
Preference Queries in Relational Databases∗

Jan Chomicki
Dept. of Computer Science and Engineering

University at Buffalo
Buffalo, NY 14260-2000

chomicki@cse.buffalo.edu

25th August 2002

Abstract

The handling of user preferences is becoming an increasingly important issue in
present-day information systems. Among others, preferences are used for information
filtering and extraction to reduce the volume of data presented to the user. They are
also used to keep track of user profiles and formulate policies to improve and automate
decision making.

We propose here a simple, logical framework for formulating preferences as preference
formulas. The framework does not impose any restrictions on the preference relations,
and allows arbitrary operation and predicate signatures in preference formulas. It also
makes the composition of preference relations straightforward. We propose a simple,
natural embedding of preference formulas into relational algebra (and SQL) through a
single winnow operator parameterized by a preference formula. The embedding makes
possible the formulation of complex preference queries, e.g., involving aggregation, by
piggybacking on existing SQL constructs. It also leads in a natural way to the defi-
nition of further, preference-related concepts like ranking. Finally, we present general
algebraic laws governing the winnow operator and its interaction with other relational
algebra operators. The preconditions on the applicability of the laws are captured by
logical formulas. The laws provide a formal foundation for the algebraic optimization of
preference queries. We demonstrate the usefulness of our approach through numerous
examples.

1 Introduction

The handling of user preferences is becoming an increasingly important issue in present-
day information systems. Among others, preferences are used for information filtering and
extraction to reduce the volume of data presented to the user. They are also used to keep
track of user profiles and formulate policies to improve and automate decision making.

∗This is an expanded version of the paper [Cho02]. CoRR paper cs.DB/0207093.

1

The research literature on preferences is extensive. It encompasses preference logics
[vW63, Man91, Han01], preference reasoning [WD91, TP94, BBHP99], prioritized non-
monotonic reasoning and logic programming [BE99, DST00, SI00] and decision theory
[Fis99, Fis70] (the list is by no means exhaustive). However, only a few papers [LL87,
BKS01, GJM01, AW00, HKP01, Cho02, Kie02, KK02], most of them very recent, address
the issue of user preferences in the context of database queries. Two different approaches are
pursued: qualitative and quantitative. In the qualitative approach [LL87, BKS01, GJM01,
Cho02, Kie02, KK02], the preferences between tuples in the answer to a query are specified
directly, typically using binary preference relations.

Example 1.1 We introduce here one of the examples used throughout the paper. Consider
the relation Book(ISBN, V endor, Price) and the following preference relation ÂC1 between
Book tuples:

prefer one Book tuple to another if and only if their ISBNs are the same and
the Price of the first is lower.

Consider the following instance r1 of Book

ISBN Vendor Price

0679726691 BooksForLess $14.75
0679726691 LowestPrices $13.50
0679726691 QualityBooks $18.80
0062059041 BooksForLess $7.30
0374164770 LowestPrices $21.88

Then clearly the second tuple is preferred to the first one which in turn is preferred to
the third one. There is no preference defined between any of those three tuples and the
remaining tuples.

In the quantitative approach [AW00, HKP01], preferences are specified indirectly using
scoring functions that associate a numeric score with every tuple of the query answer. Then
a tuple t1 is preferred to a tuple t2 iff the score of t1 is higher than the score of t2. The
qualitative approach is strictly more general than the quantitative one, since one can define
preference relations in terms of scoring functions (if the latter are explicitly given), while
not every intuitively plausible preference relation can be captured by scoring functions.

Example 1.2 There is no scoring function that captures the preference relation described
in Example 1.1. Since there is no preference defined between any of the first three tuples and
the fourth one, the score of the fourth tuple should be equal to all of the scores of the first
three tuples. But this implies that the scores of the first three tuples are the same, which is
not possible since the second tuple is preferred to the first one which in turn is preferred to
the third one.

2

This lack of expressiveness of the quantitative approach is well known in utility theory
[Fis99, Fis70].

In the present paper, we contribute to the qualitative approach by defining a logical
framework for formulating preferences and its embedding into relational query languages.

We believe that combining preferences with queries is very natural and useful. The
applications in which user preferences are prominent will benefit from applying the mod-
ern database technology. For example, in decision-making applications databases may be
used to store the space of possible configurations. Also, the use of a full-fledged query
language makes it possible to formulate complex decision problems, a feature missing from
most previous, non-database, approaches to preferences. For example, the formulation of
the problem may now involve quantifiers, grouping, or aggregation. At the same time by
explicitly addressing the technical issues involved in querying with preferences present-day
DBMS may expand their scope.

The framework presented in this paper consists of two parts: a formal first-order logic
notation for specifying preferences and an embedding of preferences into relational query
languages. In this way both abstract properties of preferences (like asymmetry or transi-
tivity) and evaluation of preference queries can be studied to a large degree separately.

Preferences are defined using binary preference relations between tuples. Preference
relations are specified using first-order formulas. We focus mostly on intrinsic preference
formulas. Such formulas can refer only to built-in predicates. In that way we capture
preferences that are based only on the values occuring in tuples, not on other properties
like membership of tuples in database relations. We show how the latter kind of preferences,
called extrinsic, can also be simulated in our framework in some cases.

We propose a new relational algebra operator called winnow that selects from its argu-
ment relation the most preferred tuples according to the given preference relation. Although
the winnow operator can be expressed using other operators of relational algebra, by con-
sidering it on its own we can on one hand focus on the abstract properties of preference
relations (e.g., transitivity) and on the other, study special evaluation and optimization
techniques for the winnow operator itself. For SQL. we are faced with a similar choice:
either the language is appropriately extended with an SQL equivalent of winnow, or the
occurrences of winnow are translated into SQL. The first alternative looks more promising;
however, in this paper we don’t commit ourselves to any specific syntactic expression of
winnow in SQL.

We want to capture many different varieties of preference and related notions: uncon-
ditional vs. conditional preferences, nested and hierarchical preferences, groupwise prefer-
ences, indifference, iterated preferences and ranking, and integrity constraints and vetoes.

The main contributions of this paper are as follows:

1. a simple, logical framework for formulating preferences as preference formulas. The
framework does not impose any restrictions on the preference relations and allows
arbitrary operation and predicate signatures in preference formulas. It also makes the
composition of preference relations straightforward.

3

2. a simple, natural embedding of preference formulas into relational algebra (and SQL)
through a single winnow operator parameterized by a preference formula. The em-
bedding makes possible the formulation of complex preference queries, e.g., involving
aggregation, by piggybacking on existing SQL constructs. It also leads in a natural
way to the definition of further, preference-related concepts like ranking. Our notion
of winnow was used in [TC02] under the name of the Best operator. A similar concept
was independently proposed in [Kie02] and, in a more restricted form, in [BKS01].

3. general algebraic laws governing the winnow operator and its interaction with other
relational algebra operators. The preconditions on the applicability of the laws are
captured by logical formulas. The laws provide a formal foundation for the alge-
braic optimization of preference queries. In particular, the laws are applicable to the
optimization of skyline queries [BKS01].

In Section 2, we define the basic concepts of preference relation, preference formula, and
the winnow operator. We also introduce several examples that will be used throughout the
paper. In Section 3, we study the basic properties of preference relations. In Section 4,
which contains the main technical contributions of the paper, we present the main properties
of the winnow operator, characterize its expressive power, and outline – for completeness – a
number of evaluation algorithms that were proposed elsewhere. In Section 5, we explore the
composition of preferences. In Section 6, we show how the winnow operator together with
other constructs of relational algebra and SQL makes it possible to express a wide variety
of preference queries. In Section 7, we show how iterating the winnow operator provides a
ranking of tuples and introduce a weak version of the winnow operator that is helpful for
preference relations that are not strict partial orders. We discuss related work in Section 8
and conclude with a brief discussion of further work in Section 9. All the non-trivial proofs
are given.

2 Basic notions

We are working in the context of the relational model of data. We assume two infinite
domains: D (uninterpreted constants) and N (numbers). We do not distinguish between
different numeric domains, since it is not necessary for the present paper. When necessary,
we assume that database instances are finite. (Some results hold without the finiteness
assumption.) Additionally, we have the standard built-in predicates. In the paper, we will
move freely between relational algebra and SQL.

2.1 Basic definitions

Preference formulas are used to define binary preference relations.

Definition 2.1 Given a relation schema R(A1 · · ·Ak) such that Ui, 1 ≤ i ≤ k, is the
domain (either D or N) of the attribute Ai, a relation Â is a preference relation over R if
it is a subset of (U1 × · · · × Uk)× (U1 × · · · × Uk).

4

Intuitively, Â will be a binary relation between pairs of tuples from the same (database)
relation. We say that a tuple t1 dominates a tuple t2 in Â if t1 Â t2.

Typical properties of the relation Â include:

• irreflexivity: ∀x.x 6Â x,

• asymmetry: ∀x, y.x Â y ⇒ y 6Â x,

• transitivity: ∀x, y, z.(x Â y ∧ y Â z)⇒ x Â z,

• negative transitivity: ∀x, y, z.(x 6Â y ∧ y 6Â z)⇒ x 6Â z,

• connectivity: ∀x, y.x Â y ∨ y Â x ∨ x = y.

Clearly, those properties are not independent. Asymmetry implies irreflexivity. Ir-
reflexivity and transitivity imply asymmetry. However, it is convenient to talk about them
separately.

The relation Â is: a strict partial order if it is irreflexive, asymmetric and transitive; a
total order if it is a connected strict partial order; a weak order if it is is a negatively transitive
strict partial order. At this point, we do not assume any properties of Â, although in most
applications it will satisfy at least the properties of a strict partial order.

Definition 2.2 A preference formula (pf) C(t1, t2) is a first-order formula defining a pref-
erence relation ÂC in the standard sense, namely

t1 ÂC t2 iff C(t1, t2).

An intrinsic preference formula (ipf) is a preference formula that uses only built-in predi-
cates.

We will limit our attention to preference relations defined using preference formulas.
By using the notation ÂC for a preference relation, we assume that there is an underlying
preference formula C.

Ipfs can refer to equality (=) and inequality (6=) when comparing values that are un-
interpreted constants, and to the standard set of built-in arithmetic comparison operators
when referring to numeric values (there are no function symbols). We will call an ipf that
references only arithmetic comparisons (=, 6=, <,>,≤,≥) pure-comparison. Without loss of
generality, we will assume that ipfs are in DNF (Disjunctive Normal Form) and quantifier-
free (the theories involving the above predicates admit quantifier elimination). A formula
in DNF is called k-DNF if it has at most k disjuncts.

In this paper, we mostly restrict ourselves to ipfs and preference relations defined by
such formulas. The main reason is that ipfs define fixed, although possibly infinite, relations.
As a result, they are computationally easier and more amenable to syntactic manipulation
that general pfs. For instance, transitively closing an ipf results in a finite formula (Theorem
5.3), which is typically not the case for pfs. However, we formulate in full generality the
results that hold for arbitrary pfs.

5

We define now an algebraic operator that picks from a given relation the set of the most
preferred tuples, according to a given preference formula.

Definition 2.3 If R is a relation schema and C a preference formula defining a preference
relation ÂC over R, then the winnow operator is written as ωC(R), and for every instance
r of R:

ωC(r) = {t ∈ r | ¬∃t
′ ∈ r. t′ ÂC t}.

A preference query is a relational algebra query containing at least one occurrence of
the winnow operator.

2.2 Examples

The first example illustrates how preference queries are applied to information extraction:
here obtaining the best price of a given book.

Example 2.1 Consider the relation Book(ISBN, V endor, Price) from Example 1.1. The
preference relation ÂC1 from this example can be defined using the formula C1:

(i, v, p) ÂC1 (i′, v′, p′) ≡ i = i′ ∧ p < p′.

The answer to the preference query ωC1(Book) provides for every book the information
about the vendors offering the lowest price for that book. For the given instance r1 of Book,
applying the winnow operator ωC1 returns the tuples

ISBN Vendor Price

0679726691 LowestPrices $13.50
0062059041 BooksForLess $7.30
0374164770 LowestPrices $21.88

Note that in the above example, the preferences are applied groupwise: separately for each
book. Note also that due to the properties of <, the preference relation ÂC1 is irreflexive,
asymmetric and transitive.

The second example illustrates how preference queries are used in automated decision
making to obtain the most desirable solution to a (very simple) configuration problem.

Example 2.2 Consider two relations Wine(Name, Type) and Dish(Name, Type) and a
view Meal that contains possible meal configurations

CREATE VIEW Meal(Dish,DishType,Wine,WineType) AS

SELECT * FROM Wine, Dish;

6

Now the preference for white wine in the presence of fish and for red wine in the presence
of meat can be expressed as the following preference formula C2 over Meal:

(d, dt, w,wt) ÂC2 (d′, dt′, w′, wt′) ≡ (d = d′ ∧ dt = ′fish′ ∧ wt = ′white′

∧dt′ = ′fish′ ∧ wt′ = ′red′)
∨(d = d′ ∧ dt = ′meat′ ∧ wt = ′red′

∧dt′ = ′meat′ ∧ wt′ = ′white′)

Notice that this will force any white wine to be preferred over any red wine for fish, and
just the opposite for meat. For other kinds of dishes, no preference is indicated. This is
an example of a relative preference. Consider now the preference query ωC2(Meal). It will
pick the most preferred meals, according to the above-stated preferences. Notice that in the
absence of any white wine, red wine can be selected for fish.

The above preferences are conditional, since they depend on the type of the dish being
considered. Note that the relation ÂC2 in this example is irreflexive and asymmetric. Tran-
sitivity is obtained trivially because the chains of ÂC2 are of length at most 2. The preference
relation is defined without referring to any domain order.

Note also that the meals with a wine which is neither red nor white but, e.g., rosé, are
not related through ÂC2 to the meals with either of those kinds of wine. Therefore, the
preference query ωC2(Meal) will return also the meals involving such wines, as they are not
dominated by other meals. If this is undesirable, one can express an absolute preference for
white wine for fish (and red wine for meat) using the formula C3:

(d, dt, w,wt) ÂC3 (d′, dt′, w′, wt′) ≡ (d = d′ ∧ dt = ′fish′ ∧ wt = ′white′

∧dt′ = ′fish′ ∧ wt′ 6= ′white′)
∨(d = d′ ∧ dt = ′meat′ ∧ wt = ′red′

∧dt′ = ′meat′ ∧ wt′ 6= ′red′)

Similarly, an unconditional preference for red wine for any kind of meal can also be defined
as a first-order formula C4:

(d, dt, w,wt) ÂC4 (d′, dt′, w′, wt′) ≡ d = d′ ∧ wt = ′red′ ∧ wt′ 6= ′red′.

3 Properties of preference queries

3.1 Preference relations

Since pfs can be essentially arbitrary formulas, no properties of preference relations can be
assumed. So our framework is entirely neutral in this respect.

In the examples above, the preference relations were strict partial orders. This is likely
to be the case for most applications of preference queries. However, there are cases where
such relations fail to satisfy one of the properties of partial orders. We will see in Section 6
when irreflexivity fails. For asymmetry: We may have two tuples t1 and t2 such that t1 Â t2
and t2 Â t1 simply because we may have one reason to prefer t1 over t2 and another reason

7

to prefer t2 over t1. Similarly, transitivity is not always guaranteed [Hug80, Man91, Fis99,
Han01]. For example, t1 may be preferred over t2 and t2 over t3, but the gap between t1 and
t3 with respect to some heretofore ignored property may be so large as to prevent preferring
t1 over t3. Or, transitivity may have to be abandoned to prevent cycles in preferences.
However, transitivity is essential for the correctness of some of the algorithms that compute
winnow (Section 4).

It is not difficult to check the properties of a preference relation defined using a pure-
comparison ipf.

Theorem 3.1 If a preference relation is defined using a pure-comparison ipf in DNF, it
can be checked in PTIME for irreflexivity and asymmetry. If the ipf is also in k-DNF for
some fixed k, then the preference relation can be checked in PTIME for transitivity, negative
transitivity, and connectivity.

Proof: We discuss first asymmetry, the remaining properties can be handled in a similar
way. If t1 Â t2 is defined as D1 ∨ . . . ∨ Dm and t2 Â t1 as D′1 ∨ . . . ∨ D

′
m, we can write

down the negation of asymmetry as (D1 ∨ . . . ∨ Dm) ∧ (D′1 ∨ . . . ∨ D
′
m). This formula is

satisfiable iff at least one of m2 formulas φi,j ≡ Di ∧D
′
j , i, j = 1, . . . ,m, is satisfiable. Each

formula φi,j is a conjunction of atomic formulas involving arithmetic comparison predicates.
Thus its satisfiability can be checked in PTIME using the methods of [GSW96]. Testing
for transitivity, negative transitivity and connectivity requires writing down the negation of
a DNF formula and distributing the negation inside. The restriction to k-DNF guarantees
that we have again a polynomial number of PTIME satisfiability problems.

Theorem 3.2 If a preference relation ÂC over R is a strict partial order, then for every
finite, nonempty instance r of R, ωC(r) is nonempty.

We show now that violating the premisses in Theorem 3.2 results in the violation of
the hypothesis. First, consider relaxing irreflexivity of ÂC . Thus there is a tuple t0 such
that t0 ÂC t0. But then ωC({t0}) = ∅. Second, if two tuples are involved in a violation
of asymmetry, they block each other from appearing in the result of the winnow operator.
Third, without transitivity a preference relation may be asymmetric but have a cycle of
length three or more, resulting in the result of the winnow being empty. Finally, if the
relation r is infinite, it may happen that ωC(r) = ∅, for example if r contains all natural
numbers and the preference relation is the standard ordering >.

The winnow operator is not monotone or anti-monotone.

Example 3.1 Consider the following preference formula C6:

x ÂC6 y ≡ x = a ∧ y = b.

Then
b = ωC6({b}) 6⊆ ωC6({a, b}) = a.

Thus monotonicity and anti-monotonicity fail.

8

However, a form of monotonicity with respect to the preference formula parameter holds
for winnow.

Theorem 3.3 If ÂC1 and ÂC2 are preference relations over a relation schema R, and the
formula

∀t1, t2[C1(t1, t2)⇒ C2(t1, t2)]

is valid, then for all instances r of R, ωC2(r) ⊆ ωC1(r). If ÂC2 is irreflexive, then the
converse also holds.

Proof: The first part is obvious. To see that the second part also holds, assume that for
all relations r, ωC2(r) ⊆ ωC1(r) but C1 6⇒ C2. Thus, C1 ∧ ¬C2 is satisfiable, and there are
two tuples t1 and t2 such t1 ÂC1 t2 but t1 6ÂC2 t2. Consider now the instance r12 = {t1, t2}.
Then t2 /∈ ωC1(r12) but t2 ∈ ωC2(r12), a contradiction.

Several properties of winnow follow directly from the definition (the first is listed in
[Kie02], although in a less general context):

Proposition 3.1 For every preference relations ÂC1 and ÂC2 over a relation schema R
and every instance r of R:

ωC1∨C2(r) = ωC1(r) ∩ ωC2(r)
ωFalse(r) = r
ωTrue(r) = ∅.

3.2 Indifference

Every preference relation ÂC generates an indifference relation ∼C : two tuples t1 and t2
are indifferent (t1 ∼C t2) if neither is preferred to the other one, i.e., t1 6ÂC t2 and t2 6ÂC t1.
Note that if the preference relation ÂC is irreflexive, we have for every tuple t, t ∼C t.

Proposition 3.2 For every preference relation ÂC , every relation r and every tuple t1, t2 ∈
ωC(r), we have t1 = t2 or t1 ∼C t2.

It is a well-known result in utility theory [Fis99, Fis70] that in order for a preference
relation to be representable using scoring functions the relation has to be a weak order.
This implies, in particular, that the corresponding indifference relation (defined as above)
has to be transitive. This is not the case for the preference relation ÂC1 defined in Example
1.1.

4 The winnow operator

In this section, we study various properties of the winnow operator: expressive power,
monotonicity, commutativity and distributivity. Formulating such properties is essential
for the evaluation and optimization of preference queries. We also briefly discuss some
evaluation methods for winnow.

9

Although, as we show, the winnow operator can be expressed in relational algebra, its
explicit use makes possible a clean separation of preference formulas from other aspects of
the query. This has several advantages. First, the properties of preference relations can be
studied in an abstract way. Second, specialized query evaluation methods for the winnow
operator can be developed. Third, algebraic properties of that operator can be formulated,
in order to be used in query optimization.

4.1 Expressive power

The winnow operator can be expressed in relational algebra, and thus does not add any
expressive power to it. Perhaps more surprisingly, winnow can be used to simulate set
difference.

By standard relational algebra, we mean relational algebra with the following operators:
selection, projection, Cartesian product, union, set difference and renaming.

Theorem 4.1 The expressive power of the standard relational algebra does not change if
set difference is replaced by winnow.

Proof: Clearly, the winnow operator is first-order definable. Thus any relational algebra
query with winnow can be translated to relational calculus, and then back to relational al-
gebra (without winnow). Such a construction is, however, mainly of theoretical importance.

From a practical point of view, we show now the translation of the winnow operator
ωC(r) for C = D1 ∨ . . . ∨ Dk which is a pure-comparison ipf formula in DNF. Each Di,
i = 1, . . . , k, is a formula over free variables t1 and t2. It can be viewed as a conjunction
Di ≡ φi ∧ψi ∧ γi where φi refers only to the variables of t1, ψi to the variables of t2, and γi

to the variables of both t1 and t2. The formula φi has an obvious translation to a selection
condition Φi over R, and the formula ψi a similar translation to a selection condition Ψi

over %(R), where % is a renaming of R. The formula γi can similarly be translated to a join
condition Γi over R and %(R). Then

ωC(R) = %−1(%(R)− π%(R)(
k
⋃

i=1

(σΦi
(R) ./

Γi

σΨi
(%(R)))))

where %−1 is the inverse of the renaming %.
Finally, we show how to simulate the set difference operator R−S using winnow. Assume

that R (and S) have the set of attributes X of arity k. Then

R− S = πX(σB 6=0(ωC5(R× {1} ∪ S × {0})))

where B is the last attribute of R× {1} and

(x1, . . . , xk, b) ÂC5 (x′1, . . . , x
′
k, b

′) ≡ x1 = x′1 ∧ · · · ∧ xk = x′k ∧ b = 0 ∧ b′ = 1.

This works as follows. Think of the attribute B as a tag. All the tuples in R (resp.
S) are tagged with 1 (resp. 0). If a tuple is in R ∩ S, then there are two copies of it in

10

R×{1}∪S×{0}: one tagged with 1, the other with 0. The latter one is preferred according
to ÂC5 . Finally, the selection σB 6=0 eliminates all the tuples in S, keeping the tuples that
are only in R.

4.2 Evaluating winnow

For completeness, we show here several algorithms that can be used to compute the result
of the winnow operator ωC(r). The first is a simple nested-loops algorithm (Figure 1).
The second is BNL, an algorithm proposed in [BKS01] in the context of skyline queries, a
specific class of preference queries, but the algorithm is considerably more general (Figure
2). The third [CGGL] is a variant of the second, in which a presorting step is used (Figure
3). All the algorithms used a fixed amount of main memory (a window). However, for
the algorithm NL, this is not made explicit, since it is irrelevant for the properties of the
algorithm that are of interest here. Our emphasis is not on the algorithms themselves –
they are much more completely described and analyzed in the original papers – but rather
on determining their scope. We will identify the classes of preference queries to which each
of them is applicable.

1. open a scan S1 on r;

2. for every tuple t1 returned by S1:

(a) open a scan S2 on r;

(b) for every tuple t2 returned by S2:

if t2 ÂC t1, then goto 2d;

(c) output t1;

(d) close S2;

3. close S1.

Figure 1: NL: Nested Loops

The NL algorithm is correct for any preference relation ÂC . In principle, the preference
relation might even be reflexive, since the algorithm compares a tuple with itself. The BNL
and SFS algorithms require the preference relation to be a strict partial order (for BNL this
is noted in [BKS01]). The algorithms require irreflexivity, because they do not compare
a tuple with itself. Neither do they handle correctly symmetry: the situation where there
are two tuples t1 and t2 such that t1 ÂC t2 and t2 ÂC t1. In this case, BNL will break
the tie depending on the order in which the tuples appear, and SFS will fail altogether,
being unable to produce a topological sort. To see the necessity of transitivity, consider the
following example.

Example 4.1 The preference relation C0 is defined as follows:

x ÂC0 y ≡ x = a ∧ y = b ∨ x = b ∧ y = c.

11

1. initialize the window W and the temporary table F to empty;

2. make r the input;

3. repeat the following until the input is empty:

(a) for every tuple t :

• t is dominated by a tuple in W ⇒ ignore t,

• t dominates some tuples in W ⇒ eliminate the dominated tuples
and insert t into W ,

• t is incomparable with all tuples in W ⇒ insert t into W (if
there is room), otherwise add t to F ;

(b) output the tuples from W that were added there when F was empty,

(c) make F the input, clear F .

Figure 2: BNL: Blocked Nested Loops

Now let us suppose that the window has room for only one tuple and the tuples arrive in
the following order: a, b, c. Then a will be in the window, and b will be discarded, which
prevents b from blocking c. Therefore, BNL will output a (correctly) and c (incorrectly).
Such an example can be easily generalized to any fixed window size, simply by assuming that
a and b are separated in the input by sufficiently many values different from a, b and c.

4.3 Algebraic laws

We present here a set of algebraic laws that govern the commutativity and distributivity
of winnow w.r.t. relational algebra operators. This set constitutes a formal foundation for
rewriting preference queries using the standard strategies like pushing selections down. We
prove the soundness of the introduced laws. In the cases of selection, projection, union
and difference, we show that the preconditions on the applicability of the laws are not only
sufficient but also necessary. In the remaining cases, we show that the violations of the
preconditions lead to the violations of the laws. In most interesting cases, the preconditions
can also be efficiently checked.

We adopt the set-based view of relational algebra operators and leave exploring the
multiset-based view for future research.

4.3.1 Commutativity of winnow

We establish here a sufficient condition for winnow to be commutative. Commutativity
is a fundamental property that makes it possible to move the winnow operator around in
preference queries.

Theorem 4.2 If C1 and C2 are preference formulas over a schema R such that

12

1. topologically sort r according to ÂC ;

2. make r the input;

3. initialize the window W and the temporary table F to empty;

4. repeat the following until the input is empty:

(a) for every tuple t in the input:

• t is dominated by a tuple in W ⇒ ignore t,

• t is incomparable with all tuples in W ⇒ insert t into W (if
there is room), otherwise add t to F ;

(b) output the tuples from W .

(c) make F the input, clear F .

Figure 3: SFS: Sort-Filter-Skyline

• the formula ∀t1, t2[C1(t1, t2)⇒ C2(t1, t2)] is valid, and

• ÂC1 and ÂC2 are strict partial orders,

then for all finite instances r of R:

ωC1(ωC2(r)) = ωC2(ωC1(r)) = ωC2(r).

Proof: We prove here the first equality; the second can be proved in a similar way.
Assume t /∈ ωC2(ωC1(r)) and t ∈ ωC1(ωC2(r)). Then also t ∈ ωC2(r). There are two

possibilities: (1) ∃t′ ∈ ωC1(r) such that t′ ÂC2 t. But then t
′ ∈ r, which contradicts the fact

that t ∈ ωC2(r). (2) t /∈ ωC1(r). But then by Theorem 3.3, t /∈ ωC2(r), a contradiction.
Assume t /∈ ωC1(ωC2(r)) and t ∈ ωC2(ωC1(r)). Then also t ∈ ωC1(r). There are two

possibilities: (1) ∃t′ ∈ ωC2(r) such that t′ ÂC1 t. But then also t′ ∈ r, which contradicts
the fact that t ∈ ωC1(r). (2) t /∈ ωC2(r). Still t ∈ r, since otherwise t /∈ ωC1(r). Therefore,
∃t′ ∈ r such that t′ ÂC2 t. Now because ÂC2 is a strict partial order and r is finite, we can
choose t′ ∈ ωC2(r). If t′ ∈ ωC1(r), then in view of the fact that t ∈ ωC1(r) and t′ ÂC2 t,
we get a contradiction. On the other hand, if t′ /∈ ωC1(r), then by Theorem 3.3 we get
t′ /∈ ωC2(r), a contradiction.

Consider now what happens if the assumptions in Theorem 4.2 are relaxed.

Example 4.2 Let Emp(EmpNo, Y earEmployed, Salary) be a relation schema. Define
the following preference relations over it:

(e, y, s) ÂC1 (e′, y′, s′) ≡ s > s′

and
(e, y, s) ÂC2 (e′, y′, s′) ≡ y < y′.

13

Clearly, neither C1 ⇒ C2 nor C2 ⇒ C1. The database r1 = {(1, 1975, 100K), (2, 1980, 150K)}.
Now

ωC1(ωC2(r1)) = (1, 1975, 100K)) 6= (2, 1980, 150K) = ωC2(ωC1(r1)).

Example 4.3 Consider the instance r2 = {a, b} and the following preference relations:

x ÂC1 y ≡ x = a ∧ y = b

and
x ÂC2 y ≡ x = a ∧ y = b ∨ x = b ∧ y = a.

Clearly, C1 ⇒ C2. However, ÂC2 is not a strict partial order. We have

ωC1(ωC2(r2)) = ∅ 6= {a} = ωC2(ωC1(r2)).

In Theorem 4.2, if the preference formula C2 is a pure-comparison ipf in k-DNF, then
checking the validity of the formula ∀t1, t2[C1(t1, t2)⇒ C2(t1, t2)] can be done in PTIME.

4.3.2 Commuting selection and winnow

We identify in Theorem 4.3 below a sufficient and necessary condition under which the
winnow operator and a relational algebra selection commute. This is helpful for pushing
selections past winnow operators in preference queries. It is well known that moving se-
lections down in the query tree reduces the size of (and the time needed to materialize)
intermediate results and has a potential of enabling the use of indexes (if a selection is
pushed all the way down to a database relation that has an index matching the selection
condition).

Theorem 4.3 Given a relation schema R, a selection condition C1 over R and a preference
formula C2 over R, if the formula

∀t1, t2[(C1(t2) ∧ C2(t1, t2))⇒ C1(t1)]

is valid, then for all instances r of R:

σC1(ωC2(r)) = ωC2(σC1(r)).

The converse holds under the assumption that ÂC2 is irreflexive.

Proof: We have that:

t ∈ σC1(ωC2(r)) ≡ t ∈ r ∧ C1(t) ∧ (¬∃t′[t′ ∈ r ∧ C2(t
′, t)]).

On the other hand:

t ∈ ωC2(σC1(r)) ≡ t ∈ r ∧ C1(t) ∧ (¬∃t′[t′ ∈ r ∧ C1(t
′) ∧ C2(t

′, t)]).

14

Clearly, the first formula implies the second. To see that the opposite direction also holds,
assume that there is a tuple t0 such that t0 ∈ r and C2(t0, t) holds. C1(t) holds, thus C1(t0)
holds too, since otherwise the formula ∀t1, t2[(C1(t2) ∧ C2(t1, t2)) ⇒ C1(t1)] would not be
valid.

To see the necessity of the condition of the theorem, assume that there are tuples t1 and
t2 such that C1(t2) ∧ C2(t1, t2) ∧ ¬C1(t1). Then

ωC2(σC1({t1, t2})) = {t2} 6= ∅ = σC1(ωC2({t1, t2})).

The irreflexivity of ÂC2 is necessary to ensure that ωC2(σC1({t1, t2})) is nonempty.
If the preference formula C2 in Theorem 4.3 is a pure-comparison ipf and the selection

condition C1 is in k-DNF and refers only to the arithmetic comparison predicates, then
checking the validity of the formula ∀(C1(t2)∧C2(t1, t2))⇒ C1(t1) can be done in PTIME.

Example 4.4 Consider the relation Book(ISBN, V endor, Price) from Example 1.1. The
preference relation ÂC1 is defined as

(i, v, p) ÂC1 (i′, v′, p′) ≡ i = i′ ∧ p < p′.

Consider the query σPrice<15(ωC1(Book)). Now

∀p, p′, i, i′[(p′ < 15 ∧ i = i′ ∧ p < p′)⇒ p < 15]

is a valid formula, thus by Theorem 4.3

ωC1(σPrice<15(Book)) = σPrice<15(ωC1(Book)).

On the other hand, consider the query σPrice>15. Then

∀p, p′, i, i′[(p′ > 15 ∧ i = i′ ∧ p < p′)⇒ p > 15]

is not a valid formula, thus in this case the selection does not commute with winnow. Finally,
the query σISBN=c for any string c commutes with with ωC1(Book), because

∀p, p′, i, i′[(i′ = c ∧ i = i′ ∧ p < p′)⇒ i = c]

is a valid formula.

4.3.3 Commuting projection and winnow

We deal now with projection. For winnow to commute with projection, the preference
formula needs to be restricted to the attributes in the projection. We denote by t[X] the
tuple (t[A1], . . . , t[Ak]), where X = A1 · · ·Ak is a set of attributes.

Definition 4.1 Given a relation schema R, a set of attributes X of R, and a preference
relation ÂC over R, the restriction θx(ÂC) of ÂC to X is a preference relation ÂC′ defined
using the following formula:

u ÂC′ u′ ≡ ∀t, t′[(t[X] = u ∧ t′[X] = u′)⇒ t ÂC t′].

15

It is easy to see that if ÂC is a strict partial order, so is θx(ÂC).

Theorem 4.4 Given a relation schema R, a set of attributes X of R, and a preference
formula C over R, if the following formulas are valid:

∀t1, t2, t3[(t1[X] = t2[X] ∧ t1[X] 6= t3[X] ∧ t1 ÂC t3)⇒ t2 ÂC t3],

∀t1, t3, t4[(t3[X] = t4[X] ∧ t1[X] 6= t3[X] ∧ t1 ÂC t3)⇒ t1 ÂC t4],

then for all instances r of R:

πX(ωC(r)) = ωC′(πX(r)),

where ÂC′= θx(ÂC) is the restriction of ÂC to X. The converse holds under the assumption
that ÂC is irreflexive.

Proof: Assume u ∈ πX(ωC(r)). Then there exists a tuple t ∈ ωC(r) such that t[X] = u.
Assume u /∈ ωC′(πX(r)). Since u ∈ πX(r), there exists a tuple u′ ∈ πX(r) such that u′ ÂC′ u
and a tuple t′ ∈ r such that t′[X] = u′. Since u′ ÂC′ u, it has to be the case that t′ ÂC t,
which contradicts the fact that t ∈ ωC(r).

For the opposite direction, assume that u ∈ ωC′(πX(r)) and u /∈ πX(ωC(r)). Then for
each tuple t ∈ r such that t[X] = u, there is another tuple t′ ∈ r such that t′ ÂC t and
t′[X] 6= t[X]. By the assumption of the theorem, each tuple t′ that dominates (in ÂC)
one tuple t such that t[X] = u, also dominates each such tuple. Also, any two tuples that
agree on X dominate the same set of tuples. Therefore, if u′ = t′[X], then u′ ÂC′ u, which
contradicts the fact that u ∈ ωC′(πX(r)).

To show the converse, assume that the first condition is violated, i.e., there are three
tuples t1, t2 and t3 such that t1[X] = t2[X], t1[X] 6= t3[X], t1 ÂC t3 and t2 6ÂC t3. Let
r0 = {t1, t2, t3}. Then t3 /∈ ωC(r0), so πX(ωC(r0)) = {t1[X]}. Now t1[X] 6ÂC′ t3[X] (because
t2 6ÂC t3) and t1[X] 6= t3[X]. Thus

ωC′(πX(r)) = {t1[X], t3[X]} 6= {t1[X]} = πX(ωC(r0)).

The violation of the second condition also leads to a contradiction in a similar way.
If the preference formula C in Theorem 4.4 is a pure-comparison ipf in k-DNF then

checking the validity of the assumption of this theorem can be done in PTIME. If C is a
pure-comparison ipf, then C ′ can be presented in an equivalent, quantifier-free form.

Example 4.5 Consider again the preference relation ÂC1 from Example 1.1:

(i, v, p) ÂC1 (i′, v′, p′) ≡ i = i′ ∧ p < p′

over the relation schema Book(ISBN, V endor, Price). Then the relation C ′ = θISBN,Price(ÂC1)
is defined as

(i, p) ÂC′ (i′, p′) ≡ ∀t, t′[(t[X] = (i, p) ∧ t′[X] = (i′, p′))⇒ t ÂC1 t
′] ≡ i = i′ ∧ p < p′.

This confirms the intuition that the projection does not affect this particular preference
relation. It is easy to see that the condition of Theorem 4.4 is also satisfied, so winnow
commutes with projection in this case.

16

4.3.4 Distributing winnow over Cartesian product

For winnow to distribute (possibly in a modified form) with the Cartesian product, the
preference formula needs to be in a special form. The form turns out to be the Pareto
composition or the lexicographic composition, both well known in multi-attribute utility
theory [Fis70]. Preference queries involving Pareto composition are quite common: the
skyline queries [BKS01] without DIFF attributes, discussed in Section 6, are of this form.
We discuss Pareto composition first.

Definition 4.2 Given two relation schemas R1 and R2, a preference relation ÂC1 over R1
and a preference relation ÂC2 over R2, the Pareto composition P (ÂC1 ,ÂC2) of ÂC1 and
ÂC2 is a preference relation ÂC0 over the Cartesian product R1 ×R2 defined as:

(t1, t2) ÂC0 (t′1, t
′
2) ≡ t1 ºC1 t

′
1 ∧ t2 ºC2 t

′
2 ∧ (t1 ÂC1 t

′
1 ∨ t2 ÂC2 t

′
2),

where
x ºC y ≡ x ÂC y ∨ x ∼C y.

Theorem 4.5 Given two relation schemas R1 and R2, an irreflexive preference relation
ÂC1 over R1 and an irreflexive preference relation ÂC2 over R2, for any relations r1 and
r2 which are instances of R1 and R2, resp., the following property holds:

ωC0(r1 × r2) = ωC1(r1)× ωC2(r2),

where C0 = P (ÂC1 ,ÂC2).

Proof: Assume (t1, t2) ∈ ωC0(r1 × r2) but (t1, t2) /∈ ωC1(r1) × ωC2(r2). Then t1 /∈ ωC1(r1)
or t2 /∈ ωC2(r2). Assume the first. Since (t1, t2) ∈ r1× r2 and t1 ∈ r1, there must be a tuple
t′1 ∈ r1 such that t′1 ÂC1 t1. Then the tuple (t′1, t2) ∈ r1× r2 and (t′1, t2) ÂC0 (t1, t2) (we use
irreflexivity of ÂC2 to infer t2 ∼C2 t2), which contradicts the fact that (t1, t2) ∈ ωC0(r1×r2).
The second case is symmetric.

Assume now that (t1, t2) ∈ ωC1(r1)× ωC2(r2) and (t1, t2) /∈ ωC0(r1 × r2). Then there is
a tuple (t′1, t

′
2) ∈ r1× r2 such that (t′1, t

′
2) ÂC0 (t1, t2). Consequently, t

′
1 ÂC1 t1 or t

′
2 ÂC2 t2.

Both cases lead to a contradiction with the fact that (t1, t2) ∈ ωC1(r1)× ωC2(r2).
In general, it does not have to be the case that if ÂC1 and ÂC2 are strict partial orders,

so is P (ÂC1 ,ÂC2). But in several special cases this implication holds. One is when ÂC1 and
ÂC2 are weak orders. Another when one of ÂC1 and ÂC2 is an empty relation. The latter
case makes it possible to derive an interesting corollary that validates a transformation rule
pushing winnow through Cartesian product. Assume that ÂC2 is the empty relation, and
∼C2 is the complete relation (i.e., contains every pair of tuples). Then, ÂC0 is defined purely
in terms of the first dimension:

(t1, t2) ÂC0 (t′1, t
′
2) ≡ t1 ÂC1 t

′
1.

In this case Theorem 4.5 implies that for every r1 and r2

ωC0(r1 × r2) = ωC0(r1)× r2,

17

because ωC2(r2) = r2 for every instance r2. So we can say that winnow with a one-
dimensional preference formula can be pushed down the appropriate argument of the prod-
uct.

We show now that a slight variation of the Pareto composition, even though it appears
to be more natural, fails to achieve the distributivity of winnow over product.

Example 4.6 Define a different composition ÂC′
0
of two preference relations ÂC1 and ÂC2

as follows:
(t1, t2) ÂC′

0
(t′1, t

′
2) ≡ t1 ÂC1 t

′
1 ∧ t2 ÂC2 t

′
2.

Consider the following preference relations:

x ÂC1 y ≡ x ÂC2 y ≡ x > y.

Then if r1 = {1} and r2 = {1, 2}, then

ωC1(r1)× ωC2(r2) = {(1, 2)} 6= {(1, 1), (1, 2)} = ωC′
0
(r1 × r2).

We consider now the lexicographic composition.

Definition 4.3 Given two relation schemas R1 and R2, a preference relation ÂC1 over R1
and a preference relation ÂC2 over R2, the lexicographic composition L(ÂC1 ,ÂC2) of ÂC1

and ÂC2 is a preference relation ÂC0 over the Cartesian product R1 ×R2 defined as:

(t1, t2) ÂC0 (t′1, t
′
2) ≡ t1 ÂC1 t

′
1 ∨ (t1 ∼C t′1 ∧ t2 ÂC2 t

′
2).

For lexicographic composition, we obtain the same property as for Pareto composition. Its
proof parallels that of Theorem 4.5.

Theorem 4.6 Given two relation schemas R1 and R2, an irreflexive preference relation
ÂC1 over R1 and an irreflexive preference relation ÂC2 over R2, for any relations r1 and
r2 which are instances of R1 and R2, resp., the following property holds:

ωC0(r1 × r2) = ωC1(r1)× ωC2(r2),

where C0 = L(ÂC1 ,ÂC2).

In general, it does not have to be the case that if ÂC1 and ÂC2 are strict partial orders,
so is L(ÂC1 ,ÂC2). However, similarly to Pareto composition L(ÂC1 ,ÂC2) this implication
holds, if ÂC1 and ÂC2 are weak orders, or if one of ÂC1 and ÂC2 is an empty relation.

18

4.3.5 Distributing winnow over union and difference

It is possible to distribute winnow over union or difference only in the trivial case where the
preference relation is an empty set. We call two relation schemas compatible if they have
the same number of attributes and the corresponding attributes have the same domains.

Theorem 4.7 Given two compatible relation schemas R and S and an irreflexive preference
relation ÂC over R, we have for every instance r of R and every instance s of S

ωC(r ∪ s) = ωC(r) ∪ ωC(s)

and
ωC(r − s) = ωC(r)− ωC(s)

if and only if ÂC= ∅.

Proof: Clearly, if ÂC= ∅ and ÂC is irreflexive, then

ωC(r) ∪ ωC(s) = r ∪ s = ωC(r ∪ s).

To show that this is a necessary condition, assume that ÂC 6= ∅. Then there are two tuples
t1 and t2 such that t1 ÂC t2. Now

ωC({t1, t2}) = {t1} 6= {t1, t2} = ωC({t1}) ∪ ωC({t2}).

The proof for difference is similar.

5 Composition of preferences

Preference relations may be composed in many different ways. In general, we distinguish
between multi-dimensional and uni-dimensional composition. In multi-dimensional com-
position, we have a number of preference relations defined over several database relation
schemas, and we define a preference relation over the Cartesian product of those relations.
An example is Pareto composition (Definition 4.2). Another example is lexicographic com-
position (Definition 4.3). In uni-dimensional composition, a number of preference relations
over a single database schema are composed, producing another preference relation over the
same schema. Examples include: Boolean and prioritized composition (discussed below).

Since in our framework preference relations are defined by first-order preference formu-
las, any first-order definable composition of preference relations leads again to first-order
preference formulas, which in turn can be used as parameters of the winnow operator. The
composition does not even have to be first-order definable, as long as it produces a (first-
order) preference formula. We’ll see an example of the latter later in this section when we
discuss transitive closure.

19

5.1 Boolean composition

Union, intersection and difference of preference relations are obviously captured by the
Boolean operations on the corresponding preference formulas. For example, the following
formula captures the preference ÂC0=ÂC1 ∩ ÂC2 :

x ÂC0 y ≡ x ÂC1 y ∧ x ÂC2 y.

Table 1 summarizes the preservation of properties of relations by the appropriate Boolean
composition operator.

Union Intersection Difference

Irreflexivity Yes Yes Yes

Asymmetry No Yes Yes

Transitivity No Yes No

Negative Transitivity Yes No No

Connectivity No Yes Yes

Table 1: Properties Preserved by Boolean Composition

5.2 Preference hierarchies

It is often the case that preferences form hierarchies. For instance, I may have a general
preference for red wine but in specific cases, e.g., when eating fish, this preference is over-
ridden by the one for white wine. Also a preference for less expensive books (Example 1.1)
can be overridden by a preference for certain vendors.

Definition 5.1 Consider two preference relations ÂC1 and ÂC2 defined over the same
schema U . The prioritized composition ÂC1,2=ÂC1 ¤ ÂC2 of ÂC1 and ÂC2 is defined
as:

t1 ÂC1,2 t2 ≡ t1 ÂC1 t2 ∨ (t2 6ÂC1 t1 ∧ t1 ÂC2 t2).

The prioritized composition ÂC1 ¤ ÂC2 has the following intuitive reading: prefer
according to ÂC2 unless ÂC1 is applicable.

Example 5.1 Continuing Example 1.1, instead of the preference relation ÂC1 defined there
as follows:

(i, v, p) ÂC1 (i′, v′, p′) ≡ i = i′ ∧ p < p′,

we consider the relation ÂC0 ¤ ÂC1 where ÂC0 is defined by the following formula C0:

(i, v, p) ÂC0 (i′, v′, p′) ≡ i = i′ ∧ v = ′BooksForLess′ ∧ v′ = ′LowestPrices′.

Assume the preference relation ÂC0,1=ÂC0 ¤ ÂC1 (the definition of ÂC0,1 is easily obtained
from the formulas C0 and C1 by substitution). Then ωC0,1(r1) returns the following tuples

20

ISBN Vendor Price

0679726691 BooksForLess $14.75
0062059041 BooksForLess $7.30
0374164770 LowestPrices $21.88

Note that now a more expensive copy of the first book is preferred, due to the preference for
’BooksForLess’ over ’LowestPrices’. However, ’BooksForLess’ does not offer the last book,
and that’s why the copy offered by ’LowestPrices’ is preferred.

Theorem 5.1 If ÂC1 and ÂC2 are preference relations, so is ÂC1,2. If ÂC1 and ÂC2 are
both irreflexive or asymmetric, so is ÂC1,2.

However, a relation defined as the prioritized composition of two transitive preference
relations does not have to be transitive.

Example 5.2 Consider the following preference relations:

a ÂC1 b, b ÂC2 c.

Both ÂC1 and ÂC2 are trivially transitive. However, ÂC1 ¤ ÂC2 is not.

Theorem 5.2 Prioritized composition is associative:

(ÂC1 ¤ ÂC2)¤ ÂC3≡ÂC1 ¤(ÂC2 ¤ Â C3)

and distributes over union:

ÂC1 ¤(ÂC2 ∪ ÂC3) ≡ (ÂC1 ¤ ÂC2) ∪ (ÂC1 ¤ ÂC3).

Thanks to the associativity and distributivity of ¤, the above construction can be gen-
eralized to an arbitrary finite partial priority order between preference relations. Such an
order can be viewed as a graph in which the nodes consist of preference relations and the
edges represent relative priorities (there would be an edge (ÂC1 ,ÂC2) in the situation de-
scribed above). To encode this graph as a single preference relation, one would construct
first the definitions corresponding to individual paths from roots to leaves, and then take a
disjunction of all such definitions.

There are many other ways of combining preferences. For instance, the paper [ARS02]
defines an infinite family of uni-dimensional composition operators for preference relations
on the basis of two basic operators. Since all the definitions are first-order, every preference
relation defined in the framework of [ARS02] can also be defined in ours. In [ARS02], it is
proved that the operators in the defined family exhaust all operators satisfying a number of
intuitively plausible postulates. It turns out that the operator ¤ defined above cannot be
captured in the framework of [ARS02], because it violates one of those postulates: it does
not preserve transitivity.

21

5.3 Transitive closure

We address here the issue of transitively closing a preference relation. We have seen an
example (Example 1.1) of a preference relation that is already transitive. However, there
are cases when we expect the preference relation to be the transitive closure of another
preference relation which is not transitive.

Example 5.3 Consider the following relation:

x Â y ≡ x = a ∧ y = b ∨ x = b ∧ y = c.

In this relation, a and c are not related though there are contexts in which this might be
natural. (Assume I prefer to walk than to drive, and to drive than to ride a bus. Thus, I
also prefer to walk than to ride a bus.)

In our framework, we can specify the preference relation ÂC∗ to be the transitive closure
of another preference relation ÂC defined using a first-order formula. This is similar to
transitive closure queries in relational databases. However, there is an important difference.
In databases, we are computing the transitive closure of a finite relation, while here we are
transitively closing an infinite relation defined using a first-order formula.

Definition 5.2 The transitive closure of a preference relation ÂC over a relation schema
R is a preference relation ÂC∗ over R defined as:

t1 ÂC∗ t2 iff t1 Â
n
C t2 for some n ≥ 0,

where:
t1 Â

1
C t2 ≡ t1 ÂC t2

t1 Â
n+1
C t2 ≡ ∃t3. t1 ÂC t3 ∧ t3 Â

n
C t2.

Clearly, in general Definition 5.2 leads to infinite formulas. However, as Theorem 5.3
shows, in many important cases the preference relation ÂC∗ will in fact be defined by a
finite formula.

Theorem 5.3 If a preference relation ÂC is defined using a pure-comparison ipf, the tran-
sitive closure ÂC∗ of ÂC is also defined using a pure-comparison ipf and that definition can
be effectively obtained.

Proof: The computation of the transitive closure can in this case be formulated as the
evaluation of Datalog with order or gap-order (for integers) constraints. Suppose ÂC is
defined as:

x ÂC y ≡ α1(x, y) ∨ · · · ∨ αn(x, y).

22

Then the Datalog program that computes the formula C∗ defining ÂC∗ looks as follows:

T (x, y)← α1(x, y).
· · ·
T (x, y)← αn(x, y).
S(x, y)← T (x, y).
S(x, y)← T (x, z), S(z, y).

The evaluation of this program terminates [KKR95, Rev93] and its result, collected in S,
represents the desired formula.

An analogous result holds if instead of arithmetic comparisons we consider equality
constraints over an infinite domain [KKR95].

Example 5.4 Continuing Example 5.3, we obtain the following preference relation ÂC∗ by
transitively closing ÂC :

x ÂC∗ y ≡ x = a ∧ y = b ∨ x = b ∧ y = c ∨ x = a ∧ y = c.

Theorem 5.3 is not in conflict with the well-known non-first order definability of tran-
sitive closure on finite structures. In the latter case it is shown that there is no finite
first-order formula expressing transitive closure for arbitrary (finite) binary relations. In
Theorem 5.3 the relation to be closed, although possibly infinite, is fixed (since it is defined
using the given ipf). In particular, given an encoding of a fixed finite binary relation using
an ipf, the transitive closure of this relation is defined using another ipf.

The transitive closure of an asymmetric preference relation may fail to be asymmetric.
This is, for example the case if the preference relation is not transitive and involves a cycle
of length at least 3.

6 Applications and extensions

We show here how to use winnow to express special classes of preference queries: skylines and
queries involving scoring functions, and how to use winnow together with other operators
of the relational algebra to express more complex decision problems involving preferences.
We consider the following: integrity constraints, extrinsic preferences, and aggregation.

6.1 Special classes of preference queries

6.1.1 Skylines

Skyline queries [BKS01] find all the tuples in a relation that are not dominated by any
other tuples in the same relation in all dimensions. This is exactly the notion of Pareto
composition (Definition 4.2) in an arbitrary number of dimensions.

Figure 4 shows an example of a two-dimensional skyline where the dominance relation-
ship is >. The skyline elements are marked with thick black dots.

[BKS01] propose to write skyline queries using the following extension to SQL:

23

0 1 2 3 4 5
0

1

2

Figure 4: Two-dimensional skyline

SELECT ... FROM ... WHERE ...

GROUP BY ... HAVING ...

SKYLINE OF A1 [MIN | MAX | DIFF]

...

An [MIN | MAX | DIFF]

The values of a MIN attribute are minimized, those of a MAX attribute maximized. A
DIFF attribute indicates that tuples with different values of that attribute are incomparable.
The SKYLINE clause is applicable after all other SQL clauses.

Clearly, skylines can be expressed using winnow. The winnow is applied to an SQL
view that expresses the non-skyline constructs in a skyline query. The preference formula
is easily obtained from the SKYLINE clause. For example:

SKYLINE OF A DIFF, B MAX, C MIN

in a relation R is equivalent to ωC(R) where

(x, y, z) ÂC (x′, y′, z′) ≡ x = x′ ∧ y ≥ y′ ∧ z ≤ z′ ∧ (y > y′ ∨ z < z′).

We note that ωC1(Book) from Example 2.1 is also a skyline query in which the skyline
clause looks as follows:

SKYLINE OF ISBN DIFF, PRICE MIN.

Thus, clearly skylines cannot be captured using scoring functions (Example 1.1).
In view of the above, the algebraic laws that characterize the properties of winnow are

also applicable to skylines. In particular, Theorem 4.3 implies the following: if a selection
condition is a pure-comparison ipf in k-DNF, then checking whether it commutes with a
skyline can be done in PTIME regardless of the dimension of the skyline.

6.1.2 Queries involving scoring functions

We compare here two different ways of representing preferences: a qualitative one using
binary preference relations and a quantitative one using scoring (also called utility) functions.

24

Definition 6.1 A real-valued function f over a schema R represents a preference relation
ÂC over R iff

∀t1, t2 [t1 ÂC t2 iff f(t1) > f(t2)].

In other words, f is an order-isomorphism.
We can ask for the motivation behind this notion of representation. It is easy to show

that

Theorem 6.1 A real-valued function f represents a preference relation ÂC iff for every
finite instance r of R, the set ωC(r) is equal to the set of tuples of r assuming the maximum
value of f .

Thus in this case a particularly simple, linear-time method of computing ωC(r) becomes
possible: determine the maximum value of f in r and return the tuples in r that assume it.
And vice versa, finding the tuples in an instance r that maximize a scoring function f can
be done by computing ωC(r). Moreover, the algebraic laws for winnow presented in Section
4 become applicable to queries with scoring functions.

Theorem 6.1 implies that if a scoring function does not represent a preference relation,
that fact can be detected by winnow evaluated over some instance.

Example 6.1 Consider again Example 1.1. Let r1 = {t1, t2, t3, t4, t5} be the instance from
that example where t1 is the first tuple etc. We can construct a scoring function f with
the property that in the given instance r1 it is maximized in exactly those tuples that are in
ωC1(r1). For example, let f(t1) = 0.9, f(t2) = 1.0, f(t3) = 0.8, f(t4) = 1.0 and f(t5) = 1.0.
Then f is maximized in t2, t4 and t5, and ωC1(r1) = {t2, t4, t5}. However, in the instance
r′1 = {t1, t3, t4, t5}, the function f is maximized in in t4 and t5, while ωC1(r

′
1) = {t1, t4, t5}.

Unfortunately, as pointed out earlier, not every preference relation which is a strict
partial order can be expressed using a scoring function. A necessary condition is that
the relation be a weak order [Fis70]. Therefore, the approach using preference relations is
strictly more general than the one that uses scoring functions.

Winnow can be used not only to compute the top scoring tuples but also those whose
score differs from the top score by at most a given value or a given percentage. For example,
the tuples that differ from the top score by at most d are computed by ωCf−d

(r), where

t ÂCf−d
t′ ≡ f(t)− d > f(t′).

Queries that return the tuples with top-K scores [CK97, BCG02] can also be captured
using winnow together with SQL, using the approach described later in this section. Essen-
tially, for each tuple t we will determine using SQL the number n(t) of tuples with higher
scores than t and use the expression N − n(t), where N is the number of tuples in the
relation, to define a new scoring function. This function is then used to define a preference
relation as in the preceding paragraph. It appears, however, that in terms of the efficiency
of query evaluation this approach will be inferior to the approach in which top-K queries
are supported directly by the query engine.

25

Finally, we note that there are other, weaker forms of representation than Definition
6.1. For instance, if we only require that

∀t1, t2 [t1 ÂC t2 ⇒ f(t1) > f(t2)],

then for every strict partial order there is a scoring function representing it [Fis70]. Such a
function is an order-homomorphism. However, in that case we can only guarantee that the
set of tuples in a given instance r that maximize f is a subset of ωC(r).

6.2 Integrity constraints

There are cases when we wish to impose a constraint on the result of the winnow operator.
In Example 1.1, we may say that we are interested only in the books under $15. In Example
2.2, we may restrict our attention only to the meat or fish dishes (note that currently the
dishes that are not meat or fish do not have a preferred kind of wine). In the same example,
we may ask for a specific number of meal recommendations.

In general, we need to distinguish between local and global constraints. A local constraint
imposes a condition on the components of a single tuple, for instance Book.Price<$15. A
global constraint imposes a condition on a set of tuples. The first two examples above
are local constraints; the third is global. To satisfy a global constraint on the result of the
winnow operator, one would have to construct a maximal subset of this answer that satisfies
the constraint. Since in general there may be more than one such subset, the required
construction cannot be described using a single relational algebra query. On the other hand,
local constraints are easily handled, since they can be expressed using selection. In general,
it matters whether the selection is applied before or after the winnow operator. Theorem
4.3 identifies sufficient and necessary conditions for winnow and selection to commute.

Example 6.2 Consider the situation where we have a specific preference ordering for cars,
e.g., prefer BMW to Chevrolet, but also have a limited budget (captured by a selection
condition). Then clearly, selecting the most desirable affordable car will not give the same
result as selecting the most desirable cars if they are affordable.

A veto expresses a prohibition on the presence of a specific set of values in the elements
of the answer to a preference query and thus can be viewed as a local constraint. To veto a
specific tuple w = (a1, . . . , an) in a relation S (which can be defined by a preference query)
of arity n, we write the selection:

σA1 6=a1∨···∨An 6=an(S).

6.3 Intrinsic vs. extrinsic preferences

So far we have talked only about intrinsic preference formulas. Such formulas establish the
preference relation between two tuples purely on the basis of the values occurring in those
tuples. Extrinsic preference formulas may refer not only to built-in predicates but also to

26

other constructs, e.g., database relations. In general, extrinsic preferences can use a variety
of criteria: properties of the relations from which the tuples were selected, properties of
other relations, or comparisons of aggregate values, and do not even have to be defined
using first-order formulas.

It is possible to express some extrinsic preferences using the winnow operator together
with other relational algebra operators using the following multi-step strategy:

1. using a relational query, combine all the information relevant for the preference in a
single relation,

2. apply the appropriate winnow operator to this relation,

3. project out the extra columns introduced in the first step.

The following example demonstrates the above strategy, as well as the use of aggregation
for the formulation of preferences.

Example 6.3 Consider again the relation Book(ISBN, V endor, Price). Suppose for each
book a preferred vendor (there may be more than one) is a vendor that sells the maximum
total number of books. Clearly, this is an extrinsic preference since it cannot be established
solely by comparing pairs of tuples from this relation. However, we can provide the required
aggregate values and connect them with individual books through new, separate views:

CREATE VIEW BookNum(Vendor,Num) AS

SELECT B1.Vendor, COUNT(DISTINCT B1.ISBN)

FROM Book B1

GROUP BY B1.Vendor;

CREATE VIEW ExtBook(ISBN,Vendor,Num) AS

SELECT B1.ISBN, B1.Vendor, BN.Num

FROM Book B1, BookNum BN

WHERE B1.Vendor=BN.Vendor;

Now the extrinsic preference is captured by the query

πISBN,V endor(ωC5(ExtBook))

where the preference formula C5 is defined as follows:

(i, v, n) Â5 (i
′, v′, n′) ≡ i = i′ ∧ n > n′.

Example 6.4 To see another example of extrinsic preference, consider the situation in
which we prefer any tuple from a relation R over any tuple from a relation S which is
disjoint from R. Notice that this is truly an extrinsic preference, since it is based on where
the tuples come from and not on their values. It can be handled in our approach by tagging
the tuples with the appropriate relation names (easily done in relational algebra or SQL)

27

and then defining the preference relation using the tags. If there is a tuple which belongs both
to R and S, then the above preference relation will fail to be irreflexive and the simulation
using intrinsic preferences will not work. Note also that an approach similar to tagging was
used in Example 2.2 (wine and dish types play the role of tags).

Example 6.5 Suppose user preferences are stored in a database relation Pref(A,B). Then
once can define an extrinsic preference relation:

x ÂPref y ≡ Pref(x, y).

Such a preference relation cannot be defined using a pure-comparison ipf, because each such
formula is true of a fixed set of tuples, and one can always choose the instance of Pref to
be different from that set.

7 Iterated preferences and ranking

We show here that the framework presented so far can be further developed to capture other
preference-related concepts like ranking. We also present a variant of winnow suitable to
preference relations that are not partial orders.

7.1 Ranking

A natural notion of ranking is implicit in our approach. A ranking is defined using iterated
preference.

Definition 7.1 Given a preference relation Â defined by a pf C, the n-th iteration of the
winnow operator ωC in r is defined as:

ω1C(r) = ωC(r)

ωn+1
C (r) = ωC(r −

⋃

1≤i≤n ω
i
C(r))

For example, the query ω2C(r) computes the set of “second-best” tuples.

Example 7.1 Continuing Example 1.1, the query ω2C1
(r1) returns

ISBN Vendor Price

0679726691 BooksForLess $14.75

and the query ω3C1
(r1) returns

ISBN Vendor Price

0679726691 QualityBooks $18.80

Therefore, by iterating the winnow operator one can rank the tuples in a given relation
instance.

28

Theorem 7.1 If a preference relation ÂC over a relation schema R is a strict partial order,
then for every finite instance r of R and every tuple t ∈ r, there exists an i, i ≥ 1, such
that t ∈ ωi

C(r).

Proof: Assume there is a tuple t0 ∈ ωC(r) such that for all i ≥ 1, t0 /∈ ω
i
C(r). Select the

least i0 such that ∀i ≥ io, ω
i
C(r) = ∅ (such an i0 always exists due to the finiteness of r).

Clearly, t0 /∈ ω
i0
C (r), thus t ∈ r −

⋃

1≤i≤i0−1 ω
i
C(r). Then there must be a tuple t1 such that

t1 ÂC t0 and t1 ∈ r −
⋃

1≤i≤i0−1 ω
i
C(r) (otherwise t0 ∈ ω

i0
C (r)). Since ÂC is a strict partial

order, there has to be an infinite increasing chain in r, a contradiction with the finiteness
of r.

We define now the ranking operator ηC(R).

Definition 7.2 If R is a relation schema and C a preference formula defining a preference
relation ÂC over R, then the ranking operator is written as ηC(R), and for every instance
r of R:

ηC(r) = {(t, i) | t ∈ ω
i
C(r)}.

One can now study the algebraic properties of the ranking operator, that parallel those
that we established for winnow in Section 4. We list here only one property which is the
most important one from a practical point of view: commutativity of selection with ranking.
In this context, ranking enjoys identical properties to winnow.

Theorem 7.2 Given a relation schema R, a selection condition C1 over R and a preference
formula C2 over R, if the formula

∀t1, t2[(C1(t2) ∧ C2(t1, t2))⇒ C1(t1)]

is valid, then for all instances r of R:

σC1(ηC2(r)) = ηC2(σC1(r)).

The converse holds under the assumption that ÂC2 is irreflexive.

Proof: The proof is by induction on tuple rank. The base case follows from Theorem 4.3
and the inductive case from the observation that

σC1(ω
n+1
C2

(r)) = σC1(ωC2(r −
⋃

1≤i≤n

ωi
C2
(r))) = ωC2(σC1(r −

⋃

1≤i≤n

ωi
C2
(r)))

which is equal to

ωC2(σC1(r)− σC1(
⋃

1≤i≤n

ωi
C2
(r))) = ωC2(σC1(r)−

⋃

1≤i≤n

σC1(ω
i
C2
(r))).

under the assumptions of the theorem.

29

7.2 Weak winnow

If a preference relation is not a strict partial order, then Theorems 3.2 and 7.1 may fail to
hold. A number of tuples can block each other from appearing in the result of any iteration
of the winnow operator. However, even in this case there may be a weaker form of ranking
available.

Example 7.2 Consider Examples 1.1 and 5.1. If the preference formula C ′ is defined as
C0 ∨ C1, then the first two tuples of the instance r1 block each other from appearing in the
result of ωC′(r1), since according to C0 the first tuple is preferred to the second but just the
opposite is true according to C1. Intuitively, both those tuples should be preferred to (and
ranked higher) than the third tuple. But since neither the first not the second tuple is a
member of ωC′(r1), none of the first three tuples can be ranked.

To deal with preference relations that are not strict partial orders, we define a new,
weaker form of the winnow operator. We relax the asymmetry and irreflexivity requirements
but preserve transitivity.

To define this operator, we notice that as long as the preference relation ÂC is transitive,
we can use it to define another preference relation ÂC> which is a strict partial order:

x ÂC> y ≡ x ÂC y ∧ y 6ÂC x.

Definition 7.3 If R is a relation schema and ÂC a transitive preference relation over
R, then the weak winnow operator is written as ψC(R) and for every instance r of R,
ψC(r) = ωC>(r).

It follows from the definition that

ψC(r) = {t ∈ r | ∀t
′ ∈ r. t ÂC t′ ∨ t′ 6ÂC t}.

Thus the weak winnow operator returns all the tuples that are dominated only by the tuples
that they dominate themselves.

Example 7.3 Considering Example 7.2, we see that the query ψC′(r1) returns now

ISBN Vendor Price

0679726691 BooksForLess $14.75
0679726691 LowestPrices $13.50
0062059041 BooksForLess $7.30
0374164770 LowestPrices $21.88

Below we formulate a few properties of the weak winnow operator. Using Theorems 3.3
and 3.2 (notice that C> ⇒ C), we immediately obtain the following theorem.

Theorem 7.3 If R is a relation schema and ÂC a transitive preference relation over R,
then:

30

• for every instance r of R, ωC(r) ⊆ ψC(r).

• for every finite, nonempty relation instance r of R, ψC(r) is nonempty.

One can define the iteration of the weak winnow operator similarly to that of the winnow
operator (Definition 7.1).

Theorem 7.4 If a preference relation ÂC over a relation schema R is transitive, then for
every finite instance r of R and for every tuple t ∈ r, there exists an i, i ≥ 1, such that
t ∈ ψi

C(r).

8 Related work

8.1 Preference queries

[LL87] originated the study of preference queries. It proposed an extension of the relational
calculus in which preferences for tuples satisfying given logical conditions can be expressed.
For instance, one could say: Among the tuples of R satisfying Q, I prefer those satisfying
P1; among the latter I prefer those satisfying P2. Such a specification was to mean the
following: Pick the tuples satisfying Q ∧ P1 ∧ P2; if the result is empty, pick the tuples
satisfying Q ∧ P1 ∧ ¬P2; if the result is empty, pick the remaining tuples of R satisfying Q.
This can be simulated in our framework as the relational algebra expression ωC∗(σQ(R))
where C∗ is an ipf defined in the following way:

1. obtain the formula C defining a preference relation Â

t1 Â t2 ≡ P1(t1) ∧ P2(t1) ∧ P1(t2) ∧ ¬P2(t2) ∨ P1(t1) ∧ ¬P2(t1) ∧ ¬P1(t2),

2. transform C into DNF to obtain an ipf C ′, and

3. close the result transitively to obtain an ipf C∗ defining a transitive preference relation
Â∗ (as described in Section 5).

Other kinds of logical conditions from [LL87] can be similarly expressed in our framework.
Maximum/minimum value preferences (as in Example 1.1) are handled in [LL87] through
the explicit use of aggregate functions. The use of such functions is implicit in the definition
of our winnow operator.

Unfortunately, [LL87] does not contain a formal definition of the proposed language,
so a complete comparison with our approach is not possible. It should be noted, however,
that the framework of [LL87] seems unable to capture very simple conditional preferences
like the ones in Examples 2.2 and 5.3. Also, it can only handle strict partial orders of
bounded depth (except in the case where aggregate functions can be used, as in Example
1.1). Hierarchical or iterated preferences are not considered. Neither is addressed the issue
of algebraic optimization of preference queries.

31

[GJM01] was one of the sources of inspiration for the present paper. It defines Preference
Datalog: a combination of Datalog and clausally-defined preference relations. Preference
Datalog captures, among others, the class of preference queries discussed in [LL87]. The
declarative semantics of Preference Datalog is based on the notion of preferential conse-
quence, introduced earlier by the authors in [GJM95]. This semantics requires preferences to
be reflexive and transitive. Also, the operational semantics of Preference Datalog uses spe-
cialized versions of the standard logic program evaluation methods: bottom-up [GJM01] or
top-down [GJM95]. In the context of database queries, the approach proposed in the present
paper achieves similar goals to that of [GJM95] and [GJM01], remaining, however, entirely
within the relational data model and classical first-order logic. Finally, [GJM95, GJM01]
do not address some of the issues we deal with in the present paper like transitive closure of
preferences, prioritized composition or iterated preferences (a similar concept to the last one
is presented under the name of “relaxation”). More importantly, the issues of embedding
the framework into a real relational query language and optimizing preference queries are
not addressed.

[Kie02, KK02] propose an (independently developed) framework similar to the one pre-
sented in this paper and in [Cho02]. A formal language for formulating preference relations
is described. The language has a number of base preference constructors and their com-
binators (Pareto and lexicographic composition, intersection, disjoint union and others).
Clearly, all of those can be captured in our framework. On the other hand, [Kie02, KK02]
do not consider the possibility of having arbitrary operation and predicate signatures in
preference formulas, and do not identify any specific classes of preference formulas. Nei-
ther do they consider extrinsic preferences, complex preferences involving aggregation, or
ranking. However, the embedding into relational query languages they use is identical to
ours (it is called Best Match Only, instead of winnow). While some possible rewritings for
preference queries are presented in [Kie02], abstract properties of winnow that we formulate
and prove in Section 4 are not identified. [KK02] describes an implementation of the frame-
work of [Kie02] using a language called Preference SQL, which is translated to SQL, and
several deployed applications. The implementation of the winnow and ranking operators is
also studied in [TC02].

[BKS01] introduces the skyline operator and describes several evaluation methods for
this operator. As shown in Section 6, skyline is a special case of winnow. It is restricted to
use a pure-comparison ipf which is a conjunction of pairwise comparisons of corresponding
tuple components. So in particular Example 2.2 does not fit in that framework. Some
examples of possible rewritings for skyline queries are given but no general rewriting rules
are formulated.

[AW00] uses quantitative preferences (scoring functions) in queries and focuses on the
issues arising in combining such preferences. [HKP01] explores in this context the problems
of efficient query processing. As pointed out repeatedly in the present paper (and well
known in decision theory [Fis70]), the approach based on scoring functions is inherently
less expressive than the one based on preference relations. In particular, skyline queries
cannot be captured using scoring functions. Moreover, since the quantitative approach

32

is based on comparing the scores of individual tuples under given scoring functions, the
preferences represented in this way have to be intrinsic. However, the simulation of extrinsic
preferences using intrinsic ones (Section 6) is not readily available in this approach because
the scoring functions are not integrated with the query language. So, for instance, Example
6.3 cannot be handled. In fact, even for preference relations that satisfy the property of
transitivity of the corresponding indifference relation (and thus representable using scoring
functions), it is not clear whether the scoring function capturing the preference relation
can be defined intrinsically (i.e., the function value be determined solely by the the values
of the tuple components). The general construction of a scoring function on the basis of
a preference relation [Fis99, Fis70] does not provide such a definition. Moreover, it is not
clear how to compose scoring functions to achieve an effect similar to various preference
relation composition operators, e.g., those discussed in Section 5.

8.2 Preferences in logic and artificial intelligence

The papers on preference logics [vW63, Man91, Han01] address the issue of capturing the
common-sense meaning of preference through appropriate axiomatizations. Preferences
are defined on formulas, not tuples, and with the exception of [Man91, Cri02] limited to
the propositional case. [Man91] proposes a modal logic of preference, and [Cri02] studies
preferences in the context of relation algebras. The application of the results obtained in
this area to database queries is unclear.

The papers on preference reasoning [WD91, TP94, BBHP99] attempt to develop prac-
tical mechanisms for making inferences about preferences and solving decision or config-
uration problems similar to the one described in Example 2.2. A central notion there is
that of ceteris paribus preference: preferring one outcome to another, all else being equal.
Typically, the problems addressed in this work are propositional (or finite-domain). Such
problems can be encoded in the relational data model and the inferences obtained by eval-
uating preference queries. A detailed study of such an approach remains still to be done.
We note that the use of a full-fledged query language in this context makes it possible to
formulate considerably more complex decision and configuration problems than before.

The work on prioritized logic programming and nonmonotonic reasoning [BE99, DST00,
SI00] has potential applications to databases. However, like [GJM01], it relies on special-
ized evaluation mechanisms, and the preferences considered are typically limited to rule
priorities.

9 Conclusions and future work

We have presented a framework for specifying preferences using logical formulas and its
embedding into relational algebra. As the result, preference queries and complex decision
problems involving preferences can be formulated in a simple and clean way.

Clearly, our framework is limited to applications that can be entirely modeled within the
relational model of data. Here are several examples that do not quite fit in this paradigm:

33

• preferences defined between sets of elements;

• heterogenous preferences between tuples of different arity or type (how to say I prefer
a meal without a wine to a meal with one in Example 2.2?);

• preferences requiring nondeterministic choice. We believe this is properly handled
using a nondeterministic choice [GGSZ97] or witness [AHV95] operator.

In addition to addressing the above limitations, future work directions include:

• evaluation and optimization of preference queries, including cost-based optimization;

• extrinsic preferences;

• defeasible and default preferences;

• preference elicitation.

Acknowledgments

This paper is dedicated to the memory of Javier Pinto whose premature death prevented
him from participating in this research. The conversations with Svet Braynov, Jarek Gryz,
Bharat Jayaraman, and Jorge Lobo are gratefully acknowledged.

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[ARS02] H. Andreka, M.D. Ryan, and P.-Y. Schobbens. Operators and Laws for Com-
bining Preference Relations. Journal of Logic and Computation, 12(1):13–53,
2002.

[AW00] R. Agrawal and E.L. Wimmers. A Framework for Expressing and Combining
Preferences. In ACM SIGMOD International Conference on Management of
Data, pages 297–306, 2000.

[BBHP99] C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole. Reasoning with Condi-
tional Ceteris Paribus Preference Statements. In Symposium on Uncertainty in
Artificial Intelligence, 1999.

[BCG02] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k Selection Queries over Re-
lational Databases: Mapping Strategies and Performance Evaluation. ACM
Transactions on Database Systems, June 2002.

[BE99] G. Brewka and T. Eiter. Preferred Answer Sets for Extended Logic Programs.
Artificial Intelligence, 109(1-2):297–356, 1999.

34

[BKS01] S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline Operator. In IEEE
International Conference on Data Engineering, pages 421–430, 2001.

[CGGL] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. On Skyline Computation.
Submitted for publication.

[Cho02] J. Chomicki. Querying with Intrinsic Preferences. In International Conference
on Extending Database Technology, pages 34–51, 2002.

[CK97] M.J. Carey and D. Kossmann. On Saying Enough Already! in SQL. In ACM
SIGMOD International Conference on Management of Data, pages 219–230,
1997.

[Cri02] M. Cristani. Many-sorted Preference Relations. In International Conference on
Principles of Knowledge Representation and Reasoning, 2002.

[DST00] J. P. Delgrande, T. Schaub, and H. Tompits. Logic Programs with Compiled
Preferences. In European Conference on Artificial Intelligence, 2000.

[Fis70] P. C. Fishburn. Utility Theory for Decision Making. Wiley & Sons, 1970.

[Fis99] P. C. Fishburn. Preference Structures and their Numerical Representations.
Theoretical Computer Science, 217:359–383, 1999.

[GGSZ97] F. Giannotti, S. Greco, D. Sacca, and C. Zaniolo. Programming with Non-
determinism in Deductive Databases. Annals of Mathematics and Artificial In-
telligence, 19(3-4), 1997.

[GJM95] K. Govindarajan, B. Jayaraman, and S. Mantha. Preference Logic Programming.
In International Conference on Logic Programming, pages 731–745, 1995.

[GJM01] K. Govindarajan, B. Jayaraman, and S. Mantha. Preference Queries in Deduc-
tive Databases. New Generation Computing, pages 57–86, 2001.

[GSW96] S. Guo, W. Sun, and M.A. Weiss. Solving Satisfiability and Implication Problems
in Database Systems. ACM Transactions on Database Systems, 21(2):270–293,
1996.

[Han01] S. O. Hansson. Preference Logic. In D. Gabbay, editor, Handbook of Philosophical
Logic, volume 8. 2001.

[HKP01] V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A System for
the Efficient Execution of Multiparametric Ranked Queries. In ACM SIGMOD
International Conference on Management of Data, pages 259–270, 2001.

[Hug80] R.G. Hughes. Rationality and Intransitive Preferences. Analysis, 40:132–134,
1980.

35

[Kie02] W. Kiessling. Foundations of Preferences in Database Systems. In International
Conference on Very Large Data Bases, 2002.

[KK02] W. Kiessling and G. Koestler. Preference SQL - Design, Implementation, Expe-
rience. In International Conference on Very Large Data Bases, 2002.

[KKR95] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint Query Languages.
Journal of Computer and System Sciences, 51(1):26–52, August 1995.

[LL87] M. Lacroix and P. Lavency. Preferences: Putting More Knowledge Into Queries.
In International Conference on Very Large Data Bases, pages 217–225, 1987.

[Man91] S. M. Mantha. First-Order Preference Theories and their Applications. PhD
thesis, University of Utah, 1991.

[Rev93] P. Z. Revesz. A Closed-Form Evaluation for Datalog Queries with Integer (Gap)-
Order Constraints. Theoretical Computer Science, 116:117–149, 1993.

[SI00] C. Sakama and K. Inoue. Prioritized Logic Programming and its Application to
Commonsense Reasoning. Artificial Intelligence, 123:185–222, 2000.

[TC02] R. Torlone and P. Ciaccia. Which Are My Preferred Items? In Workshop on
Recommendation and Personalization in E-Commerce, May 2002.

[TP94] S-W. Tan and J. Pearl. Specification and Evaluation of Preferences under Uncer-
tainty. In International Conference on Principles of Knowledge Representation
and Reasoning, 1994.

[vW63] G. H. von Wright. The Logic of Preference. Edinburgh University Press, 1963.

[WD91] M. P. Wellman and J. Doyle. Preferential Semantics for Goals. In National
Conference on Artificial Intelligence, pages 698–703, 1991.

36

