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LOGIC
THE NATURE OF LOGIC

A central concern of logic is to take a situation described
by a particular set of statements that are assumed, sup-
posed, or otherwise accepted as true and then to determine
what other statements must also be true in that situation.
These other true statements are implicit in that situation
and are, thus, said to be implied by the original ones.
Thus, logic can be used to make implicitly true statements
explicit. The original statements are called premises, the
“new” statements are called conclusions, and the process
of making conclusions explicit is called inference.

One natural criterion for such inference is to be truth
preserving. Deductive logic employs inferential methods
that achieve this goal: A deductive argument—a set of
premises and a conclusion inferred from them—is said to
be valid iff any situation in which the premises are (as-
sumed to be) true is thereby also a situation in which the
conclusion is (assumed to be) true.

‘The rules for determining when a statement is truein a
situation are among the concerns of semantics. A valid
argument whose premises are in fact true is said to be
sound. However, the determination of the actual truth
value of a given statement is beyond the scope of both
logic and semantics; it is either subject-matter specific or
else depends on observation (empirical investigation). It
should be noted that “actual truth,” or correspondence to
“facts” in the actual world, is not required. Statements
can merely be assumed to be true, or taken as if true, and
deduction proceed from there.

The rules for inferring a statement from other state-
ments can be arbitrary relations among statements serv-
ing as premises and conclusions. The study of such rules is
among the concerns of syntax. It is a not always reachable
ideal of logic that syntactic and semantic methods should
“overlap”:

1. that all statements syntactically inferrable from
others (ie, those conclusions that follow from prem-
ises according to rules of inference) also be validly
inferrable from them, that is, that the conclusions
be true if the premises are;

2. that all statements semantically inferrable from
others (including those that are tautologies—true
in all situations) be syntactically inferrable from
them (or be theorems).

A perfect overlap, in which both 1 and 2 hold, is referred to
as completeness (qv) of the logic in question.

SYSTEMS OF LOGIC

Traditionally, systems of logic have been classified as ei-
ther inductive or deductive. Inductive logics employ infer-
ential methods that can fall short of truth preservation.

LOGIC 851

They are used for reasoning in situations where there is
incomplete information, such that only statistical or pro-
visional conclusions can be drawn. For example, inductive
inference (qv) might only guarantee that a conclusion is
highly likely to follow from given premises. Nonmono-
tonic logics can be considered to fall under this category.

Besides the standard propositional and predicate
logics, there are several varieties of deductive logics:
Modal logics deal with the concepts of necessity and possi-
bility; epistemic and doxastic logics deal with the concepts
of knowledge and belief, respectively; deontic logics deal
with moral notions such as obligation and permission; ero-
tetic logics are the logics of questions; and there are also
several logics of commands. Relevance logics and logics of
counterfactual conditionals deal with more subtle analy-
ses of the if—then connective. (Relevance logic is histori-
cally related to the development of modal logic.) Deduc-
tive logics need not be limited to the two truth values of
truth and falsity: There are many-valued logics and logics
with truth value “gaps” (for dealing with statements
whose truth values are not determinable). Nor need de-
ductive logics be limited to what actually exists or
whether anything exists: There are logics of nonexistent
objects (including fictional objects), logics for dealing with
inconsistent situations (Rescher and Brandom, 1979), and
free logics (logics that are free of existence presupposi-
tions).

Discussions of many of these logics and references to
the literature may be found in the articles on logic in this
encyclopedia. An especially good survey is Gabbay and
Guenthner (1983), and issues of the Journal of Philosophi-
cal Logic frequently contain articles of relevance to AL

LOGIC AND ARTIFICIAL INTELLIGENCE

The relevance of logic to Al should be clear. First, logic is
at the heart of reasoning, and reasoning is at the heart of
intelligence. Since so much is known about the nature of
logical reasoning, and since its algorithmic nature has
been well-studied, it was one of the earliest and most suc-
cessful targets of Al researchers [eg, the Logic Theorist
(Newell and co-workers, 1963) and the method of resolu-
tion (qv) (Robinson, 1979)]. Second, the wide variety of
systems of logic offers an equally wide variety of formats
for representing information (together with built-in infer-
ence mechanisms). Thus, the expressive power of various
logics has become one of the central aspects of the field of
knowledge representation (qv).

Because actual human reasoning is often not logical
(Kahneman, Slovic, and Tversky, 1982) and because some
researchers have perceived or misperceived standard logic
to be overly formal or limiting, several Al researchers
have disdained the use of logic. This has given rise to what
has been called the “neat—scruffy debate.” In a survey
article, Kolata (1982) characterized these two positions as
follows: The so-called neat approach to Al “is to design
computer programs to reason according to well worked out
languages of mathematical logic, whether or not that is
actually the way people think”; John McCarthy and Pa-
trick Hayes are among the leading proponents of this ap-
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proach. The so-called scruffy “approach is to try to get
computers to imitate the way the human mind works
which . . . is almost certainly not with mathematical
logic;” Marvin Minsky and Roger Schank are among the
leading proponents of this approach. Thus, neatness is
associated with formality, mathematics, and logic, and
scruffiness is associated with psychological validity.
Scruffy methods are attacked as being not well-defined,
whereas neat methods are attacked as being overly de-
fined, hence not flexible enough. Neat methods are seen as
artificial and unable to handle certain phenomena, such
as default reasoning or nonmonotonicity; yet surely any
realm that is amenable to algorithmic treatment is
thereby formalizable. On the scruffy side, automatic theo-
rem provers (see THEOREM PROVING) and general problem
solvers (see ProBLEM soLviNG) are objected to on the
grounds that they are not intelligent or that they are too
general; as one neat-sympathizer paraphrases the scruffy
position, “classical theorem-provers know very little
about what to do, and are incapable of being told it”
(Hayes, 1977). On the neat side, logic, because of its se-
mantics, is considered to be “the most successful precise
language ever developed to express human thought and
inference” (Hayes, 1977). Logic “justifies inferences,”
whereas a processor “performs inferences” (Hayes, 1977).
The two are independent, and the way in which the pro-
cessor infers need not be an automated theorem prover.
The neat—scruffy dispute overlaps another dispute about
the goals of Al: so-called weak Al tries to “simulate” hu-
man intelligent behavior without attempting to do it in
precisely the way humans do, without attempting to be
psychologically accurate; so-called strong Al tries to “em-
ulate” human intelligent behavior, to be psychologically
accurate (Searle, 1980). Thus, perhaps, the real issue in
the neat—scruffy debate is a dispute over the level at
which logic or psychology enters into the analysis and
solution of problems in Al [But see Cherniak (1984) for a
recent argument concerning computational limitations on
neatness, and see Levesque (1987), Nilsson (1991), and
Birnbaum (1991) for recent neat—scruffy debates.]

GUIDE TO LOGIC ARTICLES IN THIS ENCYCLOPEDIA

The following articles provide more references and more
detailed discussions of logic, reasoning, and inference, and
their relations to Al:

Abduction
Argument comprehension
Bayesian inference

Logic programming
Logic, propositional
Mental models

methods Meta-knowledge,
Belief revision meta-rules, and
Belief representation meta-reasoning

systems Parallel logic
Church’s thesis programming languages
Circumscription Presupposition
Completeness Problem solving

Reasoning, case-based
Reasoning, causal

Constraint logic
programming

Decision theory
Deductive database
systems

Fuzzy sets and fuzzy logic:

an overview
Fuzzy logic: applications
to natural language
Fuzzy sets and fuzzy logic
Induction, mathematical
Inductive inference
Inheritance hierarchy
Knowledge representation
Logic and depiction
Logic, conditional
Logic, higher order
Logic, modal
Logic, order sorted
Logic, predicate

Reasoning, commonsense

Reasoning, default

Reasoning, memory-based

Reasoning, nonmonotonic

Reasoning, plausible

Reasoning, spatial

Reasoning, temporal

Recursion

Resolution

Rule-based systems

Self-reference

Semantic theory

Theorem proving

Truth maintenance

Turing machines

Unification

Z-Modal quantification
logic
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LOGIC AND DEPICTION

Logic-based tools have been widely used in artificial intel-
ligence. Many cognitive areas, for example, language un-
derstanding, robot planning, commonsense reasoning,

_and problem solving (qv) have benefited from various uses
of logic. However, the perceptual areas, such as computa-
tional vision have not generally been seen as amenable to
logic-based approaches. In this article, a theory of depic-
tion is outlined within a framework for image interpreta-
tion tasks (Reiter and Mackworth, 1989). The theory has
two sets of goals: scientific and engineering. The scientific
goals include understanding the concept of an interpreta-
tion of an image and understanding the role constraint
satisfaction (qv) plays in image interpretation. The engi-
neering goals include the provision of tools for specifying
the behavior of image interpretation systems and tools for
verifying that a system meets its specification. Potential
benefits include the advantages of a common framework
for vision and graphics systems and the provision of more
modular and portable systems.

The methods proposed are based on a two-domain the-
ory of perception. For any perceptual task at least two
domains must be distinguished: the signal domain and the
referent domain (or, for deconstructionists, the signifier
and the signified). For vision the image domain and the
scene domain are initially distinguished. All objects are
either image objects or scene objects. Given those domains
axioms can be written down in, say, first-order logic, con-
straining the image and scene objects. For a given applica-
tion there are three classes of general axioms: image axi-
oms I, scene axioms S, and mapping axioms M. Axioms in
I mention only image domain objects and their attributes
and relations. Similarly, axioms in S are confined to de-
scribing legitimate scenes. Each axiom in M mentions ob-
jects in both domains; it may use a reserved predicate
A(i,s) signifying that image object i depicts scene object s.
If the theory is to be used for image interpretation axioms
that describe the particular image to be interpreted, Iy are
also required. The theory states that an interpretation of
an image corresponds to a logical model of the set of axi-
oms I, UI U S U M. This provides a formal task specifica-
tion for image interpretation. This specification is then
refined by model-preserving transformations to a prov-
ably correct implementation that computes all or some of
the interpretations of the image.

The theory is illustrated with a specification in first-
order logic of a simple sketch map interpretation task.
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Consider the sketch maps shown in Figure 1. For this task
each region must depict a land area or water area and
each chain of line segments must depict a road, a river, or
a shore. Roads and rivers appear only on land; shores
separate land and water. Rivers must flow into other riv-
ers or shores. Given that background knowledge the im-
age in Figure 1a depicts one of three possible scenes. Ei-
ther regions r; and ry both depict land while chain ¢,
depicts a road; r, depicts land (an island), r; depicts water,
and ¢, depicts a shore; or finally, r, depicts water (a lake),
ro depicts land, and c; depicts a shore. For this application
I consists of taxonomy axioms (eg, “each image object is a
chain or a region”). I, consists of a description of the image
in terms of primitive predicates (“chain c; bounds region
r”) and closure axioms (eg, “c; is the only chain”). S con-
gists of taxonomy axioms (“each linear-scene-object is a
road, a river, or a shore”), and general scene knowledge
(“the inside area of a shoreline is land if and only if its
outside is water” and “rivers lead to other rivers or
shores”). The mapping knowledge M includes axioms such
as “each image object i depicts a unique scene object a(i),”
“depiction holds only between image and scene objects,” “a
chain depicts a linear-scene-object,” and the like. Given
that specification it is possible to refine it to an equivalent
formula in propositional logic by eliminating the quantifi-
ers over finite domains and various other database-ori-
ented transformations. To find all the visual interpreta-
tions it is necessary only to find all the logical models of
that formula using standard SAT or CSP techniques (see
CONSTRAINT SATISFACTION).

For the map domain these models all share in common
fixed extensions of all the image, scene, and mapping
predicates except ROAD(), RIVER(), SHORE(.),
LAND(.) and WATER(.). For the example in Figure 1a the
three models correspond to the descriptions:

LAND(a () \ LAND(a (r3)) A\ ROAD(0 (c1))
WATER(a(ry)) /\ LAND(o (r3)) \ SHORE (o (¢1))
LAND(a (r))) \ WATER(o (r9)) \ SHORE(o (c1))

For the map shown in Figure 1b there are four possible
interpretations corresponding to:

LAND(c (r)) \ LAND(a (r)) \ ROAD(c (cy))
A ROAD(a (cp)) N ROAD(a (c3))

€3

(a) (b)
Figure 1. Two simple maps.
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WATER(o (ry)) N\ LAND(o (rp)) N\ SHORE(o(c,))
AN ROAD(a(cg)) N ROAD(a {(c3))

WATER(o (ry)) /\ LAND(o (rp)) \ SHORE (o (c1))
A RIVER(a(cg)) N\ ROAD(0 (c3))

WATER( (o (ry)) /N LAND(o (ry)) N\ SHORE (o (cy))
AN RIVER(a(cg)) N\ RIVER(o (c3))

Image interpretation is just an instance of the task of
evidential reasoning. In general, suppose there is a sys-
tem S whose system description is available as a set of
first-order sentences SD. Given a set of observations of the
system Obs the task is to determine a description of the
system’s internal state State chosen from a set of possible
internal states States. This characterization of evidential
reasoning tasks covers, for example, both image interpre-
tation and diagnosis.

There are essentially two competing logical frame-
works for solving such tasks: consistency based and ab-
ductive (Poole, 1989a). The consistency-based approach
allows any State € States such that SD U Obs U {State} is
consistent (Reiter, 1987; de Kleer and co-workers, 1990).
The abductive approach imposes the stronger require-
ments that SD U {State} be consistent and SD U {State}
Obs. The logical framework for depiction and image inter-
pretation described above is a consistency-based theory.
The abductive approach is typified by Theorist (Poole and
co-workers, 1987). Poole (1989b) describes how to imple-
ment in Theorist a system for map interpretation using
essentially the same image domain, scene domain, and
mapping knowledge.
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LOGIC, CONDITIONAL

Conditional logic examines the proof theory and seman-
tics for ordinary conditionals in natural language. Con-
temporary work in this area is motivated by the so-called
paradoxes of material implication and by the apparent
non truth-functionality of many ordinary conditionals. A
standard formal language for representing the logical
structure of conditionals has been developed, and several
conditional logics have gained widespread attention. Both
possible worlds and probabilistic semantics have been pro-
posed as alternatives to the classic truth functional ac-
count of conditionals. Within the artificial intelligence
community there have been several efforts to develop non-
monotonic reasoning systems based on conditional logic
(see REASONING, NONMONOTONIC).

PROBLEMS WITH MATERIAL IMPLICATION

The typical conditional has the structure “If A, then C”
where A is called the antecedent and C the consequent of
the conditional. The classic treatment of conditionals
translates ordinary language conditionals into material
conditionals. A material conditional, represented A O C,
is a compound expression of which the truth value is a
function of the truth values of its antecedent and conse-
quent as defined by Table 1. A D C is true whenever A is
false or C is true, and this is the source of the so-called
paradoxes of implication. Where A is the false sentence
“Shakespeare didn’t write Hamlet” and C is the sentence
“Someone other than Shakespeare wrote Hamlet,” both
the material conditional A O C and the corresponding
English conditional

1. If Shakespeare didn’t write Hamlet, then someone
else wrote Hamlet

are true. But if the mood of sentence 1 is changed from
indicative to subjunctive, the resulting English condi-
tional

2. If Shakespeare had not written Hamlet, then some-
one else would have written Hamlet.

is at least improbable. Perhaps indicative conditionals can
be represented as material conditionals, but most condi-
tionals in the subjunctive mood cannot. The problem is not
that the material conditional is the wrong truth function
for representing English subjunctive conditionals; these
conditionals cannot be represented by any truth function.
Consider the following four conditionals:

Table 1.
A C ADC
t t t
t f f
f t t
f f t




