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Abstract. Lower Back Pain (LBP) is the second most common neurologicalail-
ment in the United States after the headache. It costs over $100 Billion annually
in treatment and related rehabilitation costs including worker compensation. In
fact, it is the most common reason for lost wages and missed work days. Degen-
erative Disc Disease (DDD) is the major abnormality that causes LBP. Moreover,
Magnetic Resonance Imaging (MRI) test is the main clinically approved non-
invasive imaging modality for the diagnosis of DDD. However, there is over 50%
inter- and intra-observer variability in the MRI interpretation that urges the need
for standardized mechanisms in MRI interpretation. In thispaper, we propose a
Computer Aided Diagnosis (CAD) System for Disc Degenerative Disease detec-
tion from clinical Magnetic Resonance Imaging (MRI). This CAD produces a
reproducible and clinically accurate diagnosis of the DDD for lumbar spine. We
design a classifier to automatically detect degenerated disc (also clinically known
as Herniation) using shape potentials. We extract these shape potentials by jointly
applying an active shape model (ASM) and a gradient vector flow snake model
(GVF-snake). The ASM roughly segments the disc by the detection of a certain
point distribution around the disc. Then, we use this point distribution to initial-
ize a GVF-snake model to delineate the posterior disc segment. We then extract
the set of shape potentials for our Gibbs-based classifier. The whole work flow is
fully automated given the full clinical MRI. We validate ourmodel on 65 clinical
MRI cases (6 discs each) and achieve an average of 93.9% classification accu-
racy. Our shape-based classifier is superior in classification accuracy compared
to the state-of-the-art work on this problem that reports 86% and 91% on 34 and
33 cases, respectively.
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1 Introduction

Low Back Pain has a major economic impact in the United Stateswith over $100 Billion
annually in related treatment and rehabilitation costs [1]. It is the most common reason
why patients visit a physician office besides the common cold. In fact, it is the most
common reason patients visited the emergency room in the U.S. in 2008. There were
over 3.4 Million emergency rooms visits, an average of 9400 visits a day, specifically
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for Low Back Pain [2]. Low back Pain has high societal impact as it disrupts individ-
uals lives impacting over 80% of people [3]. Moreover, it is the most common reason
behind job-related disability and is the second most commonneurological ailment after
headache [3]. It is a prominent chronic disease that causes major disruption in people’s
lives.

Nevertheless, the diagnostic decision is highly subjective and relies on two ma-
jor factors: the radiologist’s diagnostic report and the neurological exam findings. The
most common current clinically approved standard for Low Back Pain diagnosis is the
Magnetic Resonance Imaging (MRI) procedure. However, individual radiologists inter-
preting clinical Magnetic Resonance Imaging (MRI) studiesare highly subjective with
over 50% inter-observer variation [4]. This high inter-radiologist variation significantly
influences therapeutic treatment, medical insurance decision makers, and judiciary per-
sonnel decisions. On the other hand, the clinical diagnosisis highly variable that nothing
certain can be said regarding the clinical diagnosis of Low Back Pain [5]. Providing a
reproducible computerized MRI interpretation may reduce the existing variability, and
hence, standardize the diagnostic decisions that lead to reduced costs on unnecessary
treatment.

(a) Axial Model (b) Axial MRI (c) Sagittal MRI

Fig. 1. (a) A right-sided disc herniation illustrative model [6]. (b)
Axial view (bottom-up) MRI of a right-sided disc herniationfrom
our data. (c) Corresponding sagittal view of the herniated disc from
our dataset.

Surprisingly, there is no
CAD system for the
lumbar spine that yet
has clinical applicabil-
ity. We are building
our system motivated
by the clinical practice
of lumbar diagnosis. In
this paper, we propose
a reliable, robust, and
accurate diagnosis for
disc herniation which is
the main condition that
causes failed low back
syndrome. We, however,
point out that the nomenclature has been a controversial issue in spine diseases which is
outside the scope of this paper. We target the problem of the leak of the nucleus pulpo-
sus (as shown in Fig. 1) that causes pressure on the nerve rootresulting in the pain and
numbness to the patient where the pain, most of the time, irritates to the knees causing
major disruption of the patients life. We use the nomenclature of Fardon et al [7] that
has been endorsed by the major American and European radiologists associations in-
cluding ASSR, ASNR, AANS, CNS, ESNR, and many others. For therest of this paper,
we call this condition as Herniation.

Disc herniation always occurs in the posterior segment of the disc. The inner gel-
like material of the disc, nucleus pulposus, leaks out pressing on a nerve root through a
tear in the fibrous wall of the disc, annulus fibrosus [8], as illustrated in Fig. 1, where we
show an axial illustrative model and a corresponding clinical MRI (from our dataset)
for a right-sided disc herniation with both the axial and sagittal views.
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Shape of the posterior segment of the disc, from the sagittalview, is the primary
diagnostic tool for the radiologist. The axial view is used for confirmation and for quan-
tification. Working in the sagittal view, our method extracts information of the posterior
segment of the disc in a two-step process. First, we use an active shape model to roughly
localize a point distribution for the disc body. Then, we have a GVF-snake to delineate
the posterior segment of the disc using the outcome of the ASMas its initialization. Be-
cause the ASM is a linear model and captures Gaussian point distributions, we add the
GVF-snake step to delineate the non-linear shape of the discposterior segment which is
the main technical innovation in this paper. We validate ourmethod on a clinical dataset
of sixty-five cases and achieve over 93% average classification accuracy.

We also compare our results to the most recent work on disc herniation diagnosis
by Alomari et al [9, 10] that jointly model shape and intensity and we substantially
outperform their results. Moreover, our shape-based classifier outperforms the recent
work of Michopoulou et al [11] which is based on an intensity-based classifier. Both
recent works test on 33 and 34 cases with an average herniation detection accuracy of
91% and 88%, respectively. We validate our model on substantially variable dataset
of 65 cases and achieve better accuracy over 93%. Many researchers have proposed
methods for the diagnosis of certain vertebral column abnormalities. Bounds et al [12]
utilized a neural network for the diagnosis of back pain and sciatica. Sciatica might be
caused by lumbar disc Herniation as well as many other reasons. They have three groups
of doctors to perform diagnosis as their validation mechanism. They claimed a better
accuracy than the doctors in the diagnosis. However, the lack of data prohibited them
from full validation of their system. Similarly, Vaughn [13] conducted a research study
on using neural network for assisting orthopedic surgeons in the diagnosis of lower
back pain. They classified LBP into three broad clinical categories: Simple Low Back
Pain (SLBP), Root Pain (ROOTP), and Abnormal Illness Behavior (AIB) and about
200 cases were collected over the period of 2 years with diagnosis from radiologists.
They used 25 features to train the Neural Network (NN) including symptoms clinical
assessment results. The NN achieved 99% of training accuracy and 78.5% of testing
accuracy. This clearly shows training data overfitting.

Tsai et al [14] used geometrical features (shape, size and location) to diagnose herni-
ation from 3D MRI and CT axial (transverse sections) volumesof the discs. In contrast,
we do not presume the availability of the full volume axial view as it is not a clini-
cal standard. They patented their work as a visualization tool for educational purposes.
Recently, Michopoulou et al [11] applied three variations of fuzzy c-means (FCM) to
perform atlas-based disc segmentation. Then, they used this segmentation for classifi-
cation of the disc as either a normal or degenerative disc. They used an intensity-based
Bayesian classifier and achieved 86%-88% classification accuracy on 34 cases (five
discs each) based on their semi-automatic segmentation of the disc. Similarly, Alomari
et al [9, 10] proposed utilizing a shape and an intensity-based classifier that utilizes an
active shape model to extract the shape potentials. However, because the ASM cannot
capture the non-linearly shaped posterior segment of the herniated disc, they achieved
about 91% on 33 clinical cases. We extend both these works andpresent our technical
novelty by concentrating on the posterior segment of the disc and capturing that with
an additional GVF-snake model on top of the ASM. Furthermore, we reduce the effect
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of intensity-based information due to the signal intensityinhomogeneity with clinical
MRI. We also significantly add variability in the dataset by validating our joint model
on 65 clinical cases as opposed to 33 and 34 cases. Furthermore, we achieved an aver-
age of 93% accuracy which substantially outperforms both state-of-the-art results given
the dataset size difference.

2 Proposed Method

Fig. 2. Labeling lumbar
discs in a sagittal T2-
weighted MRI [15, 16].

Our approach has four steps: Disc Localization, Disc Segmen-
tation, Herniation Delineation, and Herniation Classification.
This section explains each step:
Disc Localization: The system automatically locates the mid-
dle sagittal slice from the MRI volume by index. Then our auto-
matic method starts by a localization step that provides a point
inside each disc using the two-level probabilistic model pro-
posed by Corso et al [15, 16]. Their model labels the set of
discs with high level labelsD = {d1, d2, . . . , d6} where each
di = (xi, yi)

T is the coordinates of the disc point (some point
in the disc). They solve the optimization problem:

D
∗ = argmax

D

∑

L

P (L, D|I) = argmax
D

∑

L

P (L|D, I)P (D)

(1)

whereL = {li, ∀i ∈ L} is a set of auxiliary variables, called disc-label variables that
are introduced to inferD from the sagittal image. Each disc-label variable can take a
value of{−1,+1} for non-disc or disc, respectively. The disc-labels make itplausible
to separate the disc variables from the image intensities,i.e., the disc-labelL variables
capture the local pixel-level intensity models while the disc variablesD capture the
high-level geometric and contextual models of the full set of discs. The optimization
is solved with a generalized expectation minimization (gEM) algorithm [15, 16]. Fig. 2
shows a lumbar sagittal view with labeled discs. Then we obtain a fixed window of
60x120 pixels around each point. This sub-image size is enough to provide the whole
disc region for each of the discs connected to the five lumbar vertebrae as shown in
Fig. 2.
Disc Segmentation:We use an active shape model [17] for roughly segmenting the
disc body boundary. This step finds the rough shape of the discbody regardless of the
herniated (posterior) part. To prepare the training data, we manually select the image
slice where herniation is most obvious. Then, we manually mark nine landmark points
according to the map shown in Fig. 3. Specifying these landmarks locations is only
based on our expertise in the disc segmentation. We name these landmark points from
k1 to k9. Similar to [17], we initially calculate the mean shapex̄ = 1

N

∑N

1 x where
N is the size of the training data. Then each disc shapexi, wherei ∈ {1, . . . , N},
is recursively aligned to the mean shapex̄ using generalized Procrustes Analysis to
remove translational, rotational, and isotropic scaling from the shape.
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(a) Normal Model (b) Herniated Model

Fig. 3. Illustrative Model [sagittal view] for (a) clinically normal disc (b) herniated disc showing
the point distribution (k1−k9) as well as a contour (yellow) that delineates the edge map between
pointsk1 andk9. This figure shows the irregular shape of the normal disc.

Then, we model the remaining variance around the mean shape with principal com-
ponents analysis (PCA) to extract the eigenvectors of the covariance matrix associated
with 98% of the remaining point position variance accordingto the standard method for
deriving the ASM’s linear shape representation.

(a) Normal (b) Herniated

Fig. 4. Feature image result of the range filterR for
(a) Normal disc (b) Herniated disc. The ASM point
distribution is shown according to the map in Fig 3.

However, we do not use the orig-
inal MRI image for training the
ASM. Rather, we utilize a feature
imageI that enhances the disc shape
by emphasizing the boundaries of
the disc and the Thecal Sac (the ex-
tension of the spinal canal at the lum-
bar level [8]). We produceI by ap-
plying a range filterR on the pixel-
wise addition of the normalized co-
registered T1- and T2-weighted pro-
tocols of the sagittal imagesI =
R(T1 + T2) whereT1 andT2 are the normalized T1- and T2-weighted MRI images
for the same case. These two images are manually co-registered during the acquisition
of the MRI in the clinical standard.R is the range filter operator where the intensity lev-
els in each 3x3 window are replaced by the range value (maximum - minimum) in that
window. This operatorR has high values in abrupt-change regions and small values in
smooth regions. Fig. 4 shows the features imagesI for a normal- and a herniated-disc.
The ASM landmark points are also shown in the figure to clarifythe ASM land-marking
step.

To apply ASM for detection of the point distribution of the disc body boundary, we
apply the mean shapēx around the disc point produced by the localization step. Then,
we allow the ASM to converge and obtain the boundary.

We apply the GVF-snake by initializing its contour (to the line connecting the two
pointsk1 andk9). Figure 5 show two examples of the convergence of the GVF-snake
for both a normal disc (Fig. 5(a)) and a herniated one (Fig. 5(b)). The figure also shows
the normalized gradient vector field for the sub-image as well as a zoomed GVF field
for the area of interest (posterior part of the disc).
Herniation Delineation: The ASM segmentation of the disc cannot capture the in-
herent variations produced by the disc herniation at the posterior segment of the disc.
Furthermore, we seek for a single model for the disc regardless whether it is herniated
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or not. Thus, we use an active contour to delineate the posterior segment of the disc. We
select the GVF-snake proposed by Xu and Prince [18] because it has been proved to
move toward desired image properties such as edges including concavities. GVF-snake
is the parametric curve that solves:

xt(s, t) = αx′′(s, t)− βx′′′′(s, t) + v (2)

whereα andβ are weighting parameters that control the contour’s tension and rigid-
ity, respectively.x′′ andx′′′′ are the second and fourth derivatives, respectively, ofx.
v(x, y) is the gradient vector flow (GVF),s ∈ [0, 1], andt is time component to make
a dynamic snake curve fromx(s) yieldingx(s, t).

GVF-snake requires an edge map that is a binary image highlighting the desired fea-
tures (edges) of the image. Most researchers use Canny edge detector or Sobel operator
on the original image such as [19] for liver segmentation. Wepresent the GVF-snake
with a canny edge map applied on our feature imageI.

(a) Normal (b) Abnormal

Fig. 5. (Top-left) Shows the resulting GVF-contour for (a) normal (b) abnormal, on T2-weighted
image. (Top-right) The corresponding normalized GVF field showing the two initialization land-
marksk1 andk9. (Bottom) A zoomed version of the GVF field to clearly show thevectors.

Herniation Classification: We design a binary Bayesian classifier:

n∗ = argmax
n

P (n|S) (3)

wheren is a binary random variable stating whether it is a herniatedor a normal disc,
S incorporates shape features extracted from both the GVF-snake and the ASM conver-
gence. We utilize a Gibbs distribution with two shape potentials:

P (n|S) =
1

Z[n]
exp−[α1US1+α2US2] (4)

whereS represents the shape features extracted from both the ASM convergence and
the GVF-snake,Z[n] is the normalization factor of the Gibbs distribution,α1 andα2

are tuning parameters. We define two shape potentials: 1)US1 models the GVF-snake
delineation for the posterior segment of the disc. 2)US2 models the major axis of the
ASM converged disc shape.
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Table 1: Cross Validation Results: Each row
tests randomly selected 35 cases.

Set L5-S1 L4-5 L3-4L2-3 L1-2 T12-L1Accuracy
1 32 32 34 34 35 34 95.7%
2 33 32 32 31 34 35 93.8%
3 33 34 32 33 33 34 94.8%
4 31 30 32 33 33 34 91.9%
5 31 32 32 33 34 33 92.9%
6 33 32 32 31 32 33 91.9%
7 33 32 34 34 33 33 94.8%
8 30 31 32 31 34 33 91.0%
9 30 33 34 34 35 35 95.7%
10 32 33 34 34 34 35 96.2%
(%) 90.9 91.7 93.793.7 96.3 96.9 -

Average Accuracy 93.9%

Table 2: Calculation of specificity
(96.6%) and sensitivity (86.4%).

Gold standard
Herniated Normal

R
es

ul
t Herniated170 (TP) 53 (FP)

Normal 25 (FN) 652 (TN)

We extract the first shape potentialUS1 from the GVF-snake delineation of the pos-
terior disc segment. The longer the contour, the more likelyit delineates a herniated
segment as shown in Fig. 5 by the yellow line between the pointsk1 andk9. To capture
the length of the GVF-snake contour, we model the number of points that are sampled
by the final GVF-contour. The GVF-snake interpolates the pixels by having a maximum
of two pixels between each point. Thus, we define:

US1 =
(e1 − µe1 )

2

2σ2
e1

(5)

wheree1 is the number of interpolated points along the delineated GVF contour,µe1

σ2
e1

are the expected and the variance of the interpolated pointson the GVF-contour,
respectively. We estimate bothµe1 andσ2

e1
from the training data.

The secondary shape potential,US2, is motivated by the clinical observation that the
herniated disc collapses due to the leak of the nucleus pulposus causing average length-
ening in the major axis of the disc as shown in Fig. 1. We utilize this by incorporating
this second shape potentialUS2:

US2 =
(e2 − µe2 )

2

2σ2
e2

(6)

wheree2 is the disc major axis length,µe2 is the expected major axis length of the disc,
σ2
e2

is the variance of the major axis length of the disc. We learn bothµe2 andσ2
e2

from
the training data. We definee2 by:

e2 =
∣

∣

k1 + k9

2
− k5

∣

∣

2
(7)

wherek1, k5, andk9 are the location coordinates of points 1, 5, and 9, respectively, as
shown in Fig. 4. The distancee2 roughly measures the major disc axis length subtracting
the average location of the right end pointsk1 andk9 and the left end pointk5.
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3 Data and Results

Our clinical MRI dataset is captured by a Philips 3-Tesla scanner according to the clini-
cal standard. Each case contains manually co-registered two sagittal views (T1- and T2-
weighted) as well as six axial T1-weighted slices for each disc. We use the clinical di-
agnosis reports to obtain our diagnosis gold standard. We validate our proposed method
on 65 subjects with ages of 23 to 76 years old and with various types of abnormalities.
We perform a cross-validation experiment where we leave 35 cases for testing and use
the remaining 30 for training. We perform 10 rounds and each time, we randomly select
the training and testing cases. We define the accuracy in eachround (row in the Table 1)
as the sum of correctly classified discsAccuracyi = (1− 1

M

∑K

j=1 |gij − nij |)∗100%
wherei is the lumbar disc level,1 ≤ i ≤ 6, M is the testing set size in each round (35
cases).

Table 1 shows the classification results from the cross validation experiment. We
achieve an average of 93.9% accuracy on disc diagnosis. Eachrow in the table repre-
sents one round of the cross-validation. Thus, it represents 35 cases with 6 discs each
case. We show the number of correctly classified discs at eachdisc level (column) out
of 35 discs. We further compute the overall specificity and sensitivity where:

Specificity =
TN

TN + FP
(8)

Sensitivity =
TP

TP + FN
(9)

where FP is the number of false positives (normal discs diagnosed as herniated), TP is
the number of true positives (correctly diagnosed herniated discs), FN is the number of
false negatives (misclassified herniated discs), and TN is the number of true negatives
(correctly classified normal discs). Table 2 shows another cross validation experiment
with 15 randomly selected cases for 10 rounds. This makes 15 x6 (discs) x 10 (rounds)=
900 discs total (including repetitions). Within this crossvalidation experiment, there is
a total of 78 misclassified discs: 25 herniated (false negatives) and 53 normal (false pos-
itives) as shown in Table 2. We archive an overall specificityover 92% and sensitivity
over 87%.

Fig. 6 shows four examples from our dataset. It shows the convergence of the ASM
point distribution (red dots and the linear connections) aswell as the GVF-snake de-
lineation (yellow curve). On the other hand, we compare our classification results to
a Bayesian classifier that only models the disc appearance toshow the effectiveness of
modeling the shape. We run the same experiment with the same cases of Table 1 and ob-
tain around 80% average classification accuracy. We justifythat by the fact that despite
Herniated discs produce lower intensity levels; in general, the difference in intensity
with the normal disc is not enough to classify herniated and normal discs. However, a
Bayesian intensity-based classifier can be useful for otherdiseases such as disc desic-
cation [20]. Fig. 6(c) shows a sample Herniated disc, with high intensity value, that was
misclassified by the intensity-based classifier but correctly classified with our shape-
based classifier.
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(a) Normal

(b) Herniated (Left) high intensity, (Right) Low
intensity

Fig. 6. Resulting ASM convergence and GVF-snake delineation for two normal cases and two
abnormal ones.

4 Conclusion

We proposed a method for herniation diagnosis from lumbar area clinical MRI. We
utilize a coordinated active shape and a gradient vector flowactive contour models
to extract shape features for detection of herniation. We use a Bayesian classifier and
utilize a Gibbs-based distribution with shape potentials.We validate our method on a set
of sixty five clinical MRI cases. We achieve an average of 93.9% classification accuracy
with specificity 96.6% and sensitivity of 86.4%. We also compared our results with the
two state-of-the-art work and substantially outperform both of them due to our features
that encompass the benefits of both works into a more robust classification model.
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