Last Update: 17 March 2005
Note: or material is highlighted |
Here's another example of the use of Refutation + Resolution + Unification to show the validity of a first-order inference:
Show that the following inference is valid:
x[P(x) v Q(x)], x.¬P(x) x.Q(x)
x[P(x) v Q(x)] ---> P(x) v Q(x) ---> [P(x), Q(x)] (where "--->" means "rewrites as")
x.¬P(x) ---> [¬P(c)] (where c is a Skolem constant)
¬x.Q(x) ---> x.¬Q(x) ---> [¬Q(x)]
{[P(x),Q(x)], [¬P(c)], [¬Q(y)]}
[P(x),Q(x)] -P(c) -Q(y) \ / / \ / / {x/c} \ / / \/ / Q(c) / \ / {y/c} \ / \/ []
Alternatively:
[P(x),Q(x)] -Q(y) -P(c) \ / / \ / / \ / / {y/x} \ / / \ / / P(x) / {x/c} \ / \ / \ / \/ []