New Bounds on a Hypercube Coloring Problem
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Abstract

In studying the scalability of optical networks, one problem which arises involves
coloring the vertices of the n-cube with as few colors as possible such that any two
vertices whose Hamming distance is at most k are colored differently. Determining the
exact value of xz(n), the minimum number of colors needed, appears to be a difficult
problem. In this note, we improve the known lower and upper bounds of xz(n) and

indicate the connection of this coloring problem to linear codes.
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1 Introduction

An n-cube (or n-dimensional hypercube) is a graph whose vertices are the vectors of the
n-dimensional vector space over the field GF(2). There is an edge between two vertices of
the n-cube whenever their Hamming distance is exactly 1, where the Hamming distance
between two vectors is the number of coordinates in which they differ. Given n and k,
the problem we consider is that of finding xj(n), the minimum number of colors needed
to color the vertices of the n-cube so that any two vertices at (Hamming) distance of at
most k have different colors. This problem originally arised in the study of the scalability
of optical networks [2].
It was shown by Wan [4] that

n+1 < xy(n) < 2Rt (1)

and it was conjectured that the upper bound is the truth, i.e.,
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Kim et al. [1] showed that
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The upper bounds in (1) and (2) are fairly tight. In (1), the upper and lower bounds
coincide when n + 1 is an exact power of 2, and the same is true for (2) when n is a power
of 2. However, the upper bounds in (3) and (4) are not very tight. In fact, when k = 2
and 3, they are already different from those of (1) and (2). A natural approach for getting
an upper bound for xj(n) is to find a valid coloring of the n-cube with as few colors as
possible. We shall use this idea and various properties of linear codes (to be introduced in
the next section) to give tighter bounds for general & which imply (1) when k£ = 2 and (2)
when £ = 3.



2 Main Results

We show the following.

Theorem 1 Lett = |£| and let (') denote Y1 (7). Then, when k is even, we have

>(7)+ [iJ () (51 - [51]) <o < bt

=0 I+

and when k is odd, we have
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Note that since
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the inequalities (1) and (2) are direct consequences of this theorem. In general, the bounds
in this theorem improve previous ones (3) and (4), especially, the upper bounds are much

better. In fact,
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our lower and upper bounds are close in some sense.

We first prove the lower bounds.



Given a valid coloring of the n-cube with parameters n and k using m colors, let S;,1 <
1 < m, be the set of vertices which are colored i. Note that each vertex of the n-cube is a
binary string of length n and for any two vertices u = ujus ... u, and v = v1v9...v, in S,
their Hamming distance d(u,v) = |{i : u; # v;}| is at least k + 1. Therefore, for each i, S;
forms a binary (n, |S;|, d;)-code for some d; > k + 1. (A binary (n,m,d)-code is a set of m
binary strings of length n such that the least Hamming distance between any two strings
in the set is d [3].) Let A(n,d) denote the largest size M such that a binary (n, M, d)-code

exists. Since A(n,d) is decresing in d, we have

i=1 i=1
Thus, we have on
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Moreover, it follows from Johnson bound(3] that
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When k = 2t, by (5) we obtain
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When k = 2t + 1, we note the relation A( 2t+1) = A(n+ 1,2t +2) (see [3]). Then by (5)

again,
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To show the upper bounds, let us first recall some concepts about linear code.
The set of all n-dimensional vectors over GF(2) forms an n-dimensional vector space,

which we denote by V,,(2). A code C' C V,,(2) is called a linear code if it is a linear subspace
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of V,,(2). Moreover, C is called a [n, m]-code if it has dimension m. If C also has minimum
distance d then it is called an [n,m,d]-code. The square brackets will automatically refer
to linear codes. An m x m matrix G is called a generator matriz of an [n,m]-code C if
its rows form a basis for C. Given an [n,m]-code C, an (n —m) X n matrix H is called a
parity check matriz for C if ¢ € C implies cHT = 0. From coding theory, we know that
specifying a linear code by using its generator matrix and using a parity check matrix are
equivalent. For a vector z € V3(n), the syndrome of z associated with a parity check matrix
H is defined to be synd(z) = zHT.

We next explain that if a linear [n,m, k + 1]-code exists, then xz(n) < 2"~™.

Given an [n,m,k + 1]-code C, the standard array of C is a 2"™™ x 2™ table where
each row is a (left) coset of C. This table is well defined since elements of C' form an
Abelian subgroup in V2(n) under addition (and the cosets of a group partition the group
uniformly). The first row of the standard array contains C itself. The first column of the
standard array contains the minimum weight elements from each coset. These are called
coset leaders. Each entry in the table is the sum of the codeword on the top of its column
and its coset leader. Since each pair of distinct codewords has Hamming distance at least
k 4+ 1, each pair of elements in the same row also has Hamming distance at least k + 1.
Thus, coloring each row of C’s standard array by a different color would give us a valid
coloring. The number of colors used is 2", which is the number of rows of C’s standard
array. Therefore, x;(n) <2"~™.

It is a basic fact from coding theory that all elements in the same row of the standard
array have the same syndrome and different rows have different syndromes. Therefore, we
can use its parity check matrix H to color each vector = € Va(n) with synd(z) = zH?T.

Now, we want to construct a linear [n,n — p, k + 1]-code where

n—1 n—1 n—1 n—1
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To do so, we employ the following result from [3].

Lemma 1 If H is an (n — m) X n matriz where any d — 1 columns of H are linearly
independent and there exist d linearly dependent columns in H, then H is the parity check

matriz of an [n,m,d]-code.

By Lemma 1, it suffices to build an p X n matrix H with the property that k£ + 1 is the

largest number d such that any d columns of H are linearly independent and there exist d



dependent columns. This H is actually the parity check matrix of an [n,n — p, k + 1]-code

Now, we describe a procedure for constructing a p X n parity check matrix H by choosing
its column vectors sequentially. The first column vector can be any non-zero vector. Suppose
we already have a set V of i vectors so that any k& of them are linearly independent. The
(i + 1) vector can be chosen as long as it is not in the span of any k£ — 1 vectors in V.
In other words, since we are working over the field GF(2), the new vector cannot be the
sum of any k& — 1 or fewer vectors in V. The total number of unallowable vectors is at
most (}) + (&) +...(,",) (this is an increasing function of i). Consequently, as long as
(1) + () +-..(, 1) <2 —1 then we can still add a new column to H. Note that

n—1 n—1 n—1
... 2P — 1.
Therefore, a p X n parity check matrix H can be constructed. It follows that

xi(n) < 2¢ = 2llos2((21)) I+

This inequality holds regardless of k& being odd or even and thus proves the upper bound
for the even k case. However, when k is odd we are able to do better.

Notice that if we add an even parity bit to each vector of Vo(n — 1) then we get half
of Va(n). Adding an odd parity bit would give us the other half. When & is odd, we just
proved that we can color the (n — 1)-cube using a = 91082 ((:Z3)J+1 colors so that if two
vertices have the same color then their distance is at least k. From this, we can obtain
a coloring of the n-cube as follows. We first add an even parity bit to each vertex of the
(n — 1)-cube, color them using a colors, and then add an odd parity bit and color them
using a completely different set of a colors. This is clearly a coloring of the n-cube using
2q = 2[10g2((’,;°j§))J+2 colors. What remains to be shown is that this coloring is valid with
parameters n and k.

For any vertex = of the n-cube, let ' be the vector obtained from z by deleting the
parity bit just added. By the way we constructed the coloring, if two vertices z and y of
the n-cube have the same color then d(z',y') > k, and the same type of parity bit (even
or odd) was added to them to get z and y. It is clear that if d(z',%') > k + 1, then
d(z,y) > k+ 1. If d(z',y') = k, then since k is odd, z' and 3’ must have had different bits
added . Consequently, d(x,y) = k+ 1. In other words, if two vertices = and y of the n-cube
have the same color then d(z,y) > k + 1, and so we had a valid coloring with parameters

n and k. This completes the proof of the theorem.



3 Concluding Remarks

The key for us to get a good coloring is to find a good parity check matrix H when k is
even. As we saw, the proof of Theorem 1 implicitly gave us an algorithm to construct H,
but it is still not very constructive. However, in the case k = 2 (and thus in case k = 3)
we can explicitly construct H. To do this, consider the Hamming code Hj(r), which is a
[2" —1,2" — 1 —r,3] code. Its parity check matrix H(r,2) has dimensions r x (2" —1). Let
r = [logy(n + 1)], so that 2" — 1 > n. If we remove the last 2" — 1 — n columns of H(r,2),
then we get a parity check matrix of an [n,n — [logy(n + 1)], 3] code. This code gives us
a coloring of the n-cube with parameters n and 2 using 2/1982("+11 ¢colors. This proves the
upper bound of (1).

Instead of the Johnson bound we used, we could have used other known upper bounds
for A(n,d) to give us lower bounds for xz(n) (e.g., the Plotkin bound, the Elias bound or
the Linear Programming bound). However, applying these other bounds doesn’t seem to

give us significantly better results.
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