
The Super-Voxel Library and Benchmark Tutorial

Chenliang Xu and Jason J. Corso
SUNY at Buffalo

{chenlian,jcorso}@buffalo.edu

8 May 2012 (corresponds to libsvx v 1.0)

This tutorial will guide you through the use of the various elements of libsvx: both the supervoxel segmentation
methods and the benchmark evaluation. To make this easy, we have included a short subset of a video sequence on
which we’ll work, which is taken from our labeled benchmark subset of xiph.org. Assume the frames of the input
video bus are extracted into two formats: ppm and png, which are placed at path/to/libsvx/example/frames png/ and
path/to/libsvx/example/frames ppm/. The video bus has 30 frames with the resolution 240x160.

We hope this tutorial is able to make it easy for you to learn how to use the library we’ve provided. Suggestions and
code improvements are quite welcome; email us!

1 Installation

Please follow the README file in the directories of each methods and benchmark code.

Put simply, there is code in path/to/libsvx/gbh/ and path/to/libsvx/swa/ that needs to be compiled (via provided make-
files). The code in path/to/libsvx/nystrom ncut/ and path/to/libsvx/svxbench/ are in Matlab with no mex’d code.

2 Example Usage

We include the sample usages of the library methods here. Assume the frames of the input video bus are extracted
into two formats: ppm and png, which are placed at path/to/libsvx/example/frames png/ and path/to/libsvx/example/
frames ppm/. The video soccer has 30 frames with the resolution 240x160.

2.1 Graph-based Hierarchical Segmentation (GBH)

Assume you are in path/to/libsvx/gbh/ and that you have successfully compiled the gbh executable..

To perform the segmentation, run the following command, which will output segmented frames into path/to/libsvx/
example/output gbh/ :

./gbh 5 200 100 0.5 20 ../example/frames_ppm ../example/output_gbh

This command should take about a few minutes to run.

The parameters of the gbh executable are fully explained in the README file in path/to/libsvx/gbh. In short, the
5 200 and 100 are the merging thresholds (roughly put, larger thresholds means larger supervoxels). The 0.5 is the
Gaussian smoothing parameter. And the 20 is the desired levels in the hierarchy (with this parameter set to 0, we have
GB segmentation, which is explained next).

The output of the folder is organized with each hierarchy level having its own newly created subdirectory. In our
case, there will be new directories 00 through 20. In each of these directories is the supervoxel output as images with
frames number similar to the input frames. Separate supervoxels are colored with unique RGB values.

1

xiph.org


2.2 Graph-based Segmentation (GB)

Here, we treat the GB as one special case of GBH, where the hierarchy level is equal to zero.

Again, assume you are in path/to/libsvx/gbh. Run the following command, which will output the segmented frames
into path/to/libsvx/example/output gb/ :

./gbh 100 0 100 0.5 0 ../example/frames_ppm ../example/output_gb

This code will run much faster.

The second parameter is disregarded, as it is only for the hierarchical version.

2.3 Nyström Normalized Cuts (Nyström)

Open MATLAB (we use R2011b). Assume you are in path/to/libsvx/nystrom ncut.

Run the following command in MATLAB command shell, which will output results into path/to/libsvx/example/
output nys. Note, this command, requires the Optimization Toolbox and will automatically open a matlabpool.

Nystrom_video(‘../example/frames_ppm‘,‘../example/output_nys‘,50,200,50,20,20,0)

Note: The algorithm requires large memory and takes long time to compute. Please watch your system monitor.

The parameters to this function are explained in the script itself. Briefly, they specify, the input and output paths, the
desired number of supervoxels (the higher this number, the longer it will take to compute), number of Nyström sample
points (the higher the number the more accurate the approximation is and yet the more memory that is required), the
number of eigenvectors to compute for the embedding, the next two are the importance of the Euclidean distance and
the color space, and the last one specifies whether or not to use KNN for the output (0 is only use kmeans and 1 is use
10% kmeans and then do KNN, which will generate the output faster but is an approximation to the full kmeans).

2.4 Segmentation by Weighted Aggregation (SWA)

Assume you are in path/to/libsvx/swa and you have compiled the swa binary.

First of all, please note the config file path/to/libsvx/example/swa config/config example.txt that has been created for
this tutorial. Its contents are

InputSequence=../example/frames_png/%05d.png
Frames=30-30
NumOfLayers=12
MaxStCubeSize=100
VizLayer=5-12
VizFileName=../example/output_swa

Full description of these parameters are provided in the README and the swa.cpp source file. In short, they indicate
what to run only, no parameters.

Then run the following command, which will create the supervoxel output in path/to/libsvx/example/output swa.

./swa ../example/swa_config/config_example.txt

The output is stored in a similar manner as the other hierarchical methods above.

2



3 Supervoxel Benchmark

The supervoxel benchmark is a separate part the supervoxel library that is able to compute quantitative scoring metrics
against human-drown segmentations. Our CVPR 2012 paper thoroughly describes the metrics that are included in
the benchmark. Here, we show you how to run the previously computed results from the tutorial (above) through the
benchmark and generate scores.

To run the benchmark, you must compute the results for a complete data set, say the Chen xiph.org data set, which is
included with the benchmark download. And, these results must be computed with a varying set of parameters, so that
we can generate the output curves (corresponding to different supervoxel numbers per video).

The next paragraph describes how to use a provided shell script to generate a full set of results. Alternatively, you can
download them from our website (if you just want to test the benchmark code) at http://www.cse.buffalo.
edu/˜jcorso/extdelivery/libsvx_example_full.tar.bz, and skip the next paragraph. Be sure to
place them in path/to/libsvx/example/chen swa.

Here we show an example of the SWA method. We have provided a script in path/to/libsvx/example/compute chen swa.bash,
which you should execute (it is a bash-shell executable script) from inside of the path/to/libsvx/example directory. This
will take about 90 minutes and 10GB memory to run—it computes the SWA segmentation over all the videos. The
program will create a directory in path/to/libsvx/example/chen swa, which contains all 8 videos in Chen’s data set with
the video name as the name of the directory. In each video directory, you will see subdirectories 07 through 12, which
contain the segmentation results of level 07 trough level 12 respectively.

Once you have the segmentation results ready, you can run the benchmark code to generate the comparative figures.
Following the above example, you need to set

path_input_method = ’../example/chen_swa’;
path_ppm = ’dataset/Chen_ppm’;
dataset = 1;
output_path = ’../example/chen_swa_benchmark’;

in path/to/libsvx/svxbench/EVALUATION.m. Then run the script inside the Matlab command shell. It will take an hour
or so to run (depends on the number of supervoxels); there are a lot of methods in the evaluation. It will save all of the
computed figures and metrics into the output path that is specified in the script.

We use the GBH method as another example. The script is in path/to/libsvx/example/compute chen gbh.bash. This
will take about 60 minutes and 4GB memory to run—it computes the GBH segmentation over all the videos. Note
different parameter settings require different time to compute, and will generate different results. To make it run faster,
we set the following

./gbh 5 500 200 0.5 20 /path/to/input /path/to/output

in our script for all videos. The program will create a directory in path/to/libsvx/example/chen gbh, which contains
all 8 videos in Chen’s data set with the video name as the name of the directory. In each video directory, you will see
subdirectories 00 through 20, which contain the segmentation results of level 00 (oversegmentation) through level 20
respectively.

Once you have the segmentation results ready, you can again run the benchmark code to generate the comparative
figures. You need to set

path_input_method = ’../example/chen_gbh’;
path_ppm = ’dataset/Chen_ppm’;
dataset = 1;
output_path = ’../example/chen_gbh_benchmark’;

in path/to/libsvx/svxbench/EVALUATION.m. Then run the script.

3

http://www.cse.buffalo.edu/~jcorso/extdelivery/libsvx_example_full.tar.bz
http://www.cse.buffalo.edu/~jcorso/extdelivery/libsvx_example_full.tar.bz


4 Final Remarks

We hope you have found this tutorial to be a gentle introduction to the library and benchmark. We, of course, also
hope you are able to make good use of the code. If you run into any problems, have any suggestions, or make any
improvements, please contact us via email. We will periodically release updates.

The segmentation methods provided herein are implemented to the best of our abilities to match the original works.
Many of the methods are parameter dependent and require large amounts of memory and compute time to run. We are
working on a novel streaming method that will be able to get around these hurdles, or at least some of them, and will
release it when complete.

4


