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AN EXTENSION OF DHH-ERDOS CONJECTURE ON
CYCLE-PLUS-TRIANGLE GRAPHS

Ding-Zhu Du* and Hung Quang Ngo*

Abstract. Consider n digoint triangles and a cycle on the 3n vertices of
the n triangles. In 1986, Du, Hsu, and Hwang conjectured that the union
of the n triangles and the cyde has independent numbe n. Soon later, Paul
Erdos improved it to a stronger version that every cycle-plus-triangle graph
is 3-colorable This conjecture was proved by H. Fleischner and M. Stiebitz.
In this note we want to give an extension of the above conjecture with an
application in switching networks.

1. INTRODUCTION

Consider n digoint triangles and a cycle on the 3n vertices of the n triangles
The union of the n triangles and the cyde is cdled a cyde-plus-triangle graph. In
1986, Du, Hsu, and Hwang [3] conjectured that every cycle-plus-triangle graph
has indegpendent number n, i.e., the maximum independent set contains n vertices
Soon later, Paul Erdos got interested in this conjecture and improved it to a Sronger
verson that every cycle-plustriangle graph is 3-colorable. Dueto Erdos promoti on
in his frequent traveing, this conjecture becomes quite well-known during the past
ten years. There were severd efforts[5, 1] to attack the conjecture and it wasfinally
proved by H. Fleischner and M. Stiebitz [6].

In this note, we want to give an extension of the above conjecture with an
goplication in switching networks.
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2. EXTENSON

Let us first consider alittle generd graphs. Ingead of a cyde, let us consider a
union of digoint cycles on the 3n vertices of the n triangles. That is, we consider a
graph G constructed by taking the union of n digjoint triangles and a disjount union
of cydeson the 3n vertices of the n triangle.

IsG dill 3-colorable? The answer isMAY BE NOT. Infact, thegraph in Figure
1is not 3-colorable since it contains a clique of size four. But it can be obtained
by taking union of four digoint triangles and a union of three cydes of sze four.

This example also shows that a similar conjecture made in [4] isfalse. The
conjecture is as follows: Consider a line graph G of a d-regular graph. Partition
the vertex st of G into digoint subsets of size exactly n withd n 24 —1
and for eech subset, condruct acliqueon it. Then the resulting graph G* is 2d — 1
vertex-colorable. In the above counterexample, we have d = 2 and n = 3. G
congsts of three cydes of size 4 and its vertices are divided into four subsets of
Sze exactly n. But, G* is not (2d — 1)-colorable

The graph in Figure 1 is 4-colorable. In generdl, is G 4-colorable? The answer
iISYES. Infadt, every vertex in G hasdegree four. It is well-known thet a connected
4-regular graph is4-colorable unlessit is acomplete grgph of order five[2]. Clearly,
G cannot have a connected component of size five. Therefore, GG is 4-colorable.

The above observaion suggests the following conj ecture.

1 4

FIG. 1. Not 3-colorable but 4-colorable.
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Conjecture 1. Consider a graph H with maximum degree m. Let L(H) be
the line graph of H. Divide all vertices of L(H) into disjount groups of size at most
n. Connect all vertices in each group into a clique. If m  n, then the resulting
graph is (m + n)-colorable.

The reader may have question on the coloring number m + n. Why do we use
m +n instead of m +n — 1? In fact, for the above example, we have m = 2 and
n = 3 and the resulting graph is (m + n — 1)-colorable. The following example
may provide an explanation.

Le H be a complete grgph of order four. Let a, b, c,d be vertices of H. The
line graph L(H) of H contans six vertices ab, cd, ac, bd, ad, bc. Now, we divide
them into three groups {ab, cd}, {ac,bd}, {ad,bc}. Connect every two vertices
in the same group with an edge. The reaulting graph G is a complete graph of
order six. Thus, it cannot be 5-colorable However, we can have m = 3, n = 3
and m+n—1=5(note: m n). Actudly, in this example, each group has
gze 2 (less than 3). Therefore, this is dso an example to explain why we need
condition m  n. In fad, if we remove the condition m  n, then the example
fits the condition m = 3 and n = 2. In this case, m + n = 5. However, G isnot
5-colorable.

Theorem 1. Conjecture 1 holds for m = 2 and 3.

Proof. 1t is awdl-known fact that every graph with maximum degree A > 3
must be (A + 1)-colorable and, furthermore, it is A-colorable unless the graph
contains a subgrgph isomorphic to the complete graph of order A + 1, i.e, a dique
of size A+1 [2]. Notethat the reulting grgph in Conjecture 1 has maximum degree
2m —1)4+n—-1. Form=2,(2(m—1)+n—1)+1=m-+n andfor m=3,
2(m —1)+n—1=m+n. Thus it suffices to show tha for m = 3, the resulting
graph does not contain a dique of size n + 4. For contradiction, suppose that the
resulting graph contains a dique @ of size n + 4. Since it has maximum degree
n + 3, the cligue @@ must be a connected component of it. Thus we may assume,
without loss of generdity, that the resulting graph itsdf is the dique Q. Now, we
want to prove that (2 cannot be obtained in the way described in Conjecture 1. To
do 0, we consider the problem of removing disjoint cliques of size a most n to
obtain a graph with maximum degree a most 2(m — 1) = 4. Since every vertex in
Q has degree m +n = n + 3, each removed clique has to have Sze n in order to
have degree n — 1 a each vertex. It follows tha n|(n +4). Sincen >m =3, we
must have n = 4. Thus, Q is aclique of size 8. Removing two digoint diques of
sze 4 from Q results in a graph P as shown in Figure 2. This graph P cannot be
the line graph L(H) of agraph H with maximum degree & most three. In fact, P
is4-regular. If P = L(H), then H must be 3-regular. So, esch vertex of P must



264 Ding-Zhu Du and Hung Quang Ngo

FIG. 2. Graph P.

be adjacent to four vertices which can be divided into two pars such that vertices
in the same pair are adjacent. However, thisis not true to P, a contradiction. m

Now, we propose a direct generdization of DHH-Erdos conjecture as follows

Conjecture 2. Consider a m-regular m-connected graph H. Let L(H) be the
line graph of H. Suppose all vertices of L(H) can be divided into disjount groups
of size exactly n. Add a clique of size n on vertices in each group. The resulting
graph is (m +mn — 2)~colorable.

Theresultsin [6, 5] show that this conjecture holds for m = 2.

3. AN APPLICATION TO SWITCHING NETWORKS

Conjecture 1 has an gpplication in switching networks. To see it, let us first
introduce some concepts i n switching networks.

A three-stage Clos network C(ny,ns,r1,r2,r3) consigs of 1 many ny x ra
croshars in the first stage, o many r; x rg crosdars in the second sage, and o
many r2 x ng crossars in the third stage. Every crossbar in the firg stage has an
outlet connected to an inlet of every crossbar in the second stage and every crossbar
in the second stage has an outlet connected to aninlet of every crossbar in the third
dage (Figure 3). There are totally 1 ny inlets in the first stage and totdly r3ns3
outlets in the third stage. Denote by I the set of dl r1n; inlets in the first gage
and by O the set of all r3ng outles in the third stage. Then a connection in a
three-stage Clos network is a par (z,y), where x € I and y € O. A route is
a path in the network joining an input crossbar (i.e, a crossbar in the fird gage)
to an output crossbar (i.e, a crossbar in the third stage) and a route r realizes a
connection (z,y) if = and y bdong to the input crossbar and the output crossbar

joined by r, respectively.



An Extension of DHH-Erdos Conjecture on Cycle-Plus-Triangle Graphs 265

[N ' I r '
i_l_ :1-2 ! \:/3 |r2 _\{{13
. |
o o o
® o L
o o o
! A ¢
I i | | —r
be e
2 I 1
al 4 T I3 y2 '3

FIG. 3. Threestage Clos network.

A set of connections is compatible if for every x € I, there ae & mog n,
connections involving « and for every y € O, there are & mog n3 connections
involving y. A configuration is a st of routes and it is compatible if every edge in
the network is used only once. A set of connections is said to be realizable if there
exists a compatible configuration which contains routes redizing al connections in
the set. A network issad to be rearrangeable if every compdible set of connections
isrealizable. It iswdl-known tha a three-stage Clos network C(ny,ng, r1,72,73)
is rearrangeable if and only if min(ny,n3)  ro.

A connection ¢ is said to be compatible with a comptible set C' of connections
if CU{c} isstill compatible. A route r is said to be compatible with a compdible
configuration R if R U {r} is gill compatible A network is sad to be strictly
nonblocking if for every compatible configuration R redizing a connection st C'
and every connection ¢ compatiblewith C, thereexigsarouter such thet r realizes ¢
and iscompatiblewith R. A three-gage Closnetwork C(ny,ns3, 11,79, 13) isstrictly
nonblocking if and only if m > n; + ng — 1.

Above concepts can be essily extended to one-to-many connections. A 1-to-k
connectionisa (k+1)-tuplc (z;y1,y2 - - ,yx), Wwherez € T and y1, y2, - - ,yx € O.

Note that for those y;'s lying in the same output crossbar, the path from z can
branch a that output crossbar to reach these y;'s. But for y;’s lying in different
output crossbars, the branching has to take place ether in the input crossbar or
a a center crossbar. It is wel-known [8] that if branching at imput crossbars is
dlowed, then C(n,m,r) = C(n,n,r,m,r) isrearrangeable for 1-to-k connections
if m > kn. However, the case tha imput switches do not have the branching
capabil ity remains an open problem. Hwang andLin [7] conjectured tha C(n, m, )
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is rearrangeable for 1 — to — 2 connections and meanwhile grictly nonblocking for
1-to-1 connection if m > 2n. This conjecture can be extended to asymmetric
three-stage Clos networks. In fect, this extension has connection to Conjecture 1.

Theorem 2. Suppose Conjecture 1 holds. If ro > ny +ns and n1 > ngs, then
C(n1,n3,71,72,13) IS rearrangeble for 1-to-2 connections.

Proof. Suppose {(z;; Yoi_1,Y2;)} IS a set of compatible 1-to-2 connections
That is, & most n; many z;'s are the same and at most n3 many y;’s are the same.

First, consider the case that for each 1-to-2 connection (zi; y2i—1, y2i), Y2i—1 #
y2:. Let H be the graph with vertex set O and edge set {(y2i—1, y2i)}. Then H has
maximum degree a most ns. Let L(H) be theline graph of H. Divideall vertices
of L(H) into disjoint groups such that two vertices (y2i—1, y2;) ad (yoj—1,y2;) ae
in the same group if and only if z; = x;. Thus, each group has size at most n;.
Connect dl verticesin each group into aclique. Since Conjecture 1 isassumed to be
true, the resulting graph is (n1+ng )-colorable. Notethat if two vertices (y2;—1, y2i)
and (y2j—1, y2;) aein the same color, then we must have x; # x;. Note that esch
vertex (yai—1, y2i ) represents a connection (x;; y2i—1, y2i ). Therefore, if we arrange
dl 1-to-2 connections in the same color to pass through the same middie switch,
then each input switch has @ mogt one connection to this middle switch. Moreover,
the middle switch has at most one connection to each output switch snce two 1-
to-2 connections have the same component in output switches mus be adjacent in
L(H). Therefore, if 79 > ny + n3, C(ny,ns3, r1,r9,73) IS rearrangesble for 1-to-2
connections.

Now, we consider the generd case If 12,1 = y2; for some 1-t0-2 connection
(x4 y2i—1, y2i), then we may add a new output switch and change y2; to the new
output switch. In this way, we can reduce the generd case to the fird case. [ ]

4. DiscussiION

The connection of Conjecture 1 to the rearrangeability for 1-to-2 connections
may suggest a generdization of Conjecture 1, corresponding to the rearrangeability
for 1-to-k connections

Let V4 and V> be two disoint sets of vertices. A (h,k)-bipartite hypergraph
(V1, Vo, E) is a hypergraph such that each hyper-edge e € E contains & most &
verticesin V7 and at most & vertices in V,. The degree of each vertex i sthe number
of hyper-edges conta ning the vertex. The generdization can be stated as follows:
Cond der a (1, k)-bipartite hypergraph G(V1, Va, E). Suppose esch vertex in Vi has
degree at most n and each vertex in V4 has degree & most m. If m  n, then G
is(n+1+ (k—1)(m — 1))-edge-colorable, i.e, dl hyper-edges of G can be in
(n+1+ (k—1)(m — 1)) colors such that any two hyper-edges in the same color
are not adjacent.
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Unfortunatdy, this generdization is false. The following is a conterexample.
Choose Vi = {I1,1I2, I3} and Vo = {01, Oy, -, Og}. Consider the following
edge set E:
(11;01702703)7 (11;047053 06)7 (11;07708709)7
(12;01704707)7 (12;O2aO5a 08)7 (12;03706709)5
(I3;01,05,08), (I3;04,04,0y), (I3;03,05, O7).

Then we have kK = m = n = 3. But, G is not 8-edge-colorable. In fact, the edge
graph of G is a complete graph of order 9.
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