redo all the committed transactions in the order earliest-first.

2 Undo all the incomplete transactions in the order latest-first.

Checkpointing

1 Write <START CKPT (T1,...Tk)> log record, where T1,...Tk are
all the active transactions, and flush the log.

2 Flush all dirty buffers.

3 Write <END CKPT> log record, and flush the log.



UNDO/REDO logging

UNDO/REDO rule

Before modifying an object X on disk on behalf of a transaction T, a log
update record <T,X,old,new> needs to be written to disk.

Recovery

1 Redo all the committed transactions in the order earliest-first.

2 Undo all the incomplete transactions in the order latest-first.

Checkpointing

1 Write <START CKPT (T1,...Tk)> log record, where T1,...Tk are
all the active transactions, and flush the log.

2 Flush all dirty buffers.

3 Write <END CKPT> log record, and flush the log.



Distributed transactions

Transactions

• subtransactions executing at different sites

• all subtransactions commit or none does (commit protocol)

• site and link failures.

Two-phase commit

A site is designated as a coordinator, other participating sites are
subordinates.



Distributed transactions

Transactions

• subtransactions executing at different sites

• all subtransactions commit or none does (commit protocol)

• site and link failures.

Two-phase commit

A site is designated as a coordinator, other participating sites are
subordinates.



Distributed transactions

Transactions

• subtransactions executing at different sites

• all subtransactions commit or none does (commit protocol)

• site and link failures.

Two-phase commit

A site is designated as a coordinator, other participating sites are
subordinates.



Protocol

1 Coordinator: send a PREPARE message to each subordinate

2 Subordinate: receive PREPARE and decide to commit or abort:
• commit: write a prepare log record, flush log, reply YES;
• abort: write an abort log record, flush log, reply NO.

3 Coordinator:
• all subordinates reply YES: write a commit log record, flush log, send

a COMMIT message to each subordinate;
• one replies NO or times out: write an abort log record, flush log,

send an ABORT message to each subordinate.

4 Subordinate:
• receive COMMIT: write a commit log record, flush log, send ACK to

coordinator, commit;
• receive ABORT: write an abort log record, flush log, send ACK,

abort.

5 Coordinator: receive ACK from all subordinates: write end log
record.



Protocol

1 Coordinator: send a PREPARE message to each subordinate

2 Subordinate: receive PREPARE and decide to commit or abort:
• commit: write a prepare log record, flush log, reply YES;
• abort: write an abort log record, flush log, reply NO.

3 Coordinator:
• all subordinates reply YES: write a commit log record, flush log, send

a COMMIT message to each subordinate;
• one replies NO or times out: write an abort log record, flush log,

send an ABORT message to each subordinate.

4 Subordinate:
• receive COMMIT: write a commit log record, flush log, send ACK to

coordinator, commit;
• receive ABORT: write an abort log record, flush log, send ACK,

abort.

5 Coordinator: receive ACK from all subordinates: write end log
record.



Protocol

1 Coordinator: send a PREPARE message to each subordinate

2 Subordinate: receive PREPARE and decide to commit or abort:

• commit: write a prepare log record, flush log, reply YES;
• abort: write an abort log record, flush log, reply NO.

3 Coordinator:
• all subordinates reply YES: write a commit log record, flush log, send

a COMMIT message to each subordinate;
• one replies NO or times out: write an abort log record, flush log,

send an ABORT message to each subordinate.

4 Subordinate:
• receive COMMIT: write a commit log record, flush log, send ACK to

coordinator, commit;
• receive ABORT: write an abort log record, flush log, send ACK,

abort.

5 Coordinator: receive ACK from all subordinates: write end log
record.



Protocol

1 Coordinator: send a PREPARE message to each subordinate

2 Subordinate: receive PREPARE and decide to commit or abort:
• commit: write a prepare log record, flush log, reply YES;

• abort: write an abort log record, flush log, reply NO.

3 Coordinator:
• all subordinates reply YES: write a commit log record, flush log, send

a COMMIT message to each subordinate;
• one replies NO or times out: write an abort log record, flush log,

send an ABORT message to each subordinate.

4 Subordinate:
• receive COMMIT: write a commit log record, flush log, send ACK to

coordinator, commit;
• receive ABORT: write an abort log record, flush log, send ACK,

abort.

5 Coordinator: receive ACK from all subordinates: write end log
record.



Protocol

1 Coordinator: send a PREPARE message to each subordinate

2 Subordinate: receive PREPARE and decide to commit or abort:
• commit: write a prepare log record, flush log, reply YES;
• abort: write an abort log record, flush log, reply NO.

3 Coordinator:
• all subordinates reply YES: write a commit log record, flush log, send

a COMMIT message to each subordinate;
• one replies NO or times out: write an abort log record, flush log,

send an ABORT message to each subordinate.

4 Subordinate:
• receive COMMIT: write a commit log record, flush log, send ACK to

coordinator, commit;
• receive ABORT: write an abort log record, flush log, send ACK,

abort.

5 Coordinator: receive ACK from all subordinates: write end log
record.



Protocol

1 Coordinator: send a PREPARE message to each subordinate

2 Subordinate: receive PREPARE and decide to commit or abort:
• commit: write a prepare log record, flush log, reply YES;
• abort: write an abort log record, flush log, reply NO.

3 Coordinator:

• all subordinates reply YES: write a commit log record, flush log, send
a COMMIT message to each subordinate;

• one replies NO or times out: write an abort log record, flush log,
send an ABORT message to each subordinate.

4 Subordinate:
• receive COMMIT: write a commit log record, flush log, send ACK to

coordinator, commit;
• receive ABORT: write an abort log record, flush log, send ACK,

abort.

5 Coordinator: receive ACK from all subordinates: write end log
record.



Protocol

1 Coordinator: send a PREPARE message to each subordinate

2 Subordinate: receive PREPARE and decide to commit or abort:
• commit: write a prepare log record, flush log, reply YES;
• abort: write an abort log record, flush log, reply NO.

3 Coordinator:
• all subordinates reply YES: write a commit log record, flush log, send

a COMMIT message to each subordinate;

• one replies NO or times out: write an abort log record, flush log,
send an ABORT message to each subordinate.

4 Subordinate:
• receive COMMIT: write a commit log record, flush log, send ACK to

coordinator, commit;
• receive ABORT: write an abort log record, flush log, send ACK,

abort.

5 Coordinator: receive ACK from all subordinates: write end log
record.



Protocol

1 Coordinator: send a PREPARE message to each subordinate

2 Subordinate: receive PREPARE and decide to commit or abort:
• commit: write a prepare log record, flush log, reply YES;
• abort: write an abort log record, flush log, reply NO.

3 Coordinator:
• all subordinates reply YES: write a commit log record, flush log, send

a COMMIT message to each subordinate;
• one replies NO or times out: write an abort log record, flush log,

send an ABORT message to each subordinate.

4 Subordinate:
• receive COMMIT: write a commit log record, flush log, send ACK to

coordinator, commit;
• receive ABORT: write an abort log record, flush log, send ACK,

abort.

5 Coordinator: receive ACK from all subordinates: write end log
record.



Protocol

1 Coordinator: send a PREPARE message to each subordinate

2 Subordinate: receive PREPARE and decide to commit or abort:
• commit: write a prepare log record, flush log, reply YES;
• abort: write an abort log record, flush log, reply NO.

3 Coordinator:
• all subordinates reply YES: write a commit log record, flush log, send

a COMMIT message to each subordinate;
• one replies NO or times out: write an abort log record, flush log,

send an ABORT message to each subordinate.

4 Subordinate:

• receive COMMIT: write a commit log record, flush log, send ACK to
coordinator, commit;

• receive ABORT: write an abort log record, flush log, send ACK,
abort.

5 Coordinator: receive ACK from all subordinates: write end log
record.



Protocol

1 Coordinator: send a PREPARE message to each subordinate

2 Subordinate: receive PREPARE and decide to commit or abort:
• commit: write a prepare log record, flush log, reply YES;
• abort: write an abort log record, flush log, reply NO.

3 Coordinator:
• all subordinates reply YES: write a commit log record, flush log, send

a COMMIT message to each subordinate;
• one replies NO or times out: write an abort log record, flush log,

send an ABORT message to each subordinate.

4 Subordinate:
• receive COMMIT: write a commit log record, flush log, send ACK to

coordinator, commit;

• receive ABORT: write an abort log record, flush log, send ACK,
abort.

5 Coordinator: receive ACK from all subordinates: write end log
record.



Protocol

1 Coordinator: send a PREPARE message to each subordinate

2 Subordinate: receive PREPARE and decide to commit or abort:
• commit: write a prepare log record, flush log, reply YES;
• abort: write an abort log record, flush log, reply NO.

3 Coordinator:
• all subordinates reply YES: write a commit log record, flush log, send

a COMMIT message to each subordinate;
• one replies NO or times out: write an abort log record, flush log,

send an ABORT message to each subordinate.

4 Subordinate:
• receive COMMIT: write a commit log record, flush log, send ACK to

coordinator, commit;
• receive ABORT: write an abort log record, flush log, send ACK,

abort.

5 Coordinator: receive ACK from all subordinates: write end log
record.



Protocol

1 Coordinator: send a PREPARE message to each subordinate

2 Subordinate: receive PREPARE and decide to commit or abort:
• commit: write a prepare log record, flush log, reply YES;
• abort: write an abort log record, flush log, reply NO.

3 Coordinator:
• all subordinates reply YES: write a commit log record, flush log, send

a COMMIT message to each subordinate;
• one replies NO or times out: write an abort log record, flush log,

send an ABORT message to each subordinate.

4 Subordinate:
• receive COMMIT: write a commit log record, flush log, send ACK to

coordinator, commit;
• receive ABORT: write an abort log record, flush log, send ACK,

abort.

5 Coordinator: receive ACK from all subordinates: write end log
record.


