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Abstract. Traditional deployments of wireless sensor networks (WSNs)
rely on static basestations to collect data. For applications with highly
spatio-temporal and dynamic data generation, such as tracking and de-
tection applications, static basestations suffer from communication bot-
tlenecks and long routes, which cause reliability and lifetime to plummet.
To address this problem, we propose a holistic solution where the syn-
ergy of the WSN and the mobile basestation improves the reliability
and lifetime of data collection. The WSN component of our solution is a
lightweight dynamic routing tree maintenance protocol which tracks the
location of the basestation to provide an always connected network. The
mobile basestation component of our solution complements the dynamic
tree reconfiguration protocol by trailing towards the data generation, and
hence, reducing the number of hops the data needs to travel to the bases-
tation. While both protocols are simple and lightweight, combined they
lead to significant improvements in the reliability and lifetime of data col-
lection. We provide an analytical discussion of our solution along with
extensive simulations.

1 Introduction

The objective for deploying a wireless sensor network (WSN) is to collect data
from an area for some time interval. Traditionally, a static basestation (SB) is
deployed with the WSN, and the WSN nodes relay data over multihops towards
the SB, which stores/uploads the data for processing. In order to improve the
efficiency (which determines the lifetime) and reliability (which determines the
quality) of data collection, most of the research in the literature focus on the
relay nodes. Several schemes have been proposed for establishing coordinated
sleep-wake-up, aggregation, and routing over relay nodes. On the other hand,
relatively little attention is paid to changing the SB model, and investigating
holistic solutions to the data collection problem.

The traditional SB model has several handicaps. A primary problem is that
the SB constitutes a hotspot for the system. Since the nodes closer to SB are
always employed in relaying the entire traffic, those nodes deplete their batteries
quickly, putting a cap on the lifetime of the deployment. Another major problem
is due to the spatio-temporal nature of the data generation. In several WSN de-
ployments, including environmental monitoring [5], habitat monitoring [16], and



especially surveillance systems [1,7], it has been observed that the phenomena of
interest are local both in time and space. Fixing the location of the basestation
ignores the nature of the data generation and results in long multihop paths for
relaying, which leads to a lot of collisions and data losses.

In order to address the drawbacks of the SB model, several work proposed
to deploy a mobile basestation (MB) for data collection [2, 8, 11]. The classical
“data mule” work [13] proposed to exploit random movement of MBs to op-
portunistically collect data from a WSN. Here, the nodes buffer their data and
upload only when the MB arrives within direct communication. Although this
approach eliminates multihop data relaying, the tradeoff is the very high latency,
which makes the approach unsuitable for real-time monitoring applications. To
fix the latency problem, the mobile element scheduling (MES) work [15] consid-
ered the controlled mobility of the MB and studied the problem of planning a
path for the MB to visit the nodes before their buffers overflow (which turned
out to be an NP-complete problem [9, 15]). MES work assumes that the data-
rates in the WSN are known and fixed (constant after initialization), and this
is limiting for monitoring applications. Controlled sink mobility in [3] reduces
latencies significantly through maintenance of routes to sink location from all
nodes. Optimal solution for this model requires preprocessing similar to MES,
so the authors in [3] propose a greedy alternative. However, since reactive sink
mobility requires flooding of the entire network, the controlled sink mobility
work [3] assumes that the sink stays for relatively long durations on small num-
ber of predefined sink locations, which limits its ability to address dynamic data
generation in an agile manner.

In our previous work, we presented a holistic, network controlled MB algo-
rithm, “data salmon” [6]. Data salmon constructs a backbone spanning tree over
the WSN, and constrains both the data relaying and the MB movements to oc-
cur on this tree. Data salmon moves the MB greedily to the subtree where most
of the traffic originates. 1 In return when the MB moves along one edge of the
tree, it inverts the direction of the edge to point to its new location to ensure
that the root of the backbone tree is switched to be at the new location of MB.
Hence tracking of the MB is achieved with minimum cost. Although it achieves
low cost tracking and reduces the average weighted relay distance of data, the
data salmon has some shortcomings. The hotspot problem is not addressed: since
data salmon uses a static backbone tree, the center of the static backbone tree
still relays a significant amount of traffic and is a potential hotspot. Moreover, a
static backbone tree implies that a message-loss during the handoff of MB from
one node on the tree to the next leads to a permanent partitioning. 2

Our contributions. We present data spider a holistic solution where
the synergy of the WSN and the MB improves both the reliability and lifetime
of data collection. The WSN component of our solution is a very lightweight

1 We showed that this greedy strategy is optimal, under the constraints of limiting all
the data relaying to occur on the static backbone tree.

2 Requiring acknowledgment messages alleviates the problem, but also increases the
overhead of the protocol significantly.
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dynamic routing tree maintenance protocol which tracks the MB to provide an
always connected network. This tree is updated locally and efficiently by the
movements of the MB. The visual imagery is that of a spider (corresponding to
the MB) re-weaving/repairing its web (corresponding to the tree) as it moves.
To complete the feedback loop, the spider relies on its web to detect interesting
phenomena (data generation) to follow. By trailing towards the data generation,
the MB component of our solution reduces the number of hops the data needs to
travel to the basestation. Since the data spider uses a dynamically reconfigured
tree to route traffic, it avoids the hotspot problem of data salmon, which used
a static backbone tree for routing. As a result, data spider extends the lifetime
of the deployment by several folds over the data salmon. Due to its dynamically
reconfigured tree, data spider is also resilient against message-losses.

We present our dynamic tree reconfiguration protocol, DTR (read detour),
in Section 3. The DTR philosophy is to update the tree at where it counts, that
is, where the most recent action is. Therefore, instead of trying to maintain a
distance-sensitive tree for the entire network (which is clearly a non-local task),
we maintain a temporally-sensitive tree by reconfiguring the tree only at the
immediate locality of the MB. Since we restrict the tree reconfiguration only to
the singlehop of the MB, the maintenance cost of the tree is very low. Yet this
does not lead to long and inefficient paths for data relaying to MB: since the
MB follows the data generation closely, the effective length of data-forwarding
paths is only a couple of hops. (The lenghts of non-data-forwarding paths are
irrelevant for the data collection problem.) We give the correctness proof of tree
reconfiguraton at DTR in Section 3.2.

To investigate the requirements for proper handoffs by the MB, we formulate
the handoff connectivity property in Section 3.3. Handoff connectivity, intuitively,
captures the notion of having no holes in the network. We note that our data
spider waives the handoff connectivity requirement in practice. In Section 4 we
present a simple yet very effective algorithm—trail-flow algorithm—for the MB,
that avoids bad handoffs. In the trail-flow algorithm, the MB follows the edges
where most data is flowing to itself, instead of going directly to the source of
the data (which we dub as the follow-source approach). Our simulation results
show that follow-source leads to several incorrect handoffs whereas trail-flow still
functions correctly in the same density/network.

We give simulation results to investigate the scalability and efficiency of data
spider, and compare it with data salmon and the SB approach in Section 5. Our
simulator uses realistic lossy channel models and provides a high-fidelity energy
calculation by using BMAC [12] as the model for the MAC layer communications.
3 Our simulation results show that data spider outperforms data salmon and
the SB approaches consistently, and leads to significant improvements in the
reliability and lifetime of data collection. Although we focus on one mobile region
of interest (ROI) and on one MB for most of the paper, we note that data spider

3 Since our simulator is parametrized extensively it is suitable for modeling
and investigating other MB algorithms easily. Our simulator is available at
http://www.cse.buffalo.edu/ubicomp/dataSpider/
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extends readily to allow several MBs to share the same network to track multiple
ROIs. Our simulation results with multiple MBs collecting data from multiple
ROIs are very promising; despite the lack of explicit coordination between the
MBs, these simulations show an emergent cooperation and division of labor
among the MBs leading to improved performance.

2 Model

We consider a dense, connected, multihop WSN. The sensor nodes are static after
the initial deployment. We assume that the data generation has spatio-temporal
correlation but is otherwise dynamic/unpredictable. This model captures the
data generation in event detection, tracking, and surveillance applications. Our
implementation of the data generation uses a circular region of interest (ROI).
We allow only the sensors in this ROI to generate data. The ROI moves around
in the network nondeterministically to simulate the behavior of mobile events.
This ROI scheme generates dynamic data that is challenging for precomputed
basestation mobility as in [3, 9].

We account for the message transmission costs of the sensor nodes as well
as the reception costs and idle listening costs at the nodes. We assume CSMA
with BMAC low-power-listening [12] for the MAC layer and use the associated
energy model in [12] to calculate the energy usage at each node. Since our DTR
and MB protocols are simple, we ignore the energy cost of the computation. We
assume the MB is capable of locating itself and traveling to target locations. In
our model, we have not included the energy required for moving the MB. 4

3 Dynamic Tree Reconfiguration

Here, we first present the DTR algorithm. We give the correctness proof of DTR
in Section 3.2 and present the handoff connectivity requirements for DTR in
Section 3.3. Finally, we present extensions to the basic DTR in Section 3.4.

3.1 DTR Algorithm

To maintain always-on connectivity to the MB, the network should continuously
track it and update the existing routing paths to point to its new location. Trying
to maintain a distance-sensitive tracking structure (e.g., maintaining a shortest
path tree rooted at the MB) would be beneficial since it would reduce the number
of hops data need to be relayed towards the MB. However, this is inherently a
non-local and costly task as it requires frequent multihop broadcasts.

4 The reason behind our willingness to generously tradeoff the energy required for
relocating the MB with the energy gain in data collection is that it is much easier
to replenish and maintain the batteries of one MB than those of the sensor nodes in
the entire network. We assume that the MB is recharged periodically or is equipped
with energy harvesting capabilities such as solar panels.
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Since energy-efficiency is of utmost importance for elongating the lifetime, in
our dynamic tree configuration protocol, DTR, we take an alternative approach.
To keep the maintenance cost of the tree very low, we confine DTR to reconfigure
the tree only at the immediate locality (singlehop) of the MB. To ensure that
DTR does not beget long and inefficient paths for data relaying to MB, we rely
on the MB algorithm. In our simulation results in Section 5.2, we show that since
the MB’s trail-flow algorithm follows the data generation closely, the effective
length of data relaying paths is only a couple of hops.

DTR starts with a spanning tree rooted at the MB. This could be established
by constructing an initial tree using flooding and keeping the MB static. The
root node of this initial tree is called the anchor node, which is also the closest
node to the MB. As it relocates in the network, MB chooses the anchor node to
be the closest node to itself and makes periodic broadcasts to declare the anchor
node to all nodes in its singlehop range. Nodes that receive the anchor broadcast
update their parents (next pointers) to point to the new anchor node. At any
time there is a unique anchor node in the network, which is maintained to be
the closest node to the MB.
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Fig. 1. Demonstration of DTR as MB moves from one anchor to another. The
touched edges are gray edges in (b) and actual changes are bold edges in (c).

We present DTR in Algorithm 1. Only the nodes that receive the anchor
broadcast execute an action and update their next pointers. The anchor broad-
casts are local to the singlehop of the MB and they are not relayed to multiple
hops. Figure 1 depicts an example of DTR execution.

Algorithm 1 DTR Algorithm

1: Wait for the anchor message
2: if anchor == self then

3: next ← MB
4: else if anchor ∈ Neighbors then

5: next ← anchor
6: end if

Dynamic convoy tree work [17] adresses a relevant dynamic tree reconfigura-
tion problem in the context of target tracking. Dynamic convoy tree maintains a
monitoring tree to cover a mobile ROI. The root of this monitoring tree controls
expansion and contraction of the tree and when needed decides on the relocation
of the root to another node based on the information it collects from the entire
tree. Our advantage in DTR is the cooperation of the MB for relocating the
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root of the tree to an optimal location using local singlehop updates, whereas
the convoy tree needs to deal with the tree reconfiguration problem by using
multihop update messages.

3.2 Correctness

We call the operation with which the MB changes the anchor node from one
node to another as handoff. We call a handoff a proper handoff iff (1) both the
old and new anchor nodes receive the MB’s anchor broadcast, and (2) both the
old and new anchor nodes can reliably communicate with each other. Finally,
we call a network routing connected iff the next links of nodes form a spanning
routing tree rooted at MB.

Theorem 1. If all handoffs are proper, an iteration of Algorithm 1 starting
from a routing connected network results in another routing connected network.

Proof. Consider tree reconfiguration on a graph G = (V,E) where u, v ∈ V

correspond to the nodes and e = (u, v) ∈ E correspond to the reliable commu-
nication links between the nodes. We use r to denote the old anchor and r′ to
denote the new anchor. In the base case, when there is no handoff, r′ = r, and
the theorem holds vacuously. We next consider the case where r′ 6= r.

The iteration of Algorithm 1 entails an anchor broadcast received by a set
of nodes R ⊂ V . Let S ⊆ R be the set of nodes that actually change their next
links as a result of executing Algorithm 1. Since proper handoffs are assumed,
{r, r′} ⊆ S. Algorithm 1 dictates that all nodes in S points to r′ (with the
exception of r′ which points to the MB) after the update. That is, the next links
of nodes in S form a routing tree rooted at r′.

Let T (r) be a spanning routing tree of G rooted at node r, and FS be the
forest obtained by removing the next links of nodes in S from T (r). Since r ∈ S,
each tree in FS is rooted at a node in s ∈ S. By definition, none of the edges in
any tree Ts ∈ FS is changed. Since next links in S forms a routing tree rooted
at r′, next links in FS and S form a spanning routing tree rooted at r′.

While message losses are common in WSN environments, most message losses
do not affect the correctness of DTR (Theorem 1), as the definition of proper
handoffs only require reliable message delivery between the MB and the old and
new anchors. For the remaining nodes, message loss is only a nuisance, rather
than constituting a correctness problem. Message losses at these nodes may result
only in degraded performance, since their path is not updated to point to the
new anchor in the most direct/shortest manner. But, since the previous routes
point to the old anchor, which points to the new anchor, due to Theorem 1 the
network is still routing-connected.

The routing-connected network property is violated only when the old or new
anchor miss an anchor broadcast. DTR deals with this problem in two timescales:
short and long terms. In the short term the impact of message losses are reduced
through message redundancy. Increasing the anchor broadcast frequency at the
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MB improves the chances that all neighbors receive the information about the
new anchor node. When this scheme is insufficient, there may be partitions in
the network due to improper handoffs. In the long term, since the MB is mobile,
MB is very likely to move over the partitioned regions eventually. This will, in
turn, fix the problem and enable the buffered packets to be relayed to the MB.

3.3 Handoff Connectivity

The correctness of DTR depends on the success of handoffs, which is in turn
imposed by the geometry and topology of the network. Here, we focus on planar
deployments and capture these required geometric and topological properties.

In data spider, MB invariantly maintains its closest node as the anchor node.
A useful abstraction for capturing this property is the Voronoi diagram of WSN
nodes. When the MB is in one of the Voronoi cells, its closest node, by definition,
is the WSN node corresponding to that Voronoi cell. Thus, as long as MB stays
in that Voronoi cell, the anchor node is unchanged.

With this anchor node definition, we identify the requirements for having
proper handoffs as follows. Let P denote a point in the deployment area and VP

be the set of nodes which are closest to P . So, if P falls inside a Voronoi cell,
then VP consists of a single node, the WSN node corresponding to that Voronoi
cell. If P falls on a Voronoi cell boundary, then VP consists of the neighboring
(i.e., adjacent) nodes for this Voronoi cell boundary.

We call a WSN deployment handoff connected when all points P in de-
ployment region satisfy:

1. For all nodes n ∈ VP , n can reliably communicate with a node placed at P .
2. For all nodes n,m ∈ VP , n and m can reliably communicate with each other.

In other words, in a handoff connected network (1) the MB sitting on a Voronoi
cell boundary can communicate with the nodes in the adjacent Voronoi cells,
and (2) any pair of Voronoi neighbors can communicate with each other.

The above handoff connectivity definition is valid when the updates of the
MB are continuous. Since we use discrete/periodic anchor broadcasts, we extend
this definition for our model. Let λ = vBS ∗ Tupdate be the maximum distance
the MB can travel between two location updates. We now require the anchor
node to be able to receive messages from the MB when it is at most λ away from
the Voronoi cell. Moreover, for proper handoff, any cell that falls to this region
should be in communication range. Figure 2 demonstrates this requirement.

To generalize the handoff region we extend the set of nearest nodes VP . V λ
P

to be the set of nodes which are at most λ + dmin away from point P where
dmin is the minimum distance to any node in network from P . Thus, using V λ

P

we generalize handoff connectivity as follows:
A WSN deployment is said to be λ-general handoff connected when all

points P satisfy:

1. For all nodes n ∈ V λ
P , n can reliably communicate with a node place at P .

2. For all nodes n,m ∈ V λ
P , n and m can reliably communicate with each other.

VII



3.4 Extensions to DTR

Handoff connectivity addresses only the immediate neighborhood of the anchor
node. Broadcasts on the other hand can be made stronger with better trans-
mitters on the MB so WSN nodes can receive broadcasts from non-neighboring
Voronoi cells. These receptions can be utilized to improve the performance of
DTR as follows. For this operation, nodes depend on neighborhood information
about their neighbors. That is, nodes share neighborhood information with their
neighbors, so that they can create two-hop routes to the anchor node when sin-
glehop routes are not possible. If the anchor is not an immediate neighbor of
the node, the node chooses its neighbor which is an immediate neighbor of the
anchor. In case there are multiple neighbors satisfying this condition, the closest
one to the anchor is chosen as the next node. As long as the chosen intermediate
nodes also received the anchor broadcast this operation extends the handoff con-
nectivity. We call this operation indirect handoff. We show neighbor nodes where
only indirect handoff is possible with green(light) edges in Figure 2. Non-anchor
nodes also benefit from our indirect handoff extension, as is the case for nodes
a and b in Figure 1.

Fig. 2. Shaded region shows possible locations of MB at the next update, start-
ing from center. Circle denotes the reliable communication range. Green(light)
dashed lines correspond to neighbors where direct handoff is not possible.
Red(dark) dashed lines correspond to neighbors where no handoff is possible.

4 MB Algorithm

The MB algorithm (given in Algorithm 2) synergizes with the DTR algorithm
to achieve efficient data collection. MB ensures two things:

(1) The MB broadcasts an anchor message announcing the closest
node to itself periodically. This enables DTR to track MB correctly and
update the tree to be rooted at the MB. In order to detect and announce the
closest node to itself, MB should know its location as well as the locations of
nodes in the network. This is achievable by equipping the MB with a GPS
and the coordinates of the WSN nodes. Having a GPS on the MB is relatively
cheap, and the MB can also utilize its GPS to locate and collect the nodes after
deployment.
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Algorithm 2 MB Algorithm

1: loop

2: listen and update RecentPackets
3: if count(RecentPackets) > 0 then

4: target ← getTarget()
5: else

6: target ← getRandomTarget()
7: end if

8: navigate to target
9: anchor ← closestNodeTo(position)

10: broadcast anchor message
11: end loop

(2) The MB relocates to follow data generation in a best-effort
manner. This relocation reduces the length of data relaying paths in DTR to
be a couple of hops, improving both the reliability and the lifetime. To track the
data generation, MB utilizes the recent data packets that DTR routes to itself to
decide where to move to next. MB defaults to a random walk when there are no
packets, since this might indicate a disconnection of the network. Random walk
may help the MB to repair the partitioning and re-establish a connected network
where DTR can start delivering the data generated to the MB. Otherwise, MB
uses the getTarget() function to decide how to relocate based on the recently
received packets. We propose two heuristics for this function:

trailSource. Here, the MB inspects the source field of the data packets and
sets the relocation target to be the source of the packet generation (median of
the source locations). Although it seems like a reasonable approach, we show in
Section 5 that when the network is not regular (has holes in it) trailSource leads
to many improper handoffs and suffers severe performance penalties.

trailFlow. Here, the MB tries to go to the center of packet flow. In contrast
to trailSource that calculates the center of data generation, trailFlow calculates
the center of data forwarding from the singlehop neighbors of the MB. Since
packet forwarding is done over reliable edges, trailFlow directs the MB to avoid
the holes in the network implicitly (as a side benefit), so even in irregular and
sparse networks trailFlow ensures successful handoffs. Our simulation results in
Section 5 show that trailFlow consistently performs the best compared to the
other heuristics.

5 Simulation

5.1 Setup

Simulator. We built our simulator on top of the JProwler simulator [14] and
implemented support for mobility for JProwler. Our simulator is parametrized
extensively, so it is suitable for modeling and investigating other MB algorithms
quickly. Figure 3 shows a screenshot of our simulator. Our simulator and details
about our simulator implementation are available at http://www.cse.buffalo.edu/ubicomp/dataSpider/.
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Simulation setup. We set the simulation area as a 160m by 120m rect-
angular region with 300 mica2 nodes. We constrain the MB to this region and
assume that there are no significant obstacles to obstruct mobility within the
region. We model the data generation activity in the environment with a moving
disc to denote the ROI. The region of interest is a circle with 20m radius. All
WSN nodes covered by this disc generate data with a predetermined rate. The
nodes then try to forward this data to the MB if they have a valid next link.
A node buffers data if the channel is busy, or if it does not have a valid next
link—which may happen after an improper handoff. We leverage on work in [10]
to generate realistic human/animal like mobility patterns for the ROI.���� ������	�
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Fig. 3. A screenshot of the simulator. Dark circles are the data generating nodes,
and shaded (pink) circle is the ROI. MB is indicated by the tiny roomba picture
and arrows show the packet routes.

In order to address energy efficiency questions we keep track of energy use in
our simulation. Our simulator uses CSMA with BMAC low-power-listening [12]
for the MAC layer and the associated energy model to calculate the energy used
in each node. In our simulation we obtain fine grain information about packet
arrivals and noise and replace the approximate values used in [12] with these
values to better capture the energy use in each sensor node. Table 1 summarizes
the parameters used for the energy efficiency calculations.

Parameter Value

Radio sampling interval 0.1s

Energy cost of a packet transmission 7.62mJ

Energy cost of a packet reception 3.18mJ

Energy cost of LPL for one second 0.263mJ

Battery Capacity 27000J

Table 1. Parameters used for energy efficiency calculations

We ran each set of simulations for 72 simulation hours. Each simulation
includes an initial neighborhood discovery and initial flooding phase. Neighbor-
hood discovery phase reduces the disconnections and message losses as reliable
links are identified and each node discovers its neighbors. This neighborhood
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information is later utilized in performing indirect handoffs. We do include the
communication in this phase in our energy cost figures as well.

Protocols we compare with. We are primarily interested in evaluating the
data spider system which consists of DTR and the MB algorithms, trailSource
and trailFlow, described in Sections 3 and 4. For comparison, we also consider
three other protocols, namely, static, random, and salmon.

In the static protocol, the basestation is static and is located in the center of
the network. The data is routed to the based using a convergecast tree rooted
at the SB. As we discussed in the Introduction this scheme is prone to hotspots
around the SB, and also results in long multihop paths for data relaying.

The random protocol is similar to trailSource and trailFlow in that it also
uses the DTR protocol to reconfigure the data collection tree as the MB relo-
cates. However, as for the relocation algorithm, instead of trying to follow the
data generation, the random protocol prescribes relocating the MB to a random
location all the time. While this protocol avoids the hotspot issue (since it uses
an MB and DTR), it is prone to long multihop paths for data relaying as it does
not follow the data generation.

Salmon protocol uses the same MB algorithm we used in our previous work,
data salmon [6]. Salmon does not use DTR and constrains the relocation of
the MB to occur only along the edges of the existing tree. In other words, the
existing tree is not modified, except for the relocation of the root of the tree
from one node to one of the neighboring nodes (which is achieved by flipping the
direction of the edge between these two nodes). In this scheme, the MB chooses
the neighbor that forwards the majority of the traffic to relocate to. As our
simulation results exhibit, this scheme has problems with reliability (since only
one edge is modified, this constitutes a risk of single point of failure) and cannot
follow the data generation successfully (since the MB relocation is restricted to
the existing tree structure, MB needs take long detours when the ROI leaves the
current subtree for another subtree).

Metrics. We concentrate on three metrics to measure performance of the
system. The latency metric measures the average delay in packet deliveries, from
their generation time to their arrival to MB. The second metric, packet delivery
rate, is the ratio of the delivered packets to MB versus the number of packets
generated. The final metric is the estimated lifetime of the network. We define
the lifetime to be the time passed until the first node failure due to battery
depletion in the network. By utilizing the fine-grained energy-use information
from our simulation and the total energy stored in standard AA batteries, we
arrive to our estimated lifetime figures.

5.2 Results

We present our simulation results under the following categories.

Node density. We first investigate the effect of node density on the per-
formance. As the number of nodes increase, since the distance between anchor
nodes would be decreasing, we expect better connectivity of the network and
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reduced number of improper handoffs. Increased density also corresponds to in-
creased data rates and more contention reducing the lifetime of the network.
Figure 4 presents this axis of the investigation. We observe very high latencies
when node density is low. This is due to frequent disconnections. Packets are
buffered when handoffs can not be completed successfully and they are later re-
trieved on an opportunistic basis, but this results in high average latencies. Data
spider heuristics trailFlow and trailSource consistently outperform other proto-
cols with respect to packet deliveries and network lifetime. An interesting result
of this experiment is to show that even random mobility leads to better delivery
ratios than the static when the density is critically low. Random mobility leads
to worse delivery ratios when the density increases, yet it still leads to longer
lifetimes than static (recall that random still uses DTR for data collection).
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Fig. 4. Effect of number of nodes on performance

Indirect handoff. Here we quantify the performance improvement due
the indirect handoff extension. Our experiments in Figure 5 show that indirect
handoff provides better average latencies, and up-to 5% improvement in packet
delivery rates. The benefit of indirect handoff is most significant in expected
lifetime which is improved by 20% for low network density.
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Fig. 5. Effect of indirect handoff on performance

Speed of region of interest (ROI). The ability to track ROI is a signif-
icant advantage for data spider, but the performance of tracking is affected by
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the speed of ROI. In our experiments depicted in Figure 6 we investigate the
effect of speed of ROI to the performance. Since we use a fixed speed for MB,
increasing the speed of ROI makes tracking the data more difficult. As expected
static and random heuristics are not effected by the ROI speed. We observe
significant increase in average delay in trailSource heuristic. This increase is re-
lated to increased number of bad handoffs, which leads to partitions of network.
trailFlow avoids this problem as packets follow the network topology and the
MB follows the packets. Even with increased ROI speed, data spider algorithm
improves the lifetime of network up to 3 times over SB.
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Fig. 6. Effect of speed of region of interest on performance

Number of ROI. We next consider the effects of increasing number of
ROIs on the performance. As these ROIs move independently from each other,
the optimal location of MB would vary significantly and the static MB starts to
become a better alternative. Our simulation results are shown in Figure 7. We
observe the effect of disconnections in trailSource heuristic in this experiment as
well. The difference between data delivery rates decrease as data spider heuristics
can not follow all the ROIs at the same time. Lifetime of the network is also
inversely affected as the MB is constrained to a smaller region trying to follow
all ROIs simultaneously. With 4 ROIs, the performance of data spider is similar
to random MB in terms of network lifetime, which is still more than 100%
improvement over the SB.
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Fig. 7. Effect of number of region of interests on performance
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Multiple MBs. Figure 7 showed that increasing the number of ROIs re-
duced the ability of data spider to track them. Here we show how the increased
number of ROIs are better handled with multiple MBs. We test the performance
of data spider with multiple MBs in Figure 8. As we mentioned in the Intro-
duction, data spider extends readily to allow multiple MBs to share the same
network without any need to change the DTR or MB algorithms. In this experi-
ment neither the network nor the MBs are aware of the multiple MBs. However,
we still observe an emergent cooperation and division of labor leading to im-
proved performance. MBs partition the network since each node only has one
next node, moreover these partitions dynamically change over time due to MB
broadcasts. Even if all MBs converge to same anchor, the competition for data
allows MBs to diverge and cover different ROIs. We obtained these very promis-
ing results with data spider despite lack of explicit coordination. An interesting
research question is how to coordinate MBs in a cooperative manner to improve
performance even further. Recent studies focus on this direction [4].
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Fig. 8. Effect of number of MBs on performance with 4 independent ROIs.

6 Concluding Remarks

We presented an efficient holistic MB-based data collection system, data spider,
which consists of a dynamic tree reconfiguration protocol and an MB protocol.
While both protocols are simple and lightweight, combined they lead to signif-
icant improvements in the reliability and lifetime of data collection, especially
for monitoring applications with highly spatiotemporal data generation. We pro-
vided extensive simulation results evaluating the latency, cost, and network life-
time metrics of the data spider under a wide number of varying parameters.
We also analyzed the handoff connectivity requirements needed for performing
a proper handoff of the MB.

Although we focused on the data collection problem, our data spider frame-
work readily applies also to the pursuer-evader tracking problem by treating the
ROI as the evader and the MB as the pursuer. Our experiments showed that
the trail-flow algorithm for the MB manages to implicitly route the MB around
the holes, a desirable property for pursuer-evader tracking. Our experiments also
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showed that, in the data spider system, multiple MBs coexist nicely on the same
network to trail multiple ROIs without any explicit coordination or cooperation.
In future work we will investigate coordination and cooperation mechanisms of
multiple MBs for more efficient pursuer-evader tracking.
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