Prof. Corso moved to the Electrical Engineering and Computer Science department at the University of Michigan in the 8/2014. He continues his work and research group in high-level computer vision at the intersection of perception, semantics/language, and robotics. Unless you are looking for something specific, historically, here, you probably would rather go to his new page.
Jason J. Corso
Publications List
All
Tag Cloud
By Year
2013
2012
2011
2010
2009
2008
2007
2006
2005
pre-2005
By Venue
TMI
CVPR
KDD
ICPR
ICRA
IPMI
IROS
MICCAI
SPIE

tag: machine learning

[1] C. Xiong, S. McCloskey, and J. J. Corso. Latent domains for visual domain adaptation. In Proceedings of AAAI Conference on Artificial Intelligence, 2014. [ bib ]
[2] C. Xiong, D. M. Johnson, and J. J. Corso. Active clustering with model-based uncertainty reduction. Technical Report 1402.1783, arXiv, 2014. [ bib | .pdf ]
[3] C. Xiong, W. Chen, G. Chen, D. Johnson, and J. J. Corso. Adaptive quantization: An information-based approach to learning binary codes. In Proceedings of SIAM International Conference on Data Mining, 2014. [ bib | code | .pdf ]
[4] C. Xiong, D. M. Johnson, and J. J. Corso. Uncertainty reduction for active image clustering via a hybrid global-local uncertainty model. In Proceedings of AAAI Conference on Artificial Intelligence (Late-Breaking Papers Track), 2013. [ bib | .pdf ]
[5] D. M. Johnson, C. Xiong, J. Gao, and J. J. Corso. Comprehensive cross-hierarchy cluster agreement evaluation. In Proceedings of AAAI Conference on Artificial Intelligence (Late-Breaking Papers Track), 2013. [ bib | code | .pdf ]
[6] N. Coffee, J. Gawley, C. W. Forstall, W. J. Scheirer, D. Johnson, J. J. Corso, and B. Parks. Modelling the interpretation of literary allusion with machine learning techniques. In Proceedings of Digital Humanities, 2013. [ bib ]
[7] P. Das, R. K. Srihari, and J. J. Corso. Translating related words to videos and back through latent topics. In Proceedings of Sixth ACM International Conference on Web Search and Data Mining, 2013. [ bib | .pdf ]
[8] K. R. Keane and J. J. Corso. Maintaining prior distributions across evolving eigenspaces: An application to portfolio construction. In Proceedings of 11th International Conference on Machine Learning and Applications, 2012. [ bib | .pdf ]
[9] C. Xiong and J. J. Corso. Coaction discovery: Segmentation of common actions across multiple videos. In Proceedings of Multimedia Data Mining Workshop in Conjunction with the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (MDMKDD), 2012. [ bib | .pdf ]
[10] C. Xiong, D. Johnson, and J. J. Corso. Efficient max-margin metric learning. In Proceedings of European Conference on Data Mining, 2012. Winner of Best Paper Award at ECDM 2012.bib | .pdf ]
[11] C. Xiong, D. Johnson, and J. J. Corso. Spectral active clustering via purification of the k-nearest neighbor graph. In Proceedings of European Conference on Data Mining, 2012. [ bib | .pdf ]
[12] C. Xiong, D. Johnson, R. Xu, and J. J. Corso. Random forests for metric learning with implicit pairwise position dependence. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012. [ bib | slides | code | .pdf ]
[13] K. R. Keane and J. J. Corso. Dynamically mixing dynamic linear models with applications in finance. In Proceedings of International Conference on Pattern Recognition Applications and Methods, 2012. [ bib | .pdf ]
[14] H. Z. Girgis, J. J. Corso, and D. Fischer. On-line hierarchy of general linear models for selecting and ranking the best predicted protein structures. In Proceedings of IEEE Conference on Engineering in Medicine and Biology, volume 1, pages 4949-4953, 2009. [ bib | .pdf ]
[15] H. Girgis and J. J. Corso. STP: The Sample-Train-Predict Algorithm and Its Application to Protein Structure Meta-Selection. Technical Report 2008-16, University at Buffalo SUNY, 2008. [ bib ]

last updated: Tue Jul 29 10:11:53 2014; copyright jcorso