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Abstract. We present an adaptation of the recently proposed graph-shifts algo-
rithm for labeling MRF problems from low-level vision. Graph-shifts is an en-
ergy minimization algorithm that does labeling by dynamically manipulating, or
shifting, the parent-child relationships in a hierarchical decomposition of the im-
age. Graph-shifts was originally proposed for labeling using relatively small label
sets (e.g., 9) for problems in high-level vision. In the low-level vision problems
we consider, there are much larger label sets (e.g., 256). However, the original
graph-shifts algorithm does not scale well with the number of labels; for exam-
ple, the memory requirement is quadratic in the number of labels. We propose
four improvements to the graph-shifts representation and algorithm that make it
suitable for doing labeling on these large label sets. We implement and test the
algorithm on two low-level vision problems: image restoration and stereo. Our
results demonstrate the potential for such a hierarchical energy minimization al-
gorithm on low-level vision problems with large label sets.

1 Introduction

Markov random field (MRF) models [2] play a key role in both low- and high-level vi-
sion problems [13]. Example low-level vision problems are image restoration and stereo
disparity calculation. Fast and accurate labeling of MRF models remains a fundamental
problem in Bayesian vision. The configuration space is combinatorial in the labels and
the energy landscape is rife with local minima. This point is underscored by the recent
comparative survey of methods for low-level labeling by Szeliski et al. [15].

In recent years, multiple new algorithms have been proposed for solving the energy
minimization problem associated with MRF labeling. For example, graph cuts [3] is
one such algorithm that guarantees achieving a strong local minimum for two-class
energy functions. However, processing times for the graph cuts remain in the order of
several minutes on modern hardware. Max Product Belief propagation [8] computes
local maxima of the posterior, but it is not guaranteed to converge for the loopy graphs
present in low-level vision. Efficient implementations can lead to running times in the
order of seconds [6]. However, despite its high-regard and widespread use, it performed
poorly in the recent benchmark study [15].

In this paper, we work with a recently proposed approach called graph-shifts [4, 5].
Graph-shifts is a class of algorithms that do energy minimization on dynamic, adaptive



2 J.J. Corso, Z. Tu, and A. Yuille

graph hierarchies. The graph hierarchy represents an adaptive decomposition of the
input image; they are adaptive in the sense that the graph hierarchy and neighborhood
structure is data-dependent in contrast to conventional pyramidal schemes [1] in which
the hierarchical neighborhood structure is fixed. They are dynamic in the sense that the
algorithm iteratively reduces the energy by changing the parent-child relationships, or
shifting, in the graph, which results in a change in the underlying labels at the pixels.
Graph-shifts stores a representation of the combinatorial energy landscape, and is able
to efficiently compute the optimal energy reducing move at each iteration.

The original graph-shifts algorithm [4, 5] was defined on a conditional random field
(CRF) [11, 12] with comparatively few labels (e.g., 8) and applied to high-level labeling
problems in medical imaging. Recall that a CRF is a MRF with a broader conditioning
on the observed data than is typical in MRF and MAP-MRF [9] formulations. But, in
the low-level labeling problems considered in this paper, the label sets are much larger
(e.g. 32, 256). The original graph-shifts algorithms scales linearly in pixels; however a
factor linear in labels is incurred at each iteration. The memory requirement is quadratic
in the labels. In practice, these complications lead to slower convergence as the number
of labels grow. The main focus and contribution of this paper is how we adapt graph-
shifts to work efficiently with large, ordered label sets (e.g., 256). This requires four
improvements on the original graph-shifts algorithm: 1) an improved way of caching
the binary energy terms, 2) efficient sorting of the potential shift list and 3) an improved
spawn shift, and 4) new, efficient rules for keeping the hierarchy in synch with the
energy landscape after shifting. We demonstrate this algorithm on standard benchmark
data in image restoration and stereo calculation.

We consider labeling problems of the following form. Define a pixel lattice Λ with
pixels i ∈ Λ, and associate a label (random variable) y i with each pixel. The labels take
values in a label set L = {1, . . . , k} and represent various problem specific physical
quantities we want to estimate, like intensities, disparities, etc. The joint probability
over the labels on the lattice, y

.= {yi}i∈Λ, is given by a Gibbs distribution:

P (y) =
1
Z

exp


−

∑
i

U(yi, i) −
∑
〈i,j〉

V (yi, yj)


 (1)

where Z is the partition function, and 〈i, j〉 represents the set of neighbors on Λ.
Equation 1 is the standard MRF. The clique potential functions, U and V , encode

the local energy associated with various labelings at pixel sites. U is conditioned on the
pixel location to permit the incorporation of some external data in the one-clique poten-
tial computation; for example, the input intensity field in image restoration (see section
5.1). The goal is to find a labeling y that maximizes P (y), or equivalently minimizes the
energy given by the sum over all clique potentials U and V . To simplify notation, we
will consider problem as energy function minimization in the remainder of the paper.

The remainder of the paper is as follows: a short literature survey is in the next
section. In section 3 we review the graph-shifts approach to energy minimization. Then,
in section 4, we present our adaptations that make it possible to apply the algorithm on
large label sets. In section 5 we analyze the proposed algorithm and give comparative
results to efficient belief propagation [6] for the image restoration problem.
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2 Related Work

Many algorithms have been proposed to solve the energy minimization problem asso-
ciated with labeling the MRFs. The iterated conditional modes [2] is an early algorithm
developed near the beginning of MRF research. It iteratively updates the pixel labels
in a greedy fashion choosing the new labeling that gives the steepest decrease in the
energy function. This algorithm converges slowly since it flips a single label at a time,
and is very sensitive to local minima. Simulated annealing [9], on the other hand, is a
stochastic global optimizer that given a slow enough cooling rate will always converge
to the global minimum. However, in practice, the slow enough is a burden.

Some more recent algorithms are able to consistently approach the global mini-
mum in compute times in the order of minutes. Graph cuts [3, 10] can guarantee a so-
called strong local minimum for a defined class of (metric or semi-metric) energy func-
tions. Max-product loopy belief propagation (BP) [8] computes a low energy solution
by passing messages (effectively, max of conditional distributions) between neighbors
in a graph. When (if) convergence is reached, BP will have computed a local max to
the label posterior at each node. Although not guaranteed to converge for loopy graphs,
it has performed well in a variety of low-level vision tasks [7], and can be effectively
implemented for low-level vision tasks to run in just a few seconds [6]. Tree reweighted
belief propagation (TRW) [16] is a similar message-passing algorithm that has the goal
of computing the upper bound on the log partition function of any undirected graph.
Although the recent comparative analysis [15] did not find a single best method, a mod-
ified version of the TRW approach did consistently outperform the other methods.

3 Graph-Shifts

Following the notation from [4], define a graph G to be a set of nodes µ ∈ U and a set
of edges. The graph is hierarchical and composed of multiple layers with the nodes at
the lowest layer representing the image pixels. Call two connected nodes on the same
layer neighbors using the predicate N(µ, ν) = 1 and N(µ, ν) = 0 otherwise. Two
connected nodes on different (adjacent) layers are called parent-child nodes. Each node
has a single parent (except for the nodes at the top layer, which have no parent) and has
the same label as its parent. Every node has at least one child (except for the nodes at
the bottom layer). Let C(µ) be the set of children of node µ and A(µ) be the parent of
node µ. A node µ on the bottom layer (i.e. on the lattice) has no children, and hence
C(µ) = ∅. At the top of the graph is a special root layer with a single node µ for each
of the k labels. The label of the root nodes is fixed to a single value. Since all non-root
nodes in the hierarchy can trace their ancestry back to a single root node, an instance of
the graph G is equivalent to a labeling of the image.

The coarser layers are computed recursively by an iterative bottom-up coarsening
procedure. We use the coarsening method defined in [4] without modification. The basic
idea is that edges in the graph are randomly turned on or off based on the local intensity
similarity. The on edges induce a connected components clustering, and each compo-
nent defines a new node in the next coarse layer in the hierarchy. Thus, nodes at coarser
layers in the hierarchy represent (roughly) homogeneous regions in the images. The
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procedure is adaptive and the resulting hierarchy is data-dependent. This is in contrast
to traditional pyramidal schemes [1] which fix the coarse level nodes independent of
the data. A manually tuned reduction parameter governs the amount of coarsening that
happens at each layer in the bottom up procedure. In section 5, we give advice based on
empirical experimentation on how to choose this parameter.

3.1 Energy in the Hierarchy

The original energy function (1) is defined at the pixel level only. Now, we extend this
definition to propagate the energies up the hierarchy by recursing on the potentials:

Û(yµ, µ) =




U (yµ, µ) if C(µ) = ∅
∑

ν∈C(µ)

Û(yµ, µ) otherwise (2)

V̂ (yµ1 , yµ2) =




V (yµ1 , yµ2) if C(µ1) = C(µ2) = ∅
∑

ν1∈C(µ1),
ν2∈C(µ2) :
N(ν1,ν2)=1

V̂ (yν1 , yν2) otherwise (3)

By defining the recursive energies in this form, we are able to explore the full label set L
at each layer in the hierarchy rather than work on a reduced label set at each layer, which
is typical of pyramidal coarse-to-fine approaches. By operating with the complete label
set in the whole hierarchy, graph-shifts is able to quickly switch between scales at each
iteration when selecting the next steepest shift to take (further discussion in section 5).

By using (2) and (3), we can compute the exact energy caused by any node in the
hierarchy. Furthermore, the complete energy (1) can be rewritten in terms of the roots:

E(y) .=
∑
i∈L

Û(yµi
, µi) +

∑
i,j∈L

N(µi,µj)=1

V̂ (yµi
, yµj

) (4)

3.2 The Graph Shift and Minimizing The Energy

A graph shift is defined as an operation that changes the label of a node by dynam-
ically manipulating the connectivity structure of the graph hierarchy. There are two
types of graph shifts: a split-merge shift and a spawn shift. During a split-merge shift
(figure 1(a)), a node µ detaches itself from its current parent A(µ) and takes the parent
of a neighbor A(ν). By construction, the shift also relabels the entire sub-tree rooted at
µ such that yµ = yν . During a spawn shift (figure 1(b)), a node µ creates (or spawns)
a new top-level root node µ and dynamically creates a chain connecting µ to µ with
one new node per layer. The new tree is assigned whatever label (one that none of µ’s
neighbors already had) was associated with the spawn shift. After making either shift,
the hierarchy must be resynchronized with the changed energy landscape (section 4.3).
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Initial State

µa µb µc

µ1 µ2 µ3 µ4

µa µb µc

µ1 µ2 µ3 µ4

Shift 1

µa µb µc

µ1 µ2 µ3 µ4

Shift 2

(a) Split-Merge Shift

µa µb µc

µ1 µ2 µ3 µ4

Initial State

µa µb µc

µ1 µ2 µ3 µ4

Do Spawn Shift

µa µb µc

µ1 µ2 µ3 µ4

Update Graph

(b) Spawn Shift

Fig. 1. Toy examples of the split-merge and spawn shifts with two classes, light and dark gray.

The basic idea behind the graph-shifts algorithms is to select shift that would most
reduce the energy at each iteration. Using (2) and (3), the exact energy gradient, or the
shift gradient, can be computed as

∆E(µ, yµ → ŷµ) = Û(ŷµ, µ) − Û(yµ, µ) +
∑

ν:N(µ,ν)=1

[
V̂ (ŷµ, yν) − V̂ (yµ, yν)

]
.

(5)

This directly leads to the graph-shifts algorithm. After initialization the graph hierarchy,
iterate the following steps until convergence:

1. Compute and select the graph shift that most reduces the energy.
2. Apply this shift to the graph.
3. Update the graph hierarchy to resynchronize with the new energy landscape.

4 Adapting Graph-Shifts for Large Label Sets

This section describes the adaptations we make to the original graph-shifts algorithms
to increase its efficiency when dealing with large label sets. The first two adaptations
(section 4.1) consider how the shifts are stored in various caches up the hierarchy. The
third one considers a reduced spawning label set (section 4.2). The fourth one, in section
4.3, discusses how to update the hierarchy and potential shift list after executing a shift.

4.1 Computing and Selecting Shifts

Here, we discuss two representational details that reduce the amount of computation
required when computing potential shifts. First, though the energy recursion formulas
(2) and (3) provide a mathematically convenient way of computing the energy at a given
node, repeatedly recursing down the entire tree to the leaves to compute the energy at a
node is often redundant. So, an energy cache is stored at each node in the hierarchy. The
cache directly stores the unary energy Û(yµ, µ) for a node µ in a vector of k dimension.
The unary cache can be efficiently evaluated in a bottom-up fashion at the leaves first
and them pushing them up the hierarchy. The memory cost is O(kn log n) for n pixels.

[4] suggests such a caching scheme for both the unary and the binary terms of the
energy. However, storing a similar complete cache for the binary term is not plausible
for large label sets because its cost is quadratic in the labels, O(k2cn logn) with c
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being the average cardinality of the nodes. However, recall the binary term is a function
of only the labels at the two nodes, and the sub-trees have the same labels as their
parents. So, for the binary energy, the recursion formulas serve to count the length of
the boundary between two nodes, which is then multiplied by the cost on the two labels:

V̂ (yµ1 , yµ2) = V (yµ1 , yµ2)B(µ1, µ2) (6)

B(µ1, µ2) =




N(µ1, µ2) if C(µ1) = C(µ2) = ∅
∑

ν1∈C(µ1)
ν2∈C(µ2)

B(ν1, ν2) otherwise. (7)

This form of the binary energy suggests caching the boundary length B between nodes
in the graph. By doing so, we save on the k 2 factor for the cache and the resulting
memory cost is O(cn log n). We discuss how to update this cache after a shift in 4.3.

Second, a complete list of potential shifts is maintained by the algorithm. After
initializing the hierarchy, the full list is computed, and all those shifts with a negative
gradient (5) are stored. To further reduce the list size, only a single shift is stored for
any given node. The list is updated after each shift (section 4.3). Computing the best
shift at each iteration results searching this list. [4] choose to store an unsorted list to
save the O(s log s), for s shifts, cost of initially sorting the list at the expense of O(s)
search every iteration. However, an O(s) is already paid during the initial computation.
Hence, the “sorting cost” is only an additional O(log s) cost if we sort while computing
the list. Searching every iterations is then only O(1). Thus, we choose to sort the list.

4.2 An Improved Spawn Shift

The original spawn shift [5] requires the evaluation of a shift gradient when switching to
potentially any new label. The cost of this evaluation grows with the number of labels,
O(k), but the cost of computing the best split-merge shift for a node is O(c) using the
caches. In the problems we consider k � c. We exploit the label ordering and search
only a sub-range of the labels based on the current label. For node µ with label y µ, we
search the range {yµ − κ, yµ + κ} where κ is a user selected parameter (we use 3).

4.3 Updating the Hierarchy After a Shift

A factor of crucial importance to the graph-shifts algorithm is dynamically keeping the
hierarchy in synch with the energy landscape it represents. Since a shift is a very local
change to the labeling, updating the hierarchy can be done quickly. After each shift,
the following steps must be performed to ensure synchrony. Assume the shift occurs at
level l, pixels correspond to level 0 and there are T levels in the hierarchy.

1. Update the unary caches at levels t = {l + 1, . . . , T}.
2. Update the boundary length caches at levels t = {l + 1, . . . , T}.
3. Recompute the shift for all affected nodes and update their entries in the potential

shift list (removing them if necessary). Affected nodes will be present on all graph
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levels. For nodes below l, any node in the subtree or an immediate neighbor of the
subtree of the shifted node must be updated. For nodes above only the parents and
their neighbors must be updated. This an O(c log n) number of updates.

Updating the unary caches is straightforward. For a split-merge shift where node µ
shifts to ν and takes A(ν) as a new parent, the update equations are

Û (y, A(µ))′ = Û (y, A(µ)) − Û (y, µ) ∀y ∈ L (8)

Û (y, A(ν))′ = Û (y, A(ν)) + Û (y, µ) ∀y ∈ L . (9)

Consider a spawn shift where µ spawns a new sub-tree to the root level. Equation (8)
applies to the old parent A(µ). The new parent A∗(µ) is updated by

Û (y, A∗(µ)) = Û (y, µ) ∀y ∈ L . (10)

Each of these equations must be applied recursively to the root level T in the hierarchy.
Since the boundary length terms involve two nodes, they result in more complicated

update equations. For a shift from node µ to ν the update equations for level l + 1 are

B (A(µ), A(ν))′ = B (A(µ), A(ν)) −
∑

η : A(η)=A(ν),
N(µ,η)=1

B(µ, η) (11)

B (A(ν), A(ω))′ = B (A(ν), A(ω)) + B(µ, ω)

B (A(µ), A(ω))′ = B (A(µ), A(ω)) − B(µ, ω)
∀ω : A(ω) �= A(ν), N(µ, ω) = 1 (12)

where A(µ) is the ancestor of µ before the shift takes place. The second term on the
righthand side of (11) arises because µ can be a neighbor to more than one child of
A(ν). When, µ shifts to become a child of A(ν), then it will a become sibling of such
a node and the boundary length from A(µ) to A(ν) must account for it. Again, the
updates must be applied recursively to the top of the hierarchy. These equations are also
applicable in the case of a spawn shift with the additional knowledge, that if B(A(ν), ·)
is 0, then a new edge must be created in the graph connecting these two nodes.

5 Experiments

We consider two low-level labeling problems in this section: image restoration and
stereo. We also present a number of evaluative results on the efficiency and robustness
of the graph-shifts algorithm for low-level MRF labeling. In all of the results, unless
otherwise stated, a truncated linear binary potential function was used. It is defined on
two labels and is fixed by two parameters, β1, β2:

V (yi, yj) = min(β1||yi − yj ||, β2) . (13)

5.1 Image Restoration
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Fig. 2. The ideal
image.

Image restoration is the problem of removing the noise and other
artifacts of an acquired image to restore it back to its original, or
ideal state. The label set comprises the 256 gray-levels. To ana-
lyze this problem, we work with the well-known penguin image;
it’s ideal image is given on the right in figure 2. In figure 3, we
present some restoration results for various possible potential func-
tions on images that have been perturbed by independent Gaussian
noise of three increasing variances (in each row). In the following
potentials, let xi be the inputted intensity in the corrupted image.
The second column shows a Potts model on both the unary and bi-
nary potential functions. The third column shows a truncated linear
unary potential and a Potts binary potential with the fourth column
showing both truncated linear potentials. Truncated quadratic re-
sults are shown in figure 4 in comparison with EBP. In these re-
sults, we can see that the graph-shifts algorithm is able to find a good minimum to the
energy function, and it’s clear that the stronger potential functions are giving better re-
sults. In the truncated linear terms here, α1 = β1 = 1, α2 = 100, and β2 = 20. The
two terms were equally weighted.

Potts UP (yi, i) = δ(xi, yi) (14)

Truncated Linear UL(yi, i) = min(α1||xi − yi||, α2) (15)

Truncated Quadratic UQ(yi, i) = min(α1||xi − yi||2, α2) (16)

Figure 4 and table 1 present a comparison of the image restoration graph-shifts
with the efficient belief propagation (EBP) [6] algorithm. Here, we use a truncated
quadratic energy function (16) with exactly the same energy function and parameters:
α1 = β1 = 1, α2 = 100 and β2 = 20. In these restoration results, we use the sum of
squared differences error between the original (ideal) image and the restored image that
is outputted by each algorithm to measure the accuracy. Note, however, that the energy
minimization algorithms are not directly minimizing the sum-of-squared differences
error function. When computing the SSD error on these images we disregarded the
outside row and column since the EBP implementation cannot do labeling near the
image borders.

Table 1. Quantitative comparison of time and SSD error between efficient belief propagation and
graph-shifts. Speed is not directly comparable as BP is in C++ but graph-shifts is in Java.

Time (ms) SSD Error
Variance Graph-Shifts Efficient BP Graph-Shifts Efficient BP

10 18942 2497 2088447 2524957
20 24031 2511 2855951 3105418
30 24067 2531 5927968 3026555
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Fig. 3. Visual comparison of the performance of different energy functions with the same graph-
shifts parameters. The images on the left are the input noisy images (with variances of 10, 20,
and 30 in the rows). The remaining columns are Potts+Potts,Truncated Linear+Potts,Truncated
Linear+Truncated Linear in the unary + binary terms, respectively.

From inspecting the scores in table 1, we find the two algorithms are both able to
find good minima for the two inputs with smaller noise. The graph-shifts minimum
achieves lower SSD error scores for these two images. This could be due to the extra
high-frequency information near the bottom of the image that it was able to retain, but
the EBP implementation smoothed it out. However, for the higher noise variance, EBP
is able to converge to a similar minimum and its SSD error is much low than graph-
shifts in this case. We also see that the two algorithms run in the order of seconds (they
are run on the same hardware). However, the speed comparison is not completely fair:
EBP is implemented in C++ while graph-shifts is implemented in Java (one expects at
least a factor of two speedup). We note that some of the optimizations suggested in the
EBP algorithm [6] can also apply in the computation and evaluation of the graph shifts
to further increase efficiency. The clear message from the time scores is that the graph-
shifts approach is of the same order of magnitude as current state of the art inference
algorithms (seconds).
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Fig. 4. Visual comparison between the proposed graph-shifts algorithms and the efficient belief
propagation [6]. The two pairs of images have noise with variance 10, 20, and 30. Images in each
pair are the EBP restoration followed by the graph-shifts restoration. See Fig. 3 for input images.

5.2 Stereo

We present results on two images from the Middlebury Stereo Benchmark [14]: the
sawtooth image has 32 disparities with 8 levels of subpixel accuracy or a total of 256
labels, and the Tsukuba image has 16 labels. The energy functions we use here to model
the stereo problem remain very simple MRFs. The unary potential is a truncated linear
function on the pixel-wise difference between the left image IL(u, v) and the right
image IR(u − yi, v), where i = (u, v):

US(yi, i) = min(α1||IL(u, v) − IR(u − yi, v)||, α2) . (17)

Figure 5 shows the two results. The parameters are α1 = β1 = 1, α2 = 100 and
β2 = 20 for the tsukuba image and α1 = β1 = 1, α2 = β2 = 10. The inferred dispar-
ity, on the right, is very close the ground truth nearly everywhere in the image. These
results are in the range of the other related algorithms [3, 6]. However, graph-shifts can
compute them in only seconds. Even without a specific edge/boundary model, which
many methods in the benchmark use, the graph-shifts minimizer is able to maintain
good boundaries. For lack of space, we cannot discuss the stereo results in more detail.

5.3 Evaluation

We use the truncated linear unary and binary potentials on the penguin image (for
restoration) with a variance of 20 for the noise in all results in this section unless oth-
erwise noted. The parameters on the potentials are (1, 100) and (1, 20) for unary and
binary respectively.

Figure 5.3-left shows how the time to converge varies with changing the reduction
criterion. As the graph reduction factor increases, we see an improvement in both the
time to converge and the SSD error. Recall the graph reduction factor is related inversely
to the amount of coarsening that occurs in each layer. So, with a larger factor, the taller
the hierarchy we find and the stronger the homogeneity properties in each graph node.
Thus, the shifts that are taken by the graph-shifts with larger graph reduction are more
targetted and result in fewer total necessary shifts. Figure 5.3-right demonstrates robust-
ness to variation in the parameters of the energy functions. As we vary the truncation
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Fig. 5. Results on computing stereo with the graph-shifts algorithm on an MRF with truncated
linear potentials. Left column is the left image of the stereo pair, middle column is the ground
truth disparity, and the right column is the inferred disparity.

parameter on the unary potential the time to converge stays roughly constant, but the
SSD error changes (as expected).

Figure 7 shows four different graphs that explore the actual graph-shift process.
Each graph shows the shift number on the horizontal access and the vertical axis shows
one of the following measurements (left-to-right) the level at which each shift occurs,
the mass of the shift (number of pixels whose label changes), the shift gradient (5) and
the SSD error of the current labeling. We show the SSD error to demonstrate that it
is being reduce by minimizing the MRF; the SSD error is not the objective function
directly being minimized. The upper-left plot highlights a significant difference in the
energy minimization procedure created by the graph-shifts algorithm and the traditional
multi-level coarse-to-fine approach. We see that as the algorithm proceeds it is greatly
varies in which level to select the current shift; recall that graph-shifts will select the
shift (at any level) with the current steepest negative shift gradient. This up-and-down
action contrasts the coarse-to-fine approach which would complete all shifts at the top
level and the proceeds down until the pixel level.

6 Conclusion

In this paper we present an adaptation of the recently proposed graph-shifts algorithm to
the case of MRF labeling with large label sets. Graph-shifts does energy minimization
by dynamically changing the parent-child relationships in a hierarchical decomposition
of the image, which encodes the underlying pixel labeling. Graph-shifts is able to ef-
ficiently compute the optimal shift at every iteration. However, this efficiency comes
from keeping the graph in synch with the underlying energy. The large label sets make
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Fig. 6. Evaluation plots. (left) How does the convergence time vary with the height of the hierar-
chy (reduction parameter)? (right) How robust is the convergence speed when varying parameters
of the potential functions?
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Fig. 7. These four graphs show statistics about the graph-shift process during one of the image
restoration runs. See text for full explanation.

ensuring this synchrony difficult. We made four suggestions for adapting the original
graph-shifts algorithm to maintain its computational efficiency and quick run-times (or-
der of seconds) for MRF labeling with large label sets. The results on image restoration
and stereo are an indication of the potential in such a hierarchical energy minimization
algorithm. The results also indicate that the quality of the minimization depends on the
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properties of the hierarchy, like height and homogeneity of nodes. In future work, we
plan to develop a methodology to systematically optimize these for a given problem.
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