Last Update: 20 August 2002
Note: or material is highlighted |
Abstract: As part of an interdisciplinary project to develop a computational cognitive model of a reader of narrative text, we are developing a computational theory of how natural-language-understanding systems can automatically acquire new vocabulary by determining from context the meaning of words that are unknown, misunderstood, or used in a new sense. `Context' includes surrounding text, grammatical information, and background knowledge, but no external sources. Our thesis is that the meaning of such a word can be determined from context, can be revised upon further encounters with the word, "converges" to a dictionary-like definition if enough context has been provided and there have been enough exposures to the word, and eventually "settles down" to a "steady state" that is always subject to revision upon further encounters with the word. The system is being implemented in the SNePS knowledge-representation and reasoning system.
Abstract: We discuss a research project that develops and applies algorithms for computational contextual vocabulary acquisition (CVA): learning the meaning of unknown words from context. We try to unify a disparate literature on the topic of CVA from psychology, first- and second-language acquisition, and reading science, in order to help develop these algorithms: We use the knowledge gained from the computational CVA system to build an educational curriculum for enhancing students' abilities to use CVA strategies in their reading of science texts at the middle-school and college undergraduate levels. The knowledge gained from case studies of students using our CVA techniques feeds back into further development of our computational theory.