Abstract: This essay presents a philosophical and computational theory of the representation of de re, de dicto, nested, and quasi-indexical belief reports expressed in natural language. The propositional Semantic Network Processing System (SNePS) is used for representing and reasoning about these reports. In particular, quasi-indicators (indexical expressions occurring in intentional contexts and representing uses of indicators by another speaker) pose problems for natural-language representation and reasoning systems, because--unlike pure indicators--they cannot be replaced by coreferential NPs without changing the meaning of the embedding sentence. Therefore, the referent of the quasi-indicator must be represented in such a way that no invalid coreferential claims are entailed. The importance of quasi-indicators is discussed, and it is shown that all four of the above categories of belief reports can be handled by a single representational technique using belief spaces containing intensional entities. Inference rules and belief-revision techniques for the system are also examined. (A shorter version of this paper appeared as Rapaport & Shapiro 1984. Both are based on my SUNY Buffalo M.S. thesis.)
`(A knows that P) implies P'
apparently does not hold if P contains a quasi-indexical. We present a single rule, in the context of a knowledge-representation and reasoning system, that holds for all P, including those containing quasi-indexicals. In so doing, we explore the difference between reasoning in a public communication language and in a knowledge-representation language, we demonstrate the importance of representing proper names explicitly, and we provide support for the necessity of considering sentences in the context of extended discourse (for example, written narrative) in order to fully capture certain features of their semantics.