
A Pursuer-Evader Game for Sensor Networks

Murat Demirbas
�

Anish Arora
�

Mohamed Gouda
�

�
Department of � Department of

Computer & Info. Science Computer Sciences

The Ohio State University The University of Texas at Austin

Columbus, OH 43210 USA Austin, TX 78712 USA

Abstract

In this paper we present a self-stabilizing program for solving a

pursuer-evader problem in sensor networks. The program can

be tuned for tracking speed or energy efficiency. In the pro-

gram, sensor motes close to the evader dynamically maintain a

“tracking” tree of depth � that is always rooted at the evader.

The pursuer, on the other hand, searches the sensor network

until it reaches the tracking tree, and then follows the tree to its

root in order to catch the evader.

Keywords : Sensor networks, pursuer-evader games, distributed
algorithms, self-stabilization, tracking speed, energy efficiency.

0This work was partially sponsored by DARPA contract OSU-RF #F33615-01-C-1901, NSF grant NSF-CCR-9972368, an Ameritech
Faculty Fellowship, and two grants from Microsoft Research.

Contact information. Email: demirbas@cis.ohio-state.edu, Tel: +1 614 688 4637, Fax: +1 614 292 2911.

1 Introduction

Due to its importance in military contexts, pursuer-
evader tracking has received significant attention [3,4,
15, 16] and has been posed by the DARPA network
embedded software technology (NEST) program as a
challenge problem. Here, we consider the problem
in the context of wireless sensor networks. Such net-
works comprising potentially many thousands of low-
cost and low-power wireless sensor nodes have re-
cently became feasible, thanks to advances in micro-
electromechanical systems technology, and are being
regarded as a realistic basis for deploying large-scale
pursuer evader tracking.

Previous work on the pursuer-evader problem is
not directly applicable to tracking in sensor networks,
since these networks introduce the following chal-
lenges: Firstly, sensor nodes have very limited com-
putational resources (e.g., 8K RAM and 128K flash
memory); thus, centralized algorithms are not suitable
for sensor networks due to their larger computational
requirements. Secondly, sensor nodes are energy con-
strained; thus, algorithms that impose an excessive
communication burden on nodes are not acceptable
since they drain the battery power quickly. Thirdly,
sensor networks are fault-prone: message losses and
corruptions (due to fading, collusion, and hidden node
effect), and node failures (due to crash and energy ex-
haustion) are the norm rather than the exception. Thus,
sensor nodes can lose synchrony and their programs
can reach arbitrary states [13]. Finally, on-site mainte-
nance is not feasible; thus, sensor networks should be
self-healing. Indeed, one of the emphases of the NEST
program is to design low-cost fault-tolerant, and more
specifically self-stabilizing, services for the sensor net-
work domain.

In this paper we present a tunable and self-
stabilizing program for solving a pursuer-evader prob-
lem in sensor networks. The goal of the pursuer is to
catch the evader (despite the occurrence of faults) by
means of information gathered by the sensor network.
The pursuer can move faster than the evader. However,
the evader is omniscient —it can see the state of the
entire network— whereas the pursuer can only see the
state of one sensor node (say the nearest one). Note

that this model captures a simple, abstract version of
problems that arise in tracking via sensor networks.

Tunability. We achieve tunability of our program
by constructing it to be a hybrid between two or-
thogonal programs: an evader-centric program and a
pursuer-centric program.

In the evader-centric program, nodes communicate
periodically with neighbors and dynamically maintain
a “tracking” tree structure that is always rooted at the
evader. The pursuer eventually catches the evader by
following this tree structure to the root: the pursuer
asks the closest sensor node who its parent is, then pro-
ceeds to that node, and thus, reaches the root node (and
hence the evader) eventually.

In the pursuer-centric program, nodes communi-
cate with neighbors only at the request of the pur-
suer: When the pursuer reaches a node, the node resets
its recorded time of a detection of an evader to zero
and directs the pursuer to a neighboring node with the
highest recorded time.

The evader-centric program converges and tracks
the evader faster, whereas the pursuer-centric program
is more energy-efficient. In the hybrid program we
combine the evader-centric and pursuer-centric pro-
grams:

1. We modify the evader-centric program to limit
the tracking tree to a bounded depth � to save
energy.

2. We modify the pursuer-centric program to exploit
the tracking tree structure.

The hybrid program is tuned for tracking speed or
energy efficiency by selecting � appropriately. In par-
ticular, for the extended hybrid program in Section 6,
the tracking time is ���������	��

������������������
 steps,
and at most � communications take place at each pro-
gram step, where � denotes the diameter of the net-
work, � is the ratio of the speed of the evader to that
of the pursuer, and � is the number of sensor nodes
included in the tracking tree.

Self-stabilization. In the presence of faults, our
program recovers from arbitrary states to states from
where it correctly tracks the evader; this sort of fault-
tolerance is commonly referred to as stabilizing fault-
tolerance. In particular, starting from any arbitrary

1

state, the tracking time is � � � � � ��� � ��
 � � �
� ����� � �
 steps for our extended hybrid program.

Organization of the paper. After presenting the
system and fault model in the next section, we present
an evader-centric program in Section 3 and a pursuer-
centric program in Section 4. In Section 5, we present
the tunable, hybrid program combining the previous
two programs. We present an efficient version of the
hybrid program in Section 6. Finally, we discuss re-
lated work and make concluding remarks in Section 7.

2 The Problem

System model. A sensor network consists
of a (potentially large) number of sensor nodes
(called motes). Each mote is capable of receiv-
ing/transmitting messages within its field of communi-
cation. All motes within this communication field are
its neighbors; we denote this set for mote � as ������� � .
We assume the ����� relation is symmetric and induces
a connected graph. (Protocols for maintaining bicon-
nectivity in sensor networks are known [8].)

Problem statement. Given are two distinguished
processes, the pursuer and the evader, that each re-
side at some mote in the sensor network. Each mote
can immediately detect whether the pursuer and/or the
evader are resident at that mote.

Both the pursuer and the evader are mobile: each
can atomically move from one mote to another, but the
speed of evader movement is less than the speed of the
pursuer movement.

The strategy of evader movement is unknown to the
network. The strategy could in particular be intelli-
gent, with the evader omnisciently inspecting the en-
tire network to decide whether and where to move. By
way of contrast, the pursuer strategy is based only on
the state of the mote at which it resides.

Required is to design a program for the motes and
the pursuer so that the pursuer can “catch” the evader,
i.e., to guarantee in every computation of the network
that eventually both the pursuer and the evader reside
at the same mote.

Programming model. A program consists of a set
of variables, mote actions, pursuer actions, and evader

actions.
Each variable and each action resides at some mote.

Variables of a mote � can be updated only by � ’s mote
actions. Mote actions can only read the variables of
their mote and the neighboring motes. Pursuer actions
can only read the variables of their mote. The evader
actions can read the variables of the entire program,
however, they cannot update any of these variables.

Each action has the form:�
guard 	 ��
 �

assignment statement 	
A guard is a boolean expression over variables. An

assignment statement updates one or more variables.
A state is defined by a value for every variable in

the program, chosen from the predefined domain of
that variable. An action whose guard is true at some
state is said to be enabled at that state.

We assume maximal parallelism in the execution of
mote actions. At each state, each mote executes all ac-
tions that are enabled in that state. (Execution of mul-
tiple enabled actions in a mote is treated as executing
them in some sequential order.) Maximal parallelism
is not assumed for the execution of the pursuer and
evader actions. Recall, however, that the speed of ex-
ecution of the former exceeds that of the latter. For
ease of exposition, we assume that evader and pursuer
actions do not occur strictly in parallel with mote ac-
tions.

A computation of the program is a maximal se-
quence of program steps: in each step, actions that are
enabled at the current state is executed according to the
above operational semantics, thereby yielding the next
state in the computation. The maximality of a compu-
tation implies that no computation is a proper prefix of
another computation.

We assume that each mote has a clock, that is
synchronized with the clocks of other motes. (Real
time advances with each program step, in a non-Zeno
sense.) This assumption is reasonably implemented at
least for Mica motes [11]. Later, in Section 7, we show
how our programs can be modified to work without the
synchronized clocks assumption.

Notation. In this paper, we use � , � , and
 to de-
note motes. We use ������� � to denote the variable �����
residing at � . We use to separate the actions in a

2

program and ������� to denote that � is assigned to an
element of set � .

Each parameter in a program ranges over the �����
set of a mote. The function of a parameter is to de-
fine a set of actions as one parameterized action. For
example, let � be a parameter whose value is 0, 1, or
2; then an action ���
	 of mote � parameterized over �
abbreviates the following set of actions:

���
	
��� �����

 ���
	
��� ��� �
 ���
	
��� ��� �

where ����	
��� �����
 is ���
	 with every occurrence of �
substituted with � .

We describe certain conjuncts in a guard in English:�
Evader resides at ��� and

�
Evader detected at ��� . The

former expression evaluates to true at all states where
the evader is at � whereas the latter evaluates to true
only at the state immediately following any step where
the evader moves to mote � , and evaluates to false in
the subsequent states even if the evader is still at � .

We use � to denote the number of motes in the sen-
sor network, � the diameter of the network, and � the
distance between the pursuer and evader. Finally, we
use � to denote the ratio of the speed of the evader to
that of the pursuer.

Evader action. In each of the programs that we
present in this paper, we use the following evader ac-
tion.

�
Evader resides at ���
�
 Evader moves to
 ,

���� � ����� � ������� �"! � �#�$�

When this action is executed, the evader moves to
an arbitrary neighbor of � or skips a move. This no-
tion of nondeterministic moves suffices to capture the
strategy of an omniscient evader.

Recall from the discussion in the problem statement
that, when the evader moves to a mote, the mote im-
mediately detects this fact (i.e., the detection actions
have priority over normal mote actions and are fired
instantaneously).

Fault model. Transient faults may corrupt the
program state. Transient faults may also fail-stop or
restart motes (in a manner that is detectable to their

neighbors); we assume that the connectivity of the
graph is maintained despite these faults.

A program % is stabilizing fault-tolerant iff start-
ing from an arbitrary state % eventually recovers to a
state from where its specification is satisfied.

3 An Evader-centric Program

In this section we present an evader-centric solution
to the pursuer-evader problem in sensor networks. In
our program every sensor mote, � , maintains a value,
	'& � � , that denotes the latest timestamp that � knows for
the detection of the evader. Initially, for all � , 	(& � ���
� . If � detects the evader, it sets 	'& � � to its clock’s
value. Every mote � periodically updates its 	'& � � value
based on the 	(& values of its neighbors: � assigns the
maximum timestamp value it is aware of as 	(& � � . We
use)�� � (read parent of �) to record the mote that �
received the maximum timestamp value. Note that the
parent relation embeds a tree rooted at the evader on
the sensor network. We refer to this tree as the tracking
tree.

In addition to above variables, we maintain a vari-
able * � � at each mote � to denote the distance of �
from the evader. In the case where 	'& � � is equal to
	'& values of � ’s neighbors, � uses the * values of the
neighbors to elect its parent to be the one offering the
shortest distance to the evader. Thus, the actions for
mote � (parameterized with respect to neighbor �) in
the evader-centric program is as follows.

�
Evader resides at ���
�
)�� �+�,� � ; 	(& � �+�,���
.-/� � � � ; * � �+�,�0�

	'& � � 12	(& � �43 �5	(& � �+�6	(& � �47 * � �����98:* � �

�
)�� �+�,� � ; 	'& � �;�,�4	'& � �,)�� �
 ;

* � ���,��* � �,) � �
�� �

Once a tracking tree is formed, the pursuer follows
this tree to reach the evader simply by querying its
closest mote for its parent and proceeding to the parent
mote. Thus, the pursuer action is as follows.

�
Pursuer resides at �#� �
 Pursuer moves to)�� �

3

3.1 Proof of correctness

As the following example illustrates, if the evader is
moving it may not be possible to maintain a minimum
distance spanning tree.

e

next state e

However, we can still prove the following theorem.

Theorem 1. The tracking tree is a spanning tree
rooted at the mote where the evader resides.

Proof. From the synchronized clocks assumption
and the privileged detection action,

�
Evader resides

at �#� , it follows that the mote � where the evader
resides has the highest timestamp value in the net-
work. Observe from the second mote action that the
)�� � variable at every mote � embed a logical tree struc-
ture over the sensor network. Cycles cannot occur
since ��� � � 	'& � � 1 �;�9* � �,)�� �
284* � �
 1. Since
��� ����	'& � � 16����	'& � �,)�� �
 1 	(& � �
 , the network is con-
nected, and the mote � where the evader resides has
the highest timestamp value in the network, it follows
that there exists only one tree in the network and it is
rooted at � .

Corollary 2. The tracking tree is fully constructed
in at most � steps.

Proof. Within at most � steps all the motes in
the network receives a message from a mote that is al-
ready included in the tracking tree (due to the maximal
parallelism model and the second mote action). From
Theorem 1 it follows that a tracking tree covering the
entire network is constructed.

Lemma 3. The distance between the pursuer and
evader does not increase once the constructed tree in-
cludes the mote where the pursuer resides.

1A formula �������
	���
 ��	���
 ��� denotes the value obtained
by performing the (commutative and associative) ��� on the ��
 �
values for all � that satisfy ��
 � . Where ��
 � is true, we omit ��
 � . As
a special case, where ��� is conjunction, we write ������	���
 ��	���
 ���
which may be read as “if ��
 � is true then so is ��
 � ”.

Proof. Once the constructed tree includes the mote
��� where the pursuer resides, there exists a path
���� �"!# � � �� ��� such that ��� � � �28 �%$ � �) � �'& �
� &)(*�
 and the evader resides at � � . At each program
step, any mote �"& in this path may choose to change
its parent, rendering a different path between the pur-
suer and the evader. However, observe from the second
mote action that, �"& changes its parent only if the new
parent has a shorter path to the evader (higher times-
tamp implies shorter path since the mote where evader
resides has the highest timestamp and motes execute
under maximal parallelism model).

At any program step, if the evader moves to a neigh-
boring mote, the pursuer, being faster than the evader,
also moves to the next mote in the path. Thus, the net
effect is that the path length can only decrease but not
increase.

Theorem 4. The pursuer catches the evader in at
most � � �$� �,+�������� � ��
.- steps.

Proof. Since the initial distance between the evader
and the pursuer is � , after � program steps the track-
ing tree includes the mote at which the pursuer re-
sides. Within this period, the evader can move to
at most � hops away, potentially increasing the dis-
tance between the evader and pursuer to �$� . From
Lemma 3, it follows that this distance cannot increase
in the subsequent program steps. Since the pursuer
is faster than the evader, it catches the evader in at
most �$� �/+���������� �
.- steps (follows from solving
� �10 ���)0 � �$�
 for 0).

3.2 Proof of stabilization

In the presence of faults variables of a mote � can
be arbitrarily corrupted. However, for the sake of sim-
plicity we assume that even in the presence of faults
the following two conditions hold:

1. always 	'& � �2$ �
.- � � � �
2. always

�)�� ��� � ��� ��� � ! � �#� ! �43 �$�
The first condition states that the timestamp for the

detection of evader at mote � is always less than the
local clock at � (i.e., 	'& � � cannot be in the future). The
second condition states that the domain of)�� � is re-
stricted to the set

� ������� � ! � �#� ! �43 �$� where)�� � � 3

4

denotes that � does not have any parent. These are both
locally checkable and enforceable conditions; in order
to keep the program simple we will not include the
corresponding correction actions in our presentation.

Lemma 5. The tracking tree stabilizes in at most
� steps.

Proof. Since we have always 	(& � �%$ �
.- � � � � , even
at an arbitrary state (which might be reached due to
transient faults) the mote where the evader resides has
the highest timestamp value in the network. From
Corollary 2 and Theorem 1 it follows that a fresh track-
ing tree is constructed within at most � steps and
this tracking tree is a spanning tree rooted at the mote
where the evader currently resides.

Theorem 6. Starting from an arbitrarily corrupted
state, the pursuer catches the evader in at most � �
� � � ������� � �
 .

Proof. The proof follows from the proofs of Lemma
5 and Theorem 4.

3.3 Performance metrics

The evader-centric program is not energy efficient
since every mote communicates with its neighbor at
each step of the program. That is, � �"� communi-
cations occur each step, where � denotes the average
degree of a mote. The communications can be treated
as broadcasts, and hence, the number of total commu-
nications per step is effectively � .

On the other hand, the tracking time and the conver-
gence time of the evader-centric program is fast: start-
ing from an arbitrarily corrupted state it takes at most
� � � � � � ����� ���
 steps for the pursuer to catch the
evader.

4 A Pursuer-centric Program

In this section we present a pursuer-centric solu-
tion to the pursuer-evader problem in sensor networks.
Here, similar to the evader-centric program, every sen-
sor mote, � , maintains a value, 	(& � � , that denotes the
latest timestamp that � knows for the detection of the
evader. Initially, for all � , 	'& � � � � . If � detects the
evader, it sets 	'& � � to its clock’s value.

In this program, motes communicate with neigh-
bors only at the request of the pursuer: When the pur-
suer reaches a mote � , � resets 	(& � � to zero and directs
the pursuer to a neighboring mote with the highest
recorded time (we use ��� � 	 � � to denote this neighbor).
Note that if all 	(& values of the neighbors are the same
(e.g., zero), the pursuer is sent to an arbitrary neighbor.
Also, if there is no pursuer at � , ��� � 	�� � is set to

3
(i.e.,

undefined).
Thus, the actions for mote � in the pursuer-centric

program is as follows:

�
Evader detected at ���
��
 	(& � � �,���
.- � � � �

�
Pursuer detected at � �
��
 ��� � 	 � � ��� � � ��� � ������� �07

	'& � �+��� ��� � � 	'& �
��
 � ������� ���
 � ;
	(& � � �,���

The pursuer’s action is as follows.

�
Pursuer resides at �#�

��
 Pursuer moves to ��� � 	 � �

4.1 Proof of correctness

Lemma 7. If the pursuer reaches a mote � where
	'& � � 1 � , the pursuer catches the evader in at most
� � � ����� � �
 steps.

Proof. If the pursuer reaches a mote � where 	'& � ��1
� , then there exists a path between the pursuer and the
evader that is at most of length � . This distance does
not increase in the following program steps (due to
maximal parallel execution semantics and the program
actions).

In [6], it is proven that during a random walk on a
graph the expected time to find � distinct vertices is� �.���
 . However, a recent result [12] shows that by
using a local topology information (i.e., degree infor-
mation of neighbor vertices) it is possible to achieve
the cover time

� �.� !
.-	����
 for random walk on any

5

graph. Thus, we have:

Lemma 8. The pursuer reaches a mote � where
	'& � �+1:� within

� �.� !
.- ����
 steps.

Theorem 9. The pursuer catches the evader within� �.� !
.- ���
 steps.

4.2 Proof of stabilization

Since each mote � resets 	(& � � to zero upon a de-
tection of the pursuer, arbitrary 	(& � � values eventually
disappear, and hence, the pursuer-centric program is
self-stabilizing.

Theorem 10. Starting from an arbitrary state, the
pursuer catches the evader within

� �.� !
.- ����
 steps.

4.3 Performance metrics

The pursuer-centric program is energy efficient. At
each step of the program only the mote where the pur-
suer resides communicates with its neighbors. That is,
� communications occur at each step.

On the other hand, the tracking and the conver-
gence time of the pursuer-centric program is slow:� �.� !
.- ���
 steps.

5 A Hybrid Pursuer-Evader Program

In the hybrid program we combine the evader-
centric and pursuer-centric approaches:

1. We modify the evader-centric program to limit
the tracking tree to a bounded depth � to save
energy.

2. We modify the pursuer-centric program to exploit
the tracking tree structure.

We limit the depth of the tracking tree to � by
means of the distance, * , variable.

�
Evader resides at � �
�
) � �+�,� � ; 	'& � ���,���
5- � � � � ; * � ���,���

* � ����� $ � 7
�5	'& � � 12	(& � �43 �5	'& � ���6	(& � �;7 * � � � �98:* � �

�
) � �+�,� � ; 	(& � � �,�4	(& � �,)�� �
 ;

* � �+�,�0* � �,)�� �
����

By limiting the tree to a depth � we lose the ad-
vantages of soft-state stabilization: there is no more
a flow of fresh information to correct the state of the
motes that are outside the tracking tree. To achieve sta-
bilization, we add explicit stabilization actions. Next
we describe these two actions.

For the case where the initial graph has cycles, each
cycle is detected and removed by using the bound on
the length of the path from each process to its root pro-
cess in the tree. To this end, we exploit the way that
we maintain the * variable: � sets * � � to be * � �,) � �
�� �
whenever)�� � � ������� � and * � �,)�� �
 � � $ � . The net
effect of executing this action is that if a cycle exists
then the * � � value of each process � in the cycle gets
“bumped up” repeatedly. Within at most � steps, some
* � �,)�� �
 reaches � , and since the length of each path in
the adjacency graph is bounded by � , the cycle is de-
tected. To remove a cycle that it has detected, � sets)�� �
to
3

(undefined) and * � � to � , from whereon the cy-
cle is completely cleaned within the next � steps. Note
that this action also takes care of pruning the tracking
tree to height � (e.g., when the evader moves and as
a result a mote � with * � � � � becomes � � � away
from the evader).

Mote � also sets) � � to
3

(undefined) and * � � to �
if)�� � is not a valid parent (e.g. * � � �� * � �,)�� �
 � � or
	'& � �+1:	'& � �,)�� �
 or �,)�� � � �47 * � � �� �

).

We add another action to correct the fake tree roots.
If a mote � is spuriously corrupted to)�� � � � 7 * � � �
� , this is detected by explicitly asking for a proof of the
evader at � .

Thus the stabilization actions for the bounded
length tracking tree is as follows.

)�� � �� 3 7
� �,)�� � � �47 * � � �� �

�3 	'& � ��1 	'& � �,)�� �

3 * � � ���* � �,)�� �
���� 3 * � �,)�� �
�� � � �

��
) � �+�,� 3

; * � ���,� �

)�� ��� �47 * � � ��� 7 �
�

Evader resides at ���
��
) � �+�,� 3

; * � ���,� �

We modify the mote action in the pursuer-centric
program only slightly so as to exploit the tracking tree
structure.

6

�
Pursuer detected at ���
�
 if ()�� � �� 3

) then ��� � 	�� ���,�)�� �
else
��� � 	�� �+��� � � � � � ��� ��� �07
	'& � � � � ��� � � 	(& �
 �
 � ������� �#�
 � ;

	(& � �+�,���

Finally, the pursuer action is the same as that in Sec-
tion 4.

5.1 Proof of correctness

The following lemmas and theorem follow from
their counterparts in Sections 3 and 4.

Lemma 11. The tracking tree is fully constructed
in at most � steps.

Below � denotes the number of motes included in
the tracking tree.

Lemma 12. The pursuer reaches the tracking tree
within

� � �.� � �
 !
.-	���.� � �

 steps.

Theorem 13. The pursuer catches the evader
within

� � �.� � �
 !
.-	���.� � �

 steps.

5.2 Proof of stabilization

Lemma 14. The tracking tree structure stabilizes
in at most � � steps.

Proof. Follows from Lemma 5 and the discussion
above about the stabilization actions of the hybrid pro-
gram.

Theorem 15. Starting from an arbitrary state, the
pursuer catches the evader within

� � �.��� �
 !
.- � �.� �
�

 steps.

5.3 Performance metrics

The hybrid program for the motes can be tuned to be
energy efficient. At each step of the program at most
� � � communications take place.

The hybrid program can also be tuned to track and
converge faster. The random walk now takes

� � �.� �
�
 !
.- � �.� � �

 steps to find the tracking tree. From
that point on it takes � �
� ������� ��
 steps for the pursuer
to catch the evader.

6 An efficient version of the hybrid program

In this section we present an efficient version of
the hybrid program. To this end, we first present an
extended version of the pursuer-centric program, and
then show how this extended pursuer-centric program
can be incorporated into the hybrid program.

Extended pursuer-centric program. In the ex-
tended version of the pursuer-centric program, instead
of the random walk prescribed in Section 4, the pur-
suer uses agents to search the network for a trace of the
evader. The pursuer agents idea can be implemented
by constructing a (depth-first or bread-first) tree rooted
at the mote where the pursuer resides. If a mote � with
	'& � �+1 � is included in this pursuer tree, the pursuer is
notified of this result along with a path to � . The pur-
suer then follows this path to reach � . From this point
on, due to Lemma 7, it will take at most � � ������� � ��

steps for the pursuer to catch the evader.

This program can be seen as an extension of the
original pursuer-centric program in that instead of a
1-hop tree construction (i.e., the mote � where the pur-
suer resides contacts ������� �) embedded in the original
pursuer-centric program, we now employ a � -hop tree
construction. To this end we change the original pur-
suer program as follows. The mote � where the pur-
suer resides sets ��� � 	 � � to

3
if none of its neighbors

has a timestamp value greater than 0, instead of set-
ting ��� � 	�� � to point to a random neighbor of � . The
pursuer upon reading a

3
value for the ��� � 	 variable,

starts a tree construction to search for a trace of the
evader. Note that by using a depth � , the pursuer tree
is guaranteed to encounter a mote � with 	'& � �+1 � .

Several extant self-stabilizing tree construction pro-
grams [1, 7, 9] suffice for constructing the pursuer tree
in � steps and to complete the information feedback
within another � steps. Also since the root of the
pursuer tree is static (root does not change dynami-
cally unlike the root of the tracking tree), it is possible
to achieve self-stabilization of pursuer tree within �
steps in an energy efficient manner. That is, in contrast
to the evader-centric tracking tree program where all
motes communicate at each program step, in the pur-
suer tree program only the motes propagating a (tree
construction or information feedback) wave need to

7

communicate with their immediate neighbors.

Extended hybrid program. It is straightforward
to incorporate the extended version of the pursuer-
centric program into the hybrid program. The only
modification required is to set the depth of pursuer
tree to be � � � hops instead of � hops. Note that
� � � hops is enough for ensuring that the pursuer
will encounter a trace of the evader (i.e., pursuer tree
will reach a mote included in the tracking tree).

6.1 Performance metrics

The extension improves the tracking and the con-
vergence time of the pursuer-centric program from� �.� !
.- ���
 steps to � � � � � � ����� � ��
 steps (� �
steps for the pursuer tree construction and informa-
tion feedback, and � steps for the pursuer to follow
the path returned by the pursuer tree program). The
extended pursuer-centric program remains energy effi-
cient; the only overhead incurred is the one-time invo-
cation of the pursuer tree construction.

In the extended hybrid program, it takes at most � �
��� ����
 steps for the pursuer to reach the tracking
tree. (Compare this to

� � �.� � �
 !
.- � �.� � �

 steps
in the original hybrid program.) From that point on it
takes ��� ������� � �
 steps for the pursuer to catch the
evader. At each step of the extended hybrid program
at most � communications take place, however, due to
the pursuer tree computation, a one time cost of � �
��� � ��
 is incurred.

1-pursuer 0-evader scenario. The evader-centric
program is energy efficient in a scenario where there
is no evader but there is a pursuer in the system: no
energy is spent since no communication is needed. On
the other hand, the pursuer-centric program performs
poorly in this case: at each step the pursuer queries the
neighboring motes incurring a communication cost of
� . The hybrid program, since it borrows the pursuer
action from the pursuer-centric program, also performs
badly in this scenario.

The extended pursuer-centric program fixes this
problem by modifying the pursuer tree construction to
require that an answer is returned only if the evader
tree is encountered. That is, if there is no evader in the
network, the pursuer tree program continues to wait

for the information feedback wave to be triggered, and
hence, it does not waste energy.

0-pursuer 1-evader scenario. By enforcing that
pursuers authenticate themselves when they join the
network and notify the network when they leave, a
similar improvement in the energy-efficiency is ob-
tained.

7 Discussion and related work

In this paper we have investigated a pursuer-evader
game for sensor networks. More specifically, we have
presented a hybrid, tunable, and self-stabilizing pro-
gram to solve this problem. We proved that the pursuer
catches the evader even in the presence of faults.

For the sake of simplicity, we have adopted a
shared-memory model; our results are still valid for
message passing memory model. Note that the seman-
tics of the message-passing program would be event-
based execution (e.g., upon receiving a message or de-
tecting the evader), rather than maximal parallelism.

Asynchronous program. Even though we as-
sumed an underlying clock synchronization service,
it is possible to modify the evader-centric program
slightly to obtain an asynchronous version. The mod-
ification is to use, at every mote � , a counter vari-
able ���
 � � that denotes the number of detections of the
evader that � is aware of, instead of 	(& � � that denotes
the latest timestamp that � knows for the detection of
the evader. When � detects the evader, instead of set-
ting 	(& � � to �
.-/� � � � , � increases ���
 � � by one.

The extended pursuer program is also made asyn-
chronous in a straightforward manner, since the idea
of pursuer agents (a tree rooted at the pursuer) is read-
ily implemented in the asynchronous model.

Implementation. We have implemented the asyn-
chronous version of the evader-centric program on the
Berkeley’s Mica mote platform [11] for a demonstra-
tion at the June 2002 DARPA–NEST retreat held in
Bar Harbor, Maine. In our demonstration, a Lego
Mindstorms

���

robot serving as a pursuer used our
program to catch another Lego Mindstorms robot serv-
ing as an evader, in a 4 by 4 grid of motes subject to a
variety of faults. We have recently ported the code to

8

nesC [10]; the source code is available at www.cis.
ohio-state.edu/˜demirbas/peDemo.

Energy efficiency. We have demonstrated that our
program is tunable for tracking speed or energy effi-
ciency. Our program is also be tunable for stabiliza-
tion speed or energy efficiency. The periodicity of soft-
state updates for stabilization should be kept low if the
faults are relatively rare in the network. For example,
in the absence of faults, the first action (i.e.,

�
Evader

resides at ��� action) need not be executed unless the
evader moves to a different mote. Similarly, the sta-
bilization actions (actions 3 and 4 of the hybrid pro-
gram) can be executed with low frequency to conserve
energy.

Another way to improve the energy-efficiency is
to maintain the tracking tree over a small number of
motes. For example, hierarchical structuring can be
employed to maintain tracking information with accu-
racy proportional to the distance from the evader. Also
maintaining the tracking tree in a directional manner
and only up to the location of the pursuer will help
conserve energy.

Related work. Several self-stabilizing programs
exist for tree construction ([1, 7, 9] to name a few).
However, our evader-centric program is unique in the
sense that a spanning tree is maintained even though
the root changes dynamically.

In our program, we choose to update the location
of the evader immediately. In [5], three strategies for
when to update the location the evader (time-based,
number of movements-based, and distance-based) are
evaluated with respect to their energy efficiency.

Relating to the idea of achieving energy efficiency
by using a small number of nodes, Awerbuch and Pe-
leg [3] present a local scheme that maintains tracking
information with accuracy proportional to the distance
from the evader2. They achieve this goal by maintain-
ing a hierarchy of
.-	� � regional directories (using the
graph-theoretic concept of regional matching) where
the purpose of the � ’th level regional directory is to en-
able a pursuer to track the evader residing within � &
distance from it. They show that the communication
overhead of their program is within a polylogarithmic
factor of the lower bound. Loosely speaking, their re-

gional matching idea is an efficient realization of our
pursuer-centric program and their forwarding pointer
structure is analogous to our tracking tree structure.

By way of contrast, their focus is on optimizing
the complexity during the initialized case, whereas
we focus on optimizing complexity during stabiliza-
tion as well. That is, we are interested in (a) track-
ing that occurs while initialization is occuring; in
other words, soon after the evader joins the system,
and (b) tracking that occurs from inconsistent states;
in other words, if the evader moves in an unde-
tectable/unannounced manner for some period of time
yielding inconsistent tracks. Their complexity of ini-
tialization is

� � �
.- ��� �
 where
�

is the number of
edges in the graph and � is the number of nodes.
Thus, brute force stabilization of their structure com-
pletes in

� � �
.-	� � �
 time as compared with the � �
steps it takes in our extended hybrid program.

We have recently found that [14] if we restrict the
problem domain to tracking in planar graphs, it is pos-
sible to optimize the tracking time in the presence of
faults as well as the communication cost and tracking
time in the absence of faults. A topology change trig-
gers a global initialization in Awerbuch and Peleg’s
program since their � -regional matching structure de-
pends on a non-local algorithm that constructs sparse
covers [2]. Assuming that the graph is planar (nei-
ther [3] nor this paper assumes planarity), we present
in [14] a local and self-stabilizing clustering algorithm
for constructing the � -regional matching structure,
and hence, we are able to deal with topology changes
locally.

Future work. We have found several variations
of the pursuer-evader problem to be worthy of study,
where we change for instance the communication time
between motes, the communication model to be mes-
sage broadcast instead of shared memory, the numbers
of pursuers and evaders, the range of a move, and the
semantics of computation to be interleaving instead of
maximal parallelism.

Especially of interest to us are general forms of the
tracking problem where efficient solutions can be de-

2 We thank Nancy Lynch for bringing this paper to our atten-
tion.

9

vised by hybrid control involving traditional control
theory and self-stabilizing distributed data structures
(such as tracking trees and regional directories).

References

[1] A. Arora and M. G. Gouda. Distributed reset.
IEEE Transactions on Computers, 43(9):1026–
1038, 1994.

[2] B. Awerbuch and D. Peleg. Sparse partitions (ex-
tended abstract). In IEEE Symposium on Founda-
tions of Computer Science, pages 503–513, 1990.

[3] B. Awerbuch and D. Peleg. Online tracking of
mobile user. Journal of the Association for Com-
puting Machinery, 42:1021–1058, 1995.

[4] A. Bar-Noy and I. Kessler. Tracking mobile users
in wireless communication networks. In INFO-
COM, pages 1232–1239, 1993.

[5] A. Bar-Noy, I. Kessler, and M. Sidi. Mobile
users: To update or not to update? In INFO-
COM, pages 570–576, 1994.

[6] G. Barnes and U. Feige. Short random walks on
graphs. SIAM Journal on Discrete Mathematics,
9(1):19–28, 1996.

[7] N.S. Chen and S.T. Huang. A self-stabilizing
algorithm for constructing spanning trees. In-
formation Processing Letters (IPL), 39:147–151,
1991.

[8] Y. Choi, M. Gouda, M. C. Kim, and A. Arora.
The mote connectivity protocol. Technical Re-
port TR03-08, Department of Computer Sci-
ences, The University of Texas at Austin, 2003.

[9] A. Cournier, A.K. Datta, F. Petit, and V. Vil-
lain. Self-stabilizing PIF algorithms in arbi-
trary networks. International Conference on Dis-
tributed Computing Systems (ICDCS), pages 91–
98, 2001.

[10] D. Gay, P. Levis, R. von Behren, M. Welsh,
E. Brewer, and D. Culler. The NESC language:
A holistic approach to network embedded sys-
tems. Submitted to the ACM SIGPLAN(PLDI),
June 2003.

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar,
D. Culler, and K. Pister. System architecture di-
rections for network sensors. ASPLOS, 2000.

[12] S. Ikeda, I. Kubo, N. Okumoto, and M. Ya-
mashita. Local topological information and cover
time. Research manuscript, 2002.

[13] M. Jayaram and G. Varghese. Crash failures can
drive protocols to arbitrary states. ACM Sym-
posium on Principles of Distributed Computing,
1996.

[14] V. Mittal, M. Demirbas, and A. Arora. LOCI:
Local clustering in large scale wireless networks.
Technical Report OSU-CISRC-2/03-TR07, The
Ohio State University, February 2003. Submitted
to PODC’03.

[15] E. Pitoura and G. Samaras. Locating objects in
mobile computing. Knowledge and Data Engi-
neering, 13(4):571–592, 2001.

[16] A. P. Sistla, O. Wolfson, S. Chamberlain, and
S. Dao. Modeling and querying moving objects.
In ICDE, pages 422–432, 1997.

10

