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Abstract. Lower Back Pain (LBP) is the second most common neurologital
ment in the United States after the headache. It costs 0@ Billion annually
in treatment and related rehabilitation costs includingkso compensation. In
fact, it is the most common reason for lost wages and missekl days. Degen-
erative Disc Disease (DDD) is the major abnormality thatses_BP. Moreover,
Magnetic Resonance Imaging (MRI) test is the main clinjcalbproved non-
invasive imaging modality for the diagnosis of DDD. Howeuere is over 50%
inter- and intra-observer variability in the MRI interpa&ibn that urges the need
for standardized mechanisms in MRI interpretation. In ffl@per, we propose a
Computer Aided Diagnosis (CAD) System for Disc DegeneeaiNsease detec-
tion from clinical Magnetic Resonance Imaging (MRI). Thi&\Q produces a
reproducible and clinically accurate diagnosis of the DDIfimbar spine. We
design a classifier to automatically detect degenerated@iso clinically known
as Herniation) using shape potentials. We extract theqeeghatentials by jointly
applying an active shape model (ASM) and a gradient vector $lsake model
(GVF-snake). The ASM roughly segments the disc by the detectf a certain
point distribution around the disc. Then, we use this poistridution to initial-
ize a GVF-snake model to delineate the posterior disc segiénthen extract
the set of shape potentials for our Gibbs-based classifiervilhole work flow is
fully automated given the full clinical MRI. We validate oonodel on 65 clinical
MRI cases (6 discs each) and achieve an average of 93.9%ficktisn accu-
racy. Our shape-based classifier is superior in classiicaccuracy compared
to the state-of-the-art work on this problem that repor@®&&thd 91% on 34 and
33 cases, respectively.
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1 Introduction

Low Back Pain has a major economic impact in the United Staithsover $100 Billion
annually in related treatment and rehabilitation costslfi$ the most common reason
why patients visit a physician office besides the common.doldact, it is the most
common reason patients visited the emergency room in theit Z008. There were
over 3.4 Million emergency rooms visits, an average of 9480s/a day, specifically
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for Low Back Pain [2]. Low back Pain has high societal impacttalisrupts individ-
uals lives impacting over 80% of people [3]. Moreover, ithe imost common reason
behind job-related disability and is the second most comneumological ailment after
headache [3]. It is a prominent chronic disease that cauags glisruption in people’s
lives.

Nevertheless, the diagnostic decision is highly subjectiad relies on two ma-
jor factors: the radiologist’s diagnostic report and thanséogical exam findings. The
most common current clinically approved standard for LowBRain diagnosis is the
Magnetic Resonance Imaging (MRI) procedure. Howeveryiddal radiologists inter-
preting clinical Magnetic Resonance Imaging (MRI) studies highly subjective with
over 50% inter-observer variation [4]. This high interdi@dgist variation significantly
influences therapeutic treatment, medical insuranceideaisakers, and judiciary per-
sonnel decisions. On the other hand, the clinical diagn®kighly variable that nothing
certain can be said regarding the clinical diagnosis of L@agkBPain [5]. Providing a
reproducible computerized MRI interpretation may reddneexisting variability, and
hence, standardize the diagnostic decisions that leadit@eel costs on unnecessary
treatment.

Surprisingly, there is no
CAD system for the
lumbar spine that yet
has clinical applicabil-
ity. We are building
our system motivated
by the clinical practice
of lumbar diagnosis. In
this paper, we propose =
a re|iab|e, robust, and (a) Axial Model (b) Axial MRI (c) Sagittal MRI
accurate diagnosis for

disc herniation which is Fig. 1. (a) A right-sided disc herniation illustrative model [6h)(
the main condition that AXial view (bottom-up) MRI of a right-sided disc herniatidrom
causes failed low backourdata. (c) Corresponding sagittal view of the herniaisd filom

syndrome. We, however,°!" dataset.

point out that the nomenclature has been a controversia issspine diseases which is
outside the scope of this paper. We target the problem oktiledf the nucleus pulpo-
sus (as shown in Fig. 1) that causes pressure on the nerveesoidting in the pain and
numbness to the patient where the pain, most of the tim&gtes to the knees causing
major disruption of the patients life. We use the nomencéati Fardon et al [7] that
has been endorsed by the major American and European rgiitsl@ssociations in-
cluding ASSR, ASNR, AANS, CNS, ESNR, and many others. Fordlseof this paper,
we call this condition as Herniation.

Disc herniation always occurs in the posterior segment @fdisc. The inner gel-
like material of the disc, nucleus pulposus, leaks out jimgssn a nerve root through a
tear in the fibrous wall of the disc, annulus fibrosus [8], lsitated in Fig. 1, where we
show an axial illustrative model and a corresponding ciihidRI (from our dataset)
for a right-sided disc herniation with both the axial andigagviews.
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Shape of the posterior segment of the disc, from the sagieal, is the primary
diagnostic tool for the radiologist. The axial view is useddonfirmation and for quan-
tification. Working in the sagittal view, our method extmtformation of the posterior
segment of the disc in a two-step process. First, we use e abape model to roughly
localize a point distribution for the disc body. Then, we &davGVF-snake to delineate
the posterior segment of the disc using the outcome of the ASN initialization. Be-
cause the ASM is a linear model and captures Gaussian peinibdtions, we add the
GVF-snake step to delineate the non-linear shape of thepdsterior segment which is
the main technical innovation in this paper. We validateroathod on a clinical dataset
of sixty-five cases and achieve over 93% average classificaticuracy.

We also compare our results to the most recent work on distdt&Em diagnosis
by Alomari et al [9, 10] that jointly model shape and intepsiind we substantially
outperform their results. Moreover, our shape-based ifilrssutperforms the recent
work of Michopoulou et al [11] which is based on an intendigsed classifier. Both
recent works test on 33 and 34 cases with an average hemigtection accuracy of
91% and 88%, respectively. We validate our model on suliathnvariable dataset
of 65 cases and achieve better accuracy over 93%. Many obsgarhave proposed
methods for the diagnosis of certain vertebral column atadities. Bounds et al [12]
utilized a neural network for the diagnosis of back pain asidta. Sciatica might be
caused by lumbar disc Herniation as well as many other rsa3twey have three groups
of doctors to perform diagnosis as their validation mecémniThey claimed a better
accuracy than the doctors in the diagnosis. However, thedadata prohibited them
from full validation of their system. Similarly, Vaughn [L8onducted a research study
on using neural network for assisting orthopedic surgeartheé diagnosis of lower
back pain. They classified LBP into three broad clinical gatees: Simple Low Back
Pain (SLBP), Root Pain (ROOTP), and Abnormal lliness Betra@/IB) and about
200 cases were collected over the period of 2 years with diigrirom radiologists.
They used 25 features to train the Neural Network (NN) intlgdsymptoms clinical
assessment results. The NN achieved 99% of training agcarat 78.5% of testing
accuracy. This clearly shows training data overfitting.

Tsai et al [14] used geometrical features (shape, size aatiém) to diagnose herni-
ation from 3D MRI and CT axial (transverse sections) voluafale discs. In contrast,
we do not presume the availability of the full volume axiadéwias it is not a clini-
cal standard. They patented their work as a visualizatiohfty educational purposes.
Recently, Michopoulou et al [11] applied three variatiof$uzzy c-means (FCM) to
perform atlas-based disc segmentation. Then, they usede¢hmentation for classifi-
cation of the disc as either a normal or degenerative disey Tised an intensity-based
Bayesian classifier and achieved 86%-88% classificationracg on 34 cases (five
discs each) based on their semi-automatic segmentatitve afisc. Similarly, Alomari
et al [9, 10] proposed utilizing a shape and an intensityebatassifier that utilizes an
active shape model to extract the shape potentials. Hopeeeause the ASM cannot
capture the non-linearly shaped posterior segment of th@dted disc, they achieved
about 91% on 33 clinical cases. We extend both these workg@sent our technical
novelty by concentrating on the posterior segment of the digl capturing that with
an additional GVF-snake model on top of the ASM. Furthermarereduce the effect
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of intensity-based information due to the signal intengityomogeneity with clinical
MRI. We also significantly add variability in the dataset kfligtating our joint model
on 65 clinical cases as opposed to 33 and 34 cases. Furtleeneachieved an aver-
age of 93% accuracy which substantially outperforms battestf-the-art results given
the dataset size difference.

2 Proposed Method

Our approach has four steps: Disc Localization, Disc Segmen
tation, Herniation Delineation, and Herniation Classtiima.
This section explains each step:

Disc Localization: The system automatically locates the mig
dle sagittal slice from the MRI volume by index. Then our aut@®
matic method starts by a localization step that providesiat pq
inside each disc using the two-level probabilistic model-p
posed by Corso et al [15, 16]. Their model labels the set
discs with high level labeld = {d;,ds,...,ds} where each
d; = (x;,y;)" is the coordinates of the disc point (some poi
in the disc). They solve the optimization problem:

T12-L1

L2-1
L3-2

L4-3

L5-4

L5-S1

. Fig. 2. Labeling lumbar
D* = argmgxsz:P(L,DH) = arg mgLXzL: P, I)P(D)  giscs in a sagittal T2-

weighted MRI [15, 16].
)

whereL = {l;, Vi € L} is a set of auxiliary variables, called disc-label variatiteat
are introduced to infeb from the sagittal image. Each disc-label variable can take a
value of{—1, +1} for non-disc or disc, respectively. The disc-labels mal@atsible

to separate the disc variables from the image intensiteesthe disc-label. variables
capture the local pixel-level intensity models while theavariable capture the
high-level geometric and contextual models of the full detliscs. The optimization
is solved with a generalized expectation minimization (gElgorithm [15, 16]. Fig. 2
shows a lumbar sagittal view with labeled discs. Then we inkdafixed window of
60x120 pixels around each point. This sub-image size isg@mtw provide the whole
disc region for each of the discs connected to the five lumbaelrae as shown in
Fig. 2.

Disc Segmentation:We use an active shape model [17] for roughly segmenting the
disc body boundary. This step finds the rough shape of thebdidg regardless of the
herniated (posterior) part. To prepare the training dagyvanually select the image
slice where herniation is most obvious. Then, we manuallgkmane landmark points
according to the map shown in Fig. 3. Specifying these lamidskcations is only
based on our expertise in the disc segmentation. We name ldresdmark points from
k; t0 kg. Similar to [17], we initially calculate the mean shape= % Ziv x where

N is the size of the training data. Then each disc shapevherei € {1,..., N},

is recursively aligned to the mean shapeising generalized Procrustes Analysis to
remove translational, rotational, and isotropic scalimgrf the shape.
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(a) Normal Model (b) Herniated Model

Fig. 3. lllustrative Model [sagittal view] for (a) clinically norai disc (b) herniated disc showing
the point distribution¥; —ko) as well as a contour (yellow) that delineates the edge mapcles
pointsk; andky. This figure shows the irregular shape of the normal disc.

Then, we model the remaining variance around the mean shitppnmcipal com-
ponents analysis (PCA) to extract the eigenvectors of thrar@ance matrix associated
with 98% of the remaining point position variance accordmthe standard method for
deriving the ASM’s linear shape representation.

However, we do not use the orig-
inal MRI image for training the
ASM. Rather, we utilize a feature
imageI that enhances the disc shape
by emphasizing the boundaries of
the disc and the Thecal Sac (the ex-
tension of the spinal canal at the lum-
bar level [8]). We producé by ap-

pI_ylng arange filteR on the_ pixel- Fig. 4. Feature image result of the range filrefor
wise addition of the normalized CO'(a) Normal disc (b) Herniated disc. The ASM point

registered T1- and_ T2-yveighted Progistribution is shown according to the map in Fig 3.
tocols of the sagittal images =

R(T1 + T2) whereT1 and T2 are the normalized T1- and T2-weighted MRI images
for the same case. These two images are manually co-regisdering the acquisition

of the MRI in the clinical standard. is the range filter operator where the intensity lev-
els in each 3x3 window are replaced by the range value (maxirminimum) in that
window. This operatoR has high values in abrupt-change regions and small values in
smooth regions. Fig. 4 shows the features imdagfs a normal- and a herniated-disc.
The ASM landmark points are also shown in the figure to clahié/ASM land-marking
step.

To apply ASM for detection of the point distribution of thesdibody boundary, we
apply the mean shapearound the disc point produced by the localization stepnThe
we allow the ASM to converge and obtain the boundary.

We apply the GVF-snake by initializing its contour (to thediconnecting the two
pointsk; andkg). Figure 5 show two examples of the convergence of the G\&kesn
for both a normal disc (Fig. 5(a)) and a herniated one (Fig))5The figure also shows
the normalized gradient vector field for the sub-image a$ ash zoomed GVF field
for the area of interest (posterior part of the disc).

Herniation Delineation: The ASM segmentation of the disc cannot capture the in-
herent variations produced by the disc herniation at théepios segment of the disc.
Furthermore, we seek for a single model for the disc regasdihether it is herniated

(a) Normal (b) Herniated
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or not. Thus, we use an active contour to delineate the posgmgment of the disc. We
select the GVF-snake proposed by Xu and Prince [18] becainss ibeen proved to
move toward desired image properties such as edges ingladircavities. GVF-snake
is the parametric curve that solves:

xi(s,t) = ax(s,1) — Bx"" (s, ) + v @

wherea and s are weighting parameters that control the contour’s tenaitd rigid-
ity, respectivelyz” andz’” are the second and fourth derivatives, respectively;.of
v(z,y) is the gradient vector flow (GVF}, € [0, 1], andt is time component to make
a dynamic snake curve from(s) yielding (s, t).

GVF-snake requires an edge map that is a binary image highlmgthe desired fea-
tures (edges) of the image. Most researchers use Canny etégeal or Sobel operator
on the original image such as [19] for liver segmentation.piesent the GVF-snake
with a canny edge map applied on our feature image

(a) Normal (b) Abnormal

Fig. 5. (Top-left) Shows the resulting GVF-contour for (a) normal ébnormal, on T2-weighted
image. (Top-right) The corresponding normalized GVF fi¢ldwing the two initialization land-
marksk; andkg. (Bottom) A zoomed version of the GVF field to clearly show tleetors.

Herniation Classification: We design a binary Bayesian classifier:

n* = arg max P(n|S) 3

wheren is a binary random variable stating whether it is a herniarea normal disc,
S incorporates shape features extracted from both the G¥kesand the ASM conver-
gence. We utilize a Gibbs distribution with two shape patdsit

P(n|S) _ ﬁ exp—[alUsH-OtzUsz] (4)
wheres represents the shape features extracted from both the A8Mergence and
the GVF-snakeZ|n| is the normalization factor of the Gibbs distributien, and as
are tuning parameters. We define two shape potentialSsiinodels the GVF-snake
delineation for the posterior segment of the discU2) models the major axis of the
ASM converged disc shape.
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Table 1: Cross Validation Results: Each row
tests randomly selected 35 cases.

Set|L5-S1 L4-5 L3-4L2-3 L1-2 T12-LlAccuracy

1132 32 34134 35 34| 95.7% Table 2: Calculation of specificity
2133 32 32131 34 35| 93.8% (96.6%) and sensitivity (86.4%).
3| 3 34 32|33 33 34 | 94.8%

4| 31 30 32|33 33 34 | 91.9% Gold standard
5|31 32 32|33 34 33 | 92.9% Herniated Normal
6| 33 32 32|31 32 33 | 91.9% S|Herniated 170 (TP)| 53 (FP)
7| 33 32 34|34 33 33 | 94.8% 3

8| 30 31 32|31 34 33| 91.0% X Normal | 25 (FN) [652 (TN

9] 30 33 34|34 35 35 | 95.7%

10| 32 33 34|34 34 35 | 96.2%
(%)| 90.9 91.7 93.793.7 96.3 96.9 -
Average Accuracy 93.9%

We extract the first shape potentidd; from the GVF-snake delineation of the pos-
terior disc segment. The longer the contour, the more liketielineates a herniated
segment as shown in Fig. 5 by the yellow line between the prindndky. To capture
the length of the GVF-snake contour, we model the number oitpthat are sampled
by the final GVF-contour. The GVF-snake interpolates thelsiky having a maximum
of two pixels between each point. Thus, we define:

2
(61 — /1‘61) (5)

Us1=
2
2‘7@1

wheree; is the number of interpolated points along the delineatedr @vnhtour, .,
agl are the expected and the variance of the interpolated pointee GVF-contour,
respectively. We estimate both, ando?, from the training data.

The secondary shape potentids,, is motivated by the clinical observation that the
herniated disc collapses due to the leak of the nucleus pufprausing average length-
ening in the major axis of the disc as shown in Fig. 1. We wittzis by incorporating
this second shape potentia,:

Usp = M (6)
202,
wheree,, is the disc major axis length,., is the expected major axis length of the disc,
o2, is the variance of the major axis length of the disc. We leath p., ando?, from
the training data. We defing by:

k1 + ko
62=| 5 —k5

2 (7)

wherek, ks, andkg are the location coordinates of points 1, 5, and 9, resplgtias
shown in Fig. 4. The distaneg roughly measures the major disc axis length subtracting
the average location of the right end poiktsandkgy and the left end poirits.
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3 Data and Results

Our clinical MRI dataset is captured by a Philips 3-Teslansea according to the clini-
cal standard. Each case contains manually co-registeresduittal views (T1- and T2-
weighted) as well as six axial T1-weighted slices for eads.diVe use the clinical di-
agnosis reports to obtain our diagnosis gold standard. Wiava our proposed method
on 65 subjects with ages of 23 to 76 years old and with varigoess of abnormalities.
We perform a cross-validation experiment where we leavea3&<for testing and use
the remaining 30 for training. We perform 10 rounds and eih,twe randomly select
the training and testing cases. We define the accuracy inreaad (row in the Table 1)
as the sum of correctly classified diséscuracy; = (1— - Zjil |gi; — nij]) *100%
wherei is the lumbar disc level, < i < 6, M is the testing set size in each round (35
cases).

Table 1 shows the classification results from the cross atdid experiment. We
achieve an average of 93.9% accuracy on disc diagnosis.raacim the table repre-
sents one round of the cross-validation. Thus, it represghicases with 6 discs each
case. We show the number of correctly classified discs at@iacHevel (column) out
of 35 discs. We further compute the overall specificity antsgivity where:

. TN

Speci ficity = TN FP 8)
o TP

SCTLSZtZ'UZty = m (9)

where FP is the number of false positives (normal discs disgth as herniated), TP is
the number of true positives (correctly diagnosed herdidiscs), FN is the number of
false negatives (misclassified herniated discs), and TNeis\umber of true negatives
(correctly classified normal discs). Table 2 shows anothesscvalidation experiment
with 15 randomly selected cases for 10 rounds. This make$X8iscs) x 10 (rounds)=

900 discs total (including repetitions). Within this crasdidation experiment, there is
a total of 78 misclassified discs: 25 herniated (false negs)tiand 53 normal (false pos-
itives) as shown in Table 2. We archive an overall specifioitgr 92% and sensitivity

over 87%.

Fig. 6 shows four examples from our dataset. It shows theargence of the ASM
point distribution (red dots and the linear connectionsjvali as the GVF-snake de-
lineation (yellow curve). On the other hand, we compare dassification results to
a Bayesian classifier that only models the disc appeararateoto the effectiveness of
modeling the shape. We run the same experiment with the sases of Table 1 and ob-
tain around 80% average classification accuracy. We jutstéfyyby the fact that despite
Herniated discs produce lower intensity levels; in gendha difference in intensity
with the normal disc is not enough to classify herniated amunal discs. However, a
Bayesian intensity-based classifier can be useful for atlserases such as disc desic-
cation [20]. Fig. 6(c) shows a sample Herniated disc, wighhintensity value, that was
misclassified by the intensity-based classifier but colyetassified with our shape-
based classifier.
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=)

(a) Normal

‘
(b) Herniated (Left) high intensity, (Right) Low
intensity

Fig. 6. Resulting ASM convergence and GVF-snake delineation for marmal cases and two
abnormal ones.

4 Conclusion

We proposed a method for herniation diagnosis from lumbaa atinical MRI. We
utilize a coordinated active shape and a gradient vector #ctive contour models
to extract shape features for detection of herniation. VéeauBayesian classifier and
utilize a Gibbs-based distribution with shape potentls validate our method on a set
of sixty five clinical MRI cases. We achieve an average of 93ctassification accuracy
with specificity 96.6% and sensitivity of 86.4%. We also camgal our results with the
two state-of-the-art work and substantially outperforrthtmf them due to our features
that encompass the benefits of both works into a more robasgiication model.
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