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> John-

>

> Here’s a phil[o]sophical/computational question the answer to which will

> determine how I respond to a paper I’m commenting on at an APA meeting.

> I’ll pose the question in broadly general, perhaps even hopelessly

> vague, terms, rather than linking it to the particular topic of the paper,

> but I’ll fill you in on details if you want/need them.

>

> Given a Turing machine program for computing, say, the greatest common

> divisor of 2 integers, and given 2 integers as input, the program will

> output the gcd.

>

> Given a universal TM and, as input, the TM for gcd and 2 integers, what

> does the UTM "do":

>

> 1. does it (merely) run a (virtual) TM (which, in turn, computes a gcd)?

That depends on which universal TM does it. Some may do that; others might just
run mysterious code (MC) which happens to compute gcd, but the MC could be so
obscure that one cannot prove in ZF that it does the job. Furthermore, one may not be
able to prove in ZF that the machine is universal even though it is, . . . . My point is,
in part, that universal machines are behaviorally correct, possibly, but not necessarily,
“intensionally” correct (intensionally correct, in that they do 1). N.B. Of course a given
user of the term ‘universal TM’ may or may not mean what I do, may or may not be
capable of thinking clearly about it after reading this paragraph and seeing me construct
an example which runs MC, may understand me but not want to mean what I mean
even after they understand me, ... . Most universal TMs in the literature will satisfy
1 simply because that is an obvious way to get one, and most TM literature will be
on about the mere existence of universal TMs. The literature rarely gets beyond that.
There is an old IEEE Transactions on Computers paper by Andy Kang[Kan75] which
deals with somewhat non-standard examples. I have a paper [Cased] which references
Kang and which also contains non-standard examples. More to the point regarding your
queries, I’ll indicate below a neat example due to me and generated by your queries. If
it is helpful, you may use it with credit, in a joint paper, . . . .
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> 2. does _it_ compute the gcd?

You bet it does, but it may or may not do it by an obvious translation of Euclid’s
algorithm or whichever gcd algorithm it is given as input.

>

> -Bill

Neat Example From John Case

Let N denote the set of natural numbers, {0, 1, 2, . . .}. Let 〈·, ·〉 denote any fixed
pairing function [Rog67, Roy87], i.e., a computable, bijective mapping: N × N → N .
Suppose ϕ is a standard acceptable system (numbering) [Rog67, Rog58, MY78, Ric80,
Ric81, Roy87], based on TMs, for computing all the partial computable (partial recursive)

functions: N → N . u is universal
def⇔ (∀p, x)[ϕu(〈p, x〉) = ϕp(x)].

Let Wp denote the domain of ϕp. Hence, {Wp | p ∈ N} is the class of all r.e. sets.
Suppose e0 is ϕ-program naturally expressing Euclid’s gcd algorithm. Suppose Φ is

any Blum Complexity Measure [Blu67, MY78] associated with ϕ. We say that, for partial

functions η and θ, η =∗ θ
def⇔ card({x | η(x) 6= θ(x)}) < ∞.

Now then, since the axoms of ZF form a recursive set of wffs, the set of theorems
derivable in ZF form an r.e. set. For each meta-assertion of the form

[ϕu(〈e0, ·〉) = ϕe0(·)], (1)

for u ∈ N , effectively pick a natural cwff, Fu, of ZF expressing it. Clearly, then,

(∃z0)[Wz0 = {u | Fu is provable in ZF}].

By implicit, informal application of the Kleene Recursion Theorem in ϕ [Rog67, Page
214] (see also [Roy87]), there is a ϕ-program, u0, of course expressing a corresponding
TM program, whose “top level” behavior we describe just below.

begin ≈ u0

On input 〈p, 〈x, y〉〉, u0 first creates a quiescent copy of itself1 to use as data,
and, then, checks whether [p = e0 ∧ Φz0(u0) ≤ 〈x, y〉]. If so, u0 goes into
an infinite loop (thereby failing to simulate the behavior of p = e0 on input
〈x, y〉). If not, u0 emulates p on 〈x, y〉 (thereby computing ϕp(〈x, y〉)).
end

Case(1). Fu0 is provable in ZF. Then u0 ∈ Wz0 ; hence,

(∃〈x0, y0〉)(∀〈x, y〉 ≥ 〈x0, y0〉)[Φz0(u0) ≤ 〈x, y〉].
1This is the part of u0 that informally exploits the self-reference allowed by the Kleene Recursion

Theorem.
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It follows from this (and the behavior of u0) that λ〈x, y〉 ϕu0(〈e0, 〈x, y〉〉) =∗ λ〈x, y〉 ↑.
However, ϕe0 is total. Therefore, meta-assertion (1) above is false for u = u0. Hence,
Fu0 is a false assertion, provable in ZF. This is a contradiction2.

Hence, we must have
Case(2). Fu0 is not provable in ZF. Then u0, clearly, is universal for ϕ; hence, it

correctly simulates e0, yet one cannot prove in ZF that it properly simulates e0.
3

In case we need it: it should be clear that many variants of u0 above can be constructed
to prove corresponding variants of Case (2).
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2Our construction applies, not just to ZF, but to any recursively axiomatized [Men79] theory in
which one can express all the meta-assertions (1) above, but cannot prove any false ones.

3Of course, one can prove in a mere fragment of first-order arithmetic that any standard, textbook,
universal ϕ-program really is universal, and, hence, in particular, that it simulates e0.

3


