Advanced MPI

M. D. Jones, Ph.D.

Center for Computational Research
University at Buffalo
State University of New York

High Performance Computing |, 2009

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 1/80

The Need For Derived Datatypes

@ Optimal message construction for mixed data types (our examples
thus far have been of a uniform type, contiguous in memory - not
exactly real world conditions).

@ It might be tempting to send messages of different type separately
- but that incurs considerable overhead (especially for small
messages) leading to inefficient message passing.

@ Type casting or conversion is hazardous, and best avoided.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 3/80

User Defined Datatypes
Derived Datatypes

A derived datatype consists of two things:
@ A sequence of primitive types

@ A sequence of integer (byte) displacements, not necessarily
positive, distinct, or ordered.

The type map is this pair of sequences,
typemap = {(typeo, dispo), (typeq, dispy), . .., (typey_y,dispy_1)}, (1)
with the type signature being the sequence of primitive types
typesig = {typeg, typey, ..., typey_1}, (2)

taken together with a base memory address, the type map specifies a
communication buffer.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 4/80

User Defined Datatypes Datatype Construction

Datatype Constructors

This is a sampling of the most-commonly used routines that are

available (there are many more ...) in rough order of increasing
complexity:

MPI_TYPE_DUP

MPI_TYPE_DUP (oldtype, newtype)
oldtype (IN), datatype (handle)
newtype (OUT), copy of type (handle)

@ Simple duplication (more useful for library writers)

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 5/80

User Defined Datatypes Datatype Construction

MPI_TYPE_CONTIGUOUS

MPI_TYPE_CONTIGUOUS (count,oldtype, newtype)
count (IN), replication count (int)
oldtype (IN), old datatype (handle)
newtype (OUT), new datatype (handle)

@ duplication and replication (by concatenation) of datatypes.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 6/80

User Defined Datatypes Datatype Construction

MPI_TYPE_VECTOR

MPI_TYPE_VECTOR (count,blocklen, stride, oldtype,
newtype)

count (IN), number of blocks (int)

blocklen (IN), number elements in each block (int)
stride (IN), spacing (in elements) between start of each block

(int)
oldtype (IN), old datatype (handle)
newtype (OUT), new datatype (handle)

@ Replication of datatype into equally spaced (equal stride = extent
of oldtype) blocks

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 7180

User Defined Datatypes Datatype Construction

MPI_TYPE_CREATE_HVECTOR

MPI_TYPE_CREATE_HVECTOR (count,blocklen, stride,
oldtype, newtype)

count (IN), number of blocks (int)
blocklen (IN), number elements in each block (int)
oldtype (IN), old datatype (handle)
newtype (OUT), new datatype (handle)

(
(
stride (IN), spacing (in bytes) between start of each block (int)
(
(

@ replicate a datatype into equally spaced locations, separated by
byte stride (bytes for HVECTOR, extents of the old datatype for
VECTOR).

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 8/80

User Defined Datatypes Datatype Construction

MPI_TYPE_INDEXED

MPI_TYPE_INDEXED (count,array_blocklen,
array_disp,oldtype, newtype)

count (IN), number of blocks (int)
array_blocklen (IN), number of elements per block (int array)
array_disp (IN), displacements (in elements) for each block (int array)
oldtype (IN), old datatype (handle)
newtype (OLD), new datatype (handle)

@ Indexed allows the user to specify a noncontiguous data layout
where separations between blocks is not the same (unequal
strides).

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 9/80

User Defined Datatypes Datatype Construction

MPI_TYPE_CREATE_STRUCT

MPI_TYPE_CREATE_STRUCT (count,array_blocklen,
array_disp, array_type,newtype)

count (IN), number of blocks (int)
array_blocklen (IN), number of elements per block (int array)
array_disp (IN), displacements (in elements) for each block (int array)
array_type (IN), type of elements in each block (handle array)
newtype (OUT), new datatype (handle)

@ the most general type constructor, allowing each block to consist
of replications of different datatypes

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 10/80

User Defined Datatypes Datatype Construction

... and many more ... MPI_TYPE_CREATE_INDEXED_BLOCK
(constant blocksize, arbitrary displacements),
MPI_TYPE_CREATE_HINDEXED(block displacements specified in
Bytes)

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 11/80

User Defined Datatypes Datatype Inquiry & Management (Accessors)

Datatype Accessors

Routines to determine information on derived datatypes (they will work
on predefined datatypes as well, of course):

MPI_TYPE_GET_EXTENT (datatype, lb, extent)

datatype (IN), datatype on which to return info (handle)
b (OUT), lower bound of datatype (int)
extent (OUT), extent of datatype (int)

@ “size” of the datatype, i.e. use MPI_TYPE_GET_EXTENT for MPI
types, rather than C’'s sizeof (datatype)

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 12/80

User Defined Datatypes Datatype Inquiry & Management (Accessors)

MPI_TYPE_SIZE (datatype, size)
datatype (IN), datatype on which to return info (handle)
size (OUT), datatype siz, in bytes (int)

@ total size, in Bytes, of entries in datatype signature

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 13/80

User Defined Datatypes Using Derived Datatypes

Committed Datatypes

A derived datatype must be committed before use, once committed, a
derived datatype can be used as input for further datatype
construction.

MPI_COMMIT (datatype)
datatype (INOUT), datatype to be committed (handle)

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 14 /80

User Defined Datatypes Using Derived Datatypes

and a routine to free up a datatype object:

MPI_TYPE_FREE
MPI_TYPE_FREE (datatype)

datatype (INOUT), datatype to be freed (handle)

and there are routines for greater control (and more complexity) ...
MPI_GET_ADDRESS (find the address of a location in memory),
MPI_GET_ELEMENTS (number of primitive elements received),
MPI_TYPE_CREATE_RESIZED (the ability to resize an existing user
defined datatype),

MPI_TYPE_GET_TRUE_EXTENT (overlook “artificial” extents)...

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 15/80

User Defined Datatypes Derived Type Example

A Derived Datatype Example

double a[100][100]; /+* matrix, order 100 =/
int disp[100],blocklen[100],i,dest,tag;
MPI_Datatype upperTri; /« upper triangular part of the matrix =/

for (i=0,i<=99;i++) {
disp[i] = 100%i+i;
blocklen[i] = 100—i;
}

MPI_Type_indexed (100, blocklen ,disp ,MPI_DOUBLE,& upperTri); /*x create datatype =/
MPI_Type_commit(&upperTri);
MPI_Send(a,1,upperTri,dest,tag ,MP. COMM WORLD) ;

@ A handle to a derived datatype can appear in sends/receives
(including collective ops).

@ Note that the predefined MPI datatypes are just special cases of a
derived datatype. For example, MPI_FLOAT is a predefined
handle to a datatype with type map {(float, 0)}.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 16/80

Message Packing
Packing it In

MPI_PACK

MPI_PACK (in_buffer, in_count, datatype,
out_buffer,out_size,pos, comm)

in_buffer (IN), input buffer (choice)
in_count (IN), number of input components (int)
datatype (IN), datatype of each input component (handle)
out_buffer (OUT), output buffer (choice)
out_size (IN), output buffer size, in bytes (int)
pos (INOUT), current positionin buffer, in bytes (int)
comm (

IN), communicator for packed messages (handle)

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 18/80

Message Packing

MPI_UNPACK

MPI_UNPACK (in_buffer,in_size,pos,out_buffer,
out_count,datatype, comm)

N), input buffer (choice)
IN), input buffer size, in bytes (int)
INOUT), current position in buffer, in bytes (int)

in_buffer (I
in_size (
pos (
out_buffer (OUT), output buffer (choice)
out_count (IN), number of components to unpack (int)
datatype (
comm (

IN), datatype of each input component (handle)
IN), communicator for packed messages (handle)

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 19/80

Message Packing

These routines (MPI_PACK, MPI_UNPACK) allow you to fill a buffer
with non-contiguous data in a streamlined fashion - the following
routine will tell you how much space the message will occupy, if you
want to manage your buffers:

MPI_PACK_SIZE
MPI_PACK_SIZE (in_count, datatype, comm, size)

in_count (IN), count argument to packing call (int)
datatype (IN), datatype argument to packing call (handle)
comm (IN), communicator argument to packing call (handle)

(
(
size (OUT), upper bound on size of packed message, in bytes
(int)

The data format used for packed data is implementation dependent.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 20/80

Message Packing

An Example of Message Packing

int my_i,pos=0;
char a[100],buff[110];
MPI|_Status status;

if (myrank == 0) {
MPI_Pack(&my_i,1 ,MPL_INT, buff ,110,&pos ,MPl. COMM_WORLD) ;
MPI_Pack(a,100,MPI_CHAR, buff ,110,&pos ,MPI COMM WORLD) ;
MPI_Send(buff ,pos,MPI_PACKED, 1,0 ,MPI.COMM WORLD) ;

}
else
MPI_Recv (buff,110,MPI_PACKED, 1,0 ,MPl COMM WORLD,& status);

MPI_Unpack(buff,110,&pos,&my_i,1 ,MPI_INT ,MP|_COMM WORLD) ;
MPI_Unpack(buff,110,&pos,a,100,MPI_CHAR,MPI_ COMM WORLD) ;

}

D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 21/80

Derived Datatypes vs. Pack/Unpack

@ The data format used for packed data is implementation
dependent.

@ Messages are the same size

@ May take longer to access non-contiguous memory of derived
types

@ Packing executes a function call for each packed item, and
possibly additional memory-to-memory copies (packing has to
copy the data, derived types need to store the layout). Most
implementations can expect better performance from derived

types.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 22/80

Communicators & Process Topologies Communicators

MPI Communicators

@ Provides a separate communication space, especially useful for
libraries and modules (can use their own numbering scheme).

@ If you are uncomfortable dealing with multiple spaces for
communications, just use a single one - the pre-defined
MPI_COMM_WORLD.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 24/80

Communicators & Process Topologies Communicators

@ Two types of communicators:
@ intra-communicator - for comms within a group of processes. Can
also have a topology describing the process layout.
@ inter-communicator - for comms between two disjoint groups of

processes. No topology.

Functionality Intra- | Inter-
Number of groups involved | 1 2
Communication Safety Y Y
Collective Ops Y Y(MPI-2)
Topologies Y N
Caching Y Y

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 25/80

Communicators & Process Topologies Communicators

More Communication Domains

@ You can think of a communicator as an array of links to other
communicators.
@ Each intra-group communication domain consists of a set of
communicators such that:
o the links form a complete graph in which each communicator is
linked to all communicators in the set (including itself)
e the links have consistent indices, for each communicator the i-th
link points to the communicator for process i.
@ Each process holds a complete list of group members - not
necessarily a scalable design.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009

26/80

Communicators & Process Topologies Groups

Key Group Routines

MPI_COMM_GROUP
MPI_COMM_GROUP (comm, group)

comm (IN), communicator (handle)
group (OUT), group corresponding to comm (handle)

@ obtain the group handle for a given communicator - new groups
have to be built from old ones (they can not be built from scratch)

@ returned handle can then be used as input to MPI_GROUP_INCL,
MPI_COMM_CREATE, MPI_GROUP_RANK.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 27/80

Communicators & Process Topologies Groups

MPI_GROUP_INCL

MPI_GROUP_INCL (group, n, ranks, newgroup)
group (IN), group (handle)

n (IN), number of elements in array ranks (and size of
newgroup) (int)
ranks (IN), ranks of processes in group to appear in newgroup
(int array)

newgroup (OUT), new group derived from input, in order defined by
ranks (handle)

@ creates a new group whose i-th process had ranks]i] in the old
group
@ n=0 results in newgroup having the value MPI_GROUP_EMPTY.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 28/80

Communicators & Process Topologies Groups

MPI_GROUP_EXCL

MPI_GROUP_EXCL (group, n, ranks, newgroup)
group (IN), group (handle)

n (IN), number of elements in array ranks (and size of
newgroup) (int)
ranks (IN), ranks of processes in group to appear in newgroup
(int array)

newgroup (OUT), new group derived from input, in order defined by
ranks (handle)

@ newgroup created from group by deleting processes with ranks
ranks[0]...ranks[n-1]

@ n=0 newgroup is identical to group

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 29/80

Communicators & Process Topologies Groups

MPI_GROUP_RANK

MPI_GROUP_RANK (group, rank)
group IN, group (handle)
rank OUT, rank of the calling process in group (int)

@ returns the rank of the calling process in group

@ if calling process is not a member of group, MPI_UNDEFINED is
returned.

MPI_GROUP_SIZE

MPI_GROUP_SIZE (group, size)
group (IN), group (handle)
size (OUT), number of processes in group (int)

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 30/80

Communicators & Process Topologies Groups

MP|_GROUP_FREE

MPI_GROUP_FREE (group)
group (INOUT), group (handle)

@ mark group fro deallocation
@ handle group is set to MPI_GROUP_NULL

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 31/80

Communicators & Process Topologies Groups

Key Communicator Routines

MPI_COMM_CREATE
MPI_COMM_ CREATE (comm, group, newcomm)

comm (IN), communicator (handle)
group (IN), group, a subset of the group of comm
newcomm (OUT), new communicator (handle)

@ must be executed by all processes in comm
@ returns MPI_COMM_NULL to processes not in group

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI

HPC-I Fall 2009

32/80

Communicators & Process Topologies Groups

Our old friend, but in a new context ...
MPI_COMM_RANK

MPI_COMM_RANK (comm, rank)
comm (IN), communicator (handle)
rank (OUT), rank of the calling process in group of comm (int)

@ if comm is an intra-communicator, rank is the rank of the calling
process

@ rank is relative to the group associated with comm

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 33/80

Communicators & Process Topologies Groups

Primary API call for forming new communicators:

MPI_COMM_SPLIT

MPI_COMM _SPLIT (comm, color, key, newcomm)
comm (IN), communicator (handle)
color (IN), control of subset assignment (int)
key (IN), control of rank assignment (int)
newcomm (OUT), new communicator (handle)

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 34/80

Communicators & Process Topologies Groups

MPI_COMM_SPLIT (comm, color, key, newcomm):
@ partitions group associated with comm into disjoint subgroups,
one for each value of color.

@ a collective call, but each process can provide its own color and
key

@ a color of MPT_UNDEF INED results in a newcomm of
MPI_COMM_NULL

@ for same key values, rank in new communicator is relative to ranks
in the old communicator

@ a very useful call for breaking a single communicator group into a
user controlled number of subgroups. Multigrid, linear algebra,
etc.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 35/80

Communicators & Process Topologies Groups

Master/Server Example Using Group/Communicator

Routines

We can use the communicator and group routines to lay out a simple
code for performing master/worker tasks:

@ Master is process zero, rest are workers

@ Create a group of workers by eliminating server process
@ Create communicator for workers

@ Master/worker task code

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 36/80

©CoONOOOAWN =

Communicators & Process Topologies Groups

int ServerTask,myRank, myWorkerRank;
MPI_Comm comm_workers ;
MPI_Group group_world , group_workers;

MPI_Comm_rank (MPl_COMM_WORLD, &myRank) ;

ServerTask = 0;

MPI_Comm_group (MPI_COMM_WORLD, & group_world) ;
MPI_Group_excl(group_world ,1,ServerTask,&group_workers);
MPI_Comm_create (MPl_ COMM_WORLD, & group_workers ,&comm_workers) ;
MPI_Group_free(&group_workers); /= if no longer needed x/

if (myRank == ServerTask) ({
RunServer ();
} else {

MPI_Comm_rank (comm_workers,&myWorkerRank) ;
WorkerBees () ;

D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 37/80

Communicators & Process Topologies Topologies

Virtual Topologies

@ An extra, optional attribute for an intra-communicator
@ Convenient naming mechanism for processes in a group

@ Many applications can benefit from a 2d or 3d topological
communication pattern

@ Possible mapping of runtime processes to available hardware
@ “Virtual” topology is all that we will discuss - machine independent

@ Two main topology types in MPI - Cartesian (grid) and graphs -
while graphs are the more general case, majority of applications
use regular grids

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 38/80

Communicators & Process Topologies Topologies

Topology Benefits

Key benefits of MPI topologies:

@ Applications have specific communication patterns (e.g. a 2D
Cartesian topology suits 4-way nearest neighbor communications)

@ Topologies are advisory to the implementation - topological
aspects of the underlying hardware may offer performance
advantages to various communication topologies

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 39/80

Communicators & Process Topologies Topologies

Key Topology Routines

MPI_CART_CREATE (comm_old, ndims, dims, periods,
reorder, comm_cart)

comm_old (IN), input communicator (handle)

ndims (IN), dimensions in Cartesian grid (int)

dims (IN), processes in each dimension (int array)
periods (IN), periodic (true) in each dim (logical array)
reorder (IN), ranks may be reordered (true) or not (logical)

(

comm_cart (OUT), comm. with new topology (handle)

@ Must be called by all processes in the group, extras will end up
with MPT_COMM_NULT.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 40/80

Communicators & Process Topologies Topologies

MPI_CART_COORDS

MPI_CART_COORDS (comm, rank, maxdims, coords)
comm (IN), communicator with Cartesian structure (handle)
rank (IN), rank of a process within group comm (int)
maxdims (IN), length of vector coord in the calling program (int)

coords (OUT), array containing Cartesian coordinates of
specified process (int array)

@ rank to coordinates translator (the inverse of MPI_CART_RANK)

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 41/80

Communicators & Process Topologies Topologies

MPI_CART RANK

MPI_CART_RANK (comm, coords, rank)
comm (IN), communicator with Cartesian structure (handle)

coords (IN), specifies the Cartesian coordinates of a process (int
array)

rank (OUT), rank of specified process (int)

@ coordinates to rank translator (the inverse of MPT_CART_COORDS).

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 42/80

Communicators & Process Topologies Topologies

MPI_CART_SUB

MPI_CART_SUB (comm, remain_dims, newcomm)
comm (IN), communicator with Cartesian structure (handle)
remain_dims (IN), i-th entry = true, then i-th dimension is kept in the
subgrid (array of logicals)
newcomm (OUT), communicator containing subgrid that includes
calling process (handle)

@ A collective routine to be called by all processes in comm

@ Partitions communicator group into subgroups that form lower
dimensional Cartesian subgrids

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 43/80

Communicators & Process Topologies Topologies

MPI_CARTDIM_GET

MPI_CARTDIM_GET (comm, ndims)

comm (IN), communicator with Cartesian structure (handle)
ndims (OUT), number of dimensions of the structure (int)

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 44 /80

Communicators & Process Topologies Topologies

MPI_CART GET

MPI_CART_GET (comm, maxdims, dims, periods, coords)
comm (IN), communicator with Cartesian structure (handle)
maxdims (IN), length of vector dims, periods, coords in calling
program (int)
dims (OUT), number processes in each Cartesian dim (int
array)
periods (OUT), periodicity in each dim (logical array)

coords (OUT), coordinates of calling process in structure (int
array)

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 45/80

Communicators & Process Topologies Topologies

MPI_CART_SHIFT

MPI_CART_SHIFT (comm,direction,displ,
rank_source, rank_dest)

comm (IN), communicator with Cartesian structure (handle)
direction (IN), coordinate dimensions of shift (int)
displ (IN), displacement (>0 for up, <O down) (int)
rank_source (OUT), rank of source process (int)
rank_dest (OUT), rank of destination process (int)

@ direction has range [0,..,ndim-1] (e.g. for 3D from 0 to 2)

@ if destination is out of bound, a negative value is returned
(MPI_UNDEFINED), which implies no periodicity in that direction.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 46 /80

Communicators & Process Topologies Topologies

Cartesian Topology Example

Simple example to illustrate Cartesian topology:
@ Construct a 2D, 4x4 grid

@ Treat without periodic boundaries (e.g. as a domain
decomposition with fixed boundaries)

@ Construct list of SENDRECV pairs for each process in the grid

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 47 /80

O©CoONOOOA~WN =

Communicators & Process Topologies Topologies

#include "mpi.h"
#include <stdio.h>
#define SIZE 16
#define UP 0
#define DOMN 1
#define LEFT 2
#define RIGHT 3

int main(int argc,char xxargv)
{

int numtasks, rank, source, dest, outbuf, i, tag=1,
inbuf[4]={MPI_PROC_NULL,MPI_PROC_NULL,MPI_PROC_NULL,MPI_PROC_NULL,} ,
nbrs[4], dims[2]={4,4},
periods[2]={0,0}, reorder=0, coords[2]; /% not periodic, no reordering =/

MPI_Request reqs[8];
MPI_Status stats[8];
MPI_Comm cartcomm ;

MPI_Init(&argc,&argv);
MPI_Comm_size (MPI. COMM_WORLD, &numtasks);

if (numtasks == SIZE) {
MPI_Cart_create (MPL.COMM WORLD, 2, dims, periods, reorder, &cartcomm);
MPI_Comm_rank (cartcomm, &rank);
MPI_Cart_coords (cartcomm, rank, 2, coords);
MPI_Cart_shift (cartcomm, 0, 1, &nbrs[UP], &nbrs[DOWN]); /% s/r +1 shift in rows =/
MPI_Cart_shift(cartcomm, 1, 1, &nbrs[LEFT], &nbrs[RIGHT]); /*x s/r +1 shift in cols =/

D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 48/80

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Communicators & Process Topologies Topologies

outbuf = rank;

for (i=0; i<4; i++) {
dest = nbrs[i];
source = nbrs[i];
MPI_lsend(&outbuf, 1, MPI_INT, dest, tag,
MPI_COMM_WORLD, &reqs[i]);
MPI_lrecv(&inbuf[i], 1, MPI_INT, source, tag,
MPI_COMM_WORLD, &reqs[i+4]);
}

MPI_Waitall (8, reqgs, stats);

printf ("rank= %3d coords= %3d %3d neighbors(u,d,|,r)= %3d %3d %3d %3d\n",
rank,coords[0],coords[1],nbrs[UP], nbrs [DOWN], nbrs[LEFT],

nbrs[RIGHT]);
printf ("rank= %3d inbuf(u,d,l,r)= %3d %3d %3d %3d\n",
rank, inbuf [UP],inbuf [DOMN], inbuf [LEFT], inbuf[RIGHT]);
}
else

printf ("Must specify %d processors. Terminating.\n",SIZE);

MPI_Finalize ();
}

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 49/80

Communicators & Process Topologies

Topologies

Cartesian Topology Example lllustrated

rank

dir=1,disp=1 dir=0,disp=1
X
0 1 2 3
0,0) 0,1) 0,2) 0,3)
g VT W M
4 5 6 7
(1,0) 1,1) 1,2) 1,3)
s - - T S T 6
8 9 10 11
2,0) 2,1 (2,2) (2,3)
9/- 10/8 11/9 -/10
12/4 13/5 14/6 15/7
12 13 14 15
3,0) 3,1 3,2) 33)
g BT N3 14

M. D. Jones, Ph.D. (CCR/UB)

Advanced MPI

coords

HPC-I Fall 2009

50/80

Communicators & Process Topologies Topologies

Running The Topology Example

1 [bono:~/d_mpi—samples]$ gsub —q debug —Inodes=8:ppn=2,walltime=00:15:00 —|I
2 | gsub: waiting for job 566107.bono.ccr.buffalo.edu to start

3 | qgsub: job 566107.bono.ccr.buffalo.edu ready

4

5 PBS Prologue

6 | PBS prologue script run on host c15n28 at Tue Sep 18 13:50:40 EDT 2007
7 | PBSTMPDIR is /scratch/566107.bono.ccr.buffalo.edu

8 | [c15n28:~]% cd $PBS_O_WORKDIR

9 | [c15n28:~/d_mpi—samples]$ module load mpich/gcc —3.4.6/ch_p4/1.2.7p1
10 [c15n28 :~/d_mpi— samples]$ mpiexec ./mpi—cart—ex

11 rank= 2 coords= 0 neighbors (u,d,l,r)= —1 6 1 3

12 | rank= 2 inbuf(u,d,l,r)= —1 6 1 3

13 |rank= 8 coords= 2 0 neighbors(u,d,l,r)= 4 12 1 9

14 rank= 8 inbuf(u,d,l,r)= 4 12 —1 9

15 rank= 14 coords= 3 2 neighbors(u,d,l,r)= 10 —1 13 15

16 rank= 14 inbuf(u,d,l,r)= 10 -1 13 15

17 | rank= 3 coords= 0 3 neighbors(u,d,l,r)= —1 7 2 -1

18 rank= 3 inbuf(u,d,l,r)= —1 7 2 —

19 |rank= 5 coords= 1 1 neighbors(u,d,|,r)= 1 9 4 6

20 |[rank= 5 inbuf(u,d,l,r)= 1 9 4 6

21 rank= 7 coords= 1 3 neighbors(u,d,|,r)= 3 11 6 —1

22 |rank= 7 inbuf(u,d,l,r)= 3 11 6 —1

23 |[rank= 15 coords= 3 3 neighbors(u,d,l,r)= 11 —1 14 —1

24 |rank= 15 inbuf(u,d,l,r)= 1M1 -1 14

25 | rank= 6 coords= 1 2 neighbors(u,d,!,r)= 2 10 5 7

26 |rank= 6 inbuf(u,d,l,r)= 2 10 5 7

27 rank= 10 coords= 2 2 neighbors(u,d,!,r)= 6 14 9 M

28 |rank= 10 inbuf(u,d,l,r)= 6 14 9 11

D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 51/80

29
30
31
32
33
34
35

37
38
39
40
41
42

Communicators & Process Topologies Topologies
rank= 12 coords= 3 neighbors (u,d, | ,r)= 8 —1 —1 18
rank= 12 inbuf(u,d,l,r)= 8 —1 —1 18
rank= 11 coords= 2 neighbors(u,d, | ,r)= 7 15 10 —1
rank= 11 inbuf(u,d,l,r)= 7 15 10 —1
rank= 0 coords= 0 neighbors(u,d, | ,r)= —1 4 —1 1
rank= 0 inbuf(u,d,l,r)= -1 4 -1 1
rank= 1 coords= 0 neighbors(u,d,l,r)= —1 5 0 2
rank= 1 inbuf(u,d,l,r)= —1 5 0 2
rank= 4 coords= 1 neighbors (u,d, | ,r)= 0 8 —1 5
rank= 4 inbuf(u,d,l,r)= 0 8 —1 5
rank= 9 coords= 2 neighbors (u,d, | ,r)= 5 13 8 10
rank= 9 inbuf(u,d,l,r)= 5 13 8 10
rank= 13 coords= 3 neighbors (u,d, | ,r)= 9 —1 12 14
rank= 13 inbuf(u,d,l,r)= 9 —1 12 14

D. Jones, Ph.D. (CCR/UB)

Advanced MPI

HPC-I Fall 2009

52/80

Environmental Tools & Utility Routines Process Startup

Process Startup

@ Single most confusing aspect of MPI for most new users

@ Implementation dependent! with many implementation specific
options, flags, etc.

@ Consult the documentation for the MPI implementation that you
are using.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 54 /80

Environmental Tools & Utility Routines Process Startup

Some Examples Using MPI Task Launchers

SGI Origin/Altix (intra-machine):

mpirun —np <np> [options] <progname> [progname options] I

MPICH-1 ch_p4 device:

mpirun —machinefile <filename> —np <np> [options] <progname> [args] I
Sun HPC Tools:

mprun —| ‘‘nodename [nproc] [,nodename [nproc],...] [options] <executable> [args]

IBM AIX POE:

poe ./a.out —nodes [nnodes] —tasks_per_node [ntasks] [options] I

OSC'’s PBS/Torque based mpiexec:

mpiexec [—pernode] [—kill] [options] <executable> [args] I

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 55/80

Environmental Tools & Utility Routines Inquiry Routines

Getting Implementation Info from MPI

MPI_GET_VERSION
MPI_GET_VERSION (version, subversion)

version (OUT), version number (int)
subversion (OUT), subversion number (int)

@ Not exactly critical for programming, but a nice function for
determining what version of MPI you are using (especially when
the documentation for your machine is poor).

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 56 /80

Environmental Tools & Utility Routines Inquiry Routines

Where am | running?

MPI_GET_PROCESSOR_NAME
MPI_GET_PROCESSOR_NAME (name, resultlen)

name (OUT), A unique specifier for the actual node (string)

resultlem (OUT), Length (in printable chars) of the reslut in name
(int)

@ returns the name of the processor on which it was called at the
moment of the call.

@ name should have storage that is at least
MPI_MAX_PROCESSOR_NAME characters long.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 57 /80

Environmental Tools & Utility Routines Timing & Synchronization

Timing & Synchronization

MPI_WTIME ()

@ double precision value returned representing elapsed wall clock
time from some point in the past (origin guaranteed not to change
during process execution time).

@ A portable timing function (try finding another!) - can be high
resolution, provided it has some hardware support.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 58 /80

Environmental Tools & Utility Routines Timing & Synchronization

Testing the resolution of MPT_WTIME:

MPI_WTICK()

@ double precision value returned which is the resolution of
MPI_WTIME in seconds.

@ hardware dependent, of course - if a high resolution timer is
available, it should be accessible through MPI_WTIME.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 59/80

Environmental Tools & Utility Routines Timing & Synchronization

Common MPI_Wtime usage:

double time0 ,time1;
time0 = MPI_Wiime ()
/;-code to be timed =/

time1 = MPI_Wtime ();

printf (*‘Time interval = %f seconds\n’’, timel—time0);

D. Jones, Ph.D. (CCR/UB)

Advanced MPI

HPC-I Fall 2009

60 /80

Environmental Tools & Utility Routines MPI Error Codes

More About MPI Error Codes

MPI_ERROR_STRING

MPI_ERROR_STRING (errorcode, string, resultlen)
(IN), Error code returned by an MPI routine (int)

string (OUT), Text that corresponds to errorcode (string)
O

UT), Length (in printable chars) of result returned in
string (int)

errorcode

resultlen

@ Most error codes in MPI are implementation dependent

@ MPI_ERROR_STRING provides information on the type of MPI
exception that occurred.

@ argument string must have storage that is at least
MPI_MAX_ERROR_STRING characters.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 61/80

MPI Profiling Hooks

@ The MPI profiling interface is designed for authors of profiling
tools, such that they will not need access to a particular
implementation’s source code (which a vendor may not wish to
release).

@ Many profiling tools exist:

@ Vampir (Intel, formerly Pallas), now called Intel Trace Analyzer and
Visualizer

@ HPMCount (IBM AIX)

© jumpshot (MPICH)

© SpeedShop, cvperf (SGI)

@ Consult your profiling tools of choice for detailed usage.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 63 /80

MPI-2 Key Features
MPI-2 Features

I will not attempt to fully cover MPI-2 extensions - in the slides that
follow | will just give a broad outline of the new features:

@ Dynamic process management (routines to create new processes)
@ One-sided communications (put/get)

@ Parallel 1/0

@ Additional language bindings (C++)

@ Extended collective operations (non-blocking, inter-communicator)

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 65/80

MPI-2 Key Features Dynamic Process Management

Dynamic Process Management

@ An MPI-1 application is static - no processes can be added (or
removed) after it has started.

@ MPI-2 introduces a spawning call for dynamic execution (MPMD):

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 66 /80

MPI-2 Key Features Dynamic Process Management

MPI_COMM_SPAWN

MPI_COMM_SPAWN (command, argv,maxprocs, info, root,

comm, intercomm, array_err)
command (IN), name of spawned program (string at root)
argv (IN), arguments to command (string array)

(IN)
(IN)
maxprocs (IN), maximum number processes to start (int)
info (IN), key-value pairs where and how to start processes (handle)
root (IN), rank of process in which previous arguments are examined (int)
comm (IN), intra-communicator for group of spawning process (handle)
intercomm (OUT), inter-communicator between original and new group
(

OUT), one error code per process (int array)

array_err

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 67 /80

MPI-2 Key Features Dynamic Process Management

Some Notes on MPI_COMM_SPAWN

Things to watch out for when using dynamic task management in MPI:

@ Not supported in all implementations

@ The attribute MPT_UNIVERSE_SIZE of MPTI_COMM_WORLD gives a
useful upper limit on the number of tasks (query using
MPI_Comm_get_attr)

@ Interaction with runtime system generally not visible to application,
and not specified by MPI standard

@ Static view in which all processes are started at once is still
preferred method (for performance if not simplicity)

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 68 /80

MPI-2 Key Features One-sided Communication

One-sided Communication

@ extends communication mechanisms of MPI through RMA
(Remote Memory Access).
@ three communication calls:
MPI_PUT remote write
MPI_GET remote read
MPI_ACCUMULATE remote update
@ does not provide a shared memory programming model or
support for direct shared-memory programming.

@ Uses memory windows and all RMA communications are
non-blocking.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 69 /80

MPI-2 Key Features MPI I/O

MPI 1/0O

@ a programming interface for I/O

@ parallel in the sense of I/O performed by a parallel application, but
cooperative also, in the sense that many processes concurrently
access a single file.

@ does not specify a filesystem, should be able to interact with a
variety of filesystems.

@ provides support for asynchronous 1/O, strided access, and
control over physical file layout on storage devices.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 70/80

MPI-2 Key Features C++ Bindings

MPI c++ Bindings

The c++ interface for MPI consists mainly of a small set of classes with
a lightweight functional interface to MPI:

@ Most c++ bindings for MPI functions are member functions of MPI
classes

@ All MPI classes, constants, and functions are declared as part of
an MP| namespace

@ Rather than MP1__ prefix (as for ¢ and Fortran), MPI functions in
C++ have an MPI: : prefix

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 71/80

MPI-2 Key Features C++ Bindings

MPI| namespace

An abbreviated definition of the MPI namespace:

namespace MPI { // MPI-1
class Comm {...};
class Intracomm : public Comm {...};
class Graphcomm : public Intracomm
class Cartcomm : public Intracomm
class Intercomm : public Comm
class Datatype
class Errhandler
class Exception
class Group
class Op
class Request
class Prequest : public Request
class Status

// MPI-2
class File
class Grequest : public Request
class Info
class Win

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 72/ 80

MPI-2 Key Features C++ Bindings

c++ MPI Semantics

Construction/Destruction:

MPI:: <CLASS> ()
~MPI:: <CLASS> ()

Copy/Assignment

MPI:: <CLASS>(const MPI::<CLASS>& data)

MPI:: <CLASS>& MPI:: <CLASS>::operator=(const MPI:: <CLASS>& data)

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 73/80

MPI-2 Key Features C++ Bindings

Cc++ Data Types

MPI datatype C++ datatype
MPI::CHAR char
MPI::SHORT signed short
MPI:INT signed int
MPI::LONG signed long
MPI::SIGNED_CHAR signed char
MPI::UNSIGNED_CHAR unsigned char
MPI1::UNSIGNED_SHORT unsigned short
MPI::UNSIGNED unsigned int
MPI::UNSIGNED_LONG unsigned long int
MPI1::FLOAT float
MPI1::DOUBLE double
MPI::LONG_DOUBLE long double
MPI1::BOOL bool
MPI1::COMPLEX Complex<float>
MPI1::DOUBLE_COMPLEX Complex<double>
MPI::LONG_DOUBLE_COMPLEX Complex<long double>
MPI::BYTE

MPI::PACKED

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 74 /80

MPI-2 Key Features C++ Bindings

Considerations for C++

The C++ bindings are really just translations of the C equivalents - so
why use them at all?

Answer: Do not bother using them - use the C bindings instead, or
something like boost .MPI. It has been reported that the C++
bindings will be deprecated as of MPI-3 ...

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 75/ 80

MPI-2 Key Features MPI and Threads

MPI and Thread-safety

MPI implementations are by no means guaranteed to be thread-safe -
the MPI standard outlines means by which implementations can be
made thread-safe, but it is still left to implementors to design and build
efficient thread-safe MPI libraries.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 76 /80

MPI-2 Key Features MPI and Threads

MPI-2 Thread-safety

In MPI-2 the user selects the desired level of thread-safety:

@ MPI_THREAD_SINGLE: Each process has only a single execution
thread. Non-thread-safe MPI implementations follow this model.

@ MPI_THREAD_FUNNELED: Each process can have multiple
threads, but only the thread that called MPT_INTIT can
subsequently make MPI calls.

@ MPI_THREAD_SERIALIZED: Each process can be multithreaded,
but only one thread at a time can make MPI calls.

@ MPI_THREAD_MULTIPLE: Processes multithreaded, and multiple
threads allowed to make MPI calls. An MPI implementation is fully
thread-safe if it supports this mode.

The user program uses MPI_Init_thread to explicitly initialize and
check the level of thread-safety, as we will see in the following example.

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 77/ 80

MPI-2 Key Features MPI and Threads

Checking Thread-safety

A short code to check MPI support for multiple threads:

#include <stdio.h>
#include <mpi.h>

int main(int argc, char sxxargv) {
int provided;

/% start MPI, asking for support for multiple threads =/
MPI_Init_thread(&argc,&argv ,MPI_THREAD_MULTIPLE,&provided);

/% report what level of support is actually provided =/
i

if (MPI_THREAD_SINGLE == provided) printf (" MPI_THREAD_SINGLE\n");

if (MPLTHREAD_FUNNELED == provided) printf (" MPI_THREAD_FUNNELED\n");
if (MPI_THREAD_SERIALIZED == provided) printf (" MPI_THREAD_SERIALIZED\n");
if (MP_THREAD_MULTIPLE == provided) printf(" MPI_THREAD_MULTIPLE\n");

MPI_Finalize ();

return 0;

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 78/ 80

MPI-2 Key Features MPI and Threads

U2 Example

Note that actually using thread-safe libraries may require jumping
through extra hoops:

[bono:~/d_mpi—samples]$ module load intel—mpi

[bono:~/d_mpi—samples]$ mpd —daemon

[bono:~/d_mpi—samples]$ mpiicc —o mpi_thread_check mpi_thread_check.c
[bono:~/d_mpi—samples]$ mpirun —np 1 ./mpi_thread_check
MPI_THREAD_SINGLE

[bono:~/d_mpi—samples]$ mpicc —mt_mpi —o mpi_thread_check mpi_thread_check.c
[bono:~/d_mpi—samples]$ mpirun —np 1 ./ mpi_thread_check
MPI_THREAD_MULTIPLE

[bono:~/d_mpi—samples]$ mpdallexit

[bono:~/d_mpi—samples]$ module load mpich

[bono:~/d_mpi—samples]$ mpicc —o mpi_thread_check mpi_thread_check.c
[bono :~/d_mpi—samples]$ mpirun —np 1 ./ mpi_thread_check
MPI_THREAD_FUNNELED

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 79/80

MPI-2 Key Features MPI and Threads

MPI Thread Considerations

The following figure shows the effect of overhead for
MPI_THREAD_MULTIPLE - tests were performed for MPTCH2 where
the runtime used a full thread-safe version, and
MPI_THREAD_FUNNELED selected during MPT_Thread_init:

Ping-Pong e with Blocking Send/Receil
28 :) ‘
27} /\W_A/\/
S
26 - /F/—/—/
B
251
7 R
S 23;:
22|l
21f
@ thread-multiple ——— 7|
thread-runtime:
19 [t F—
0 200 400 600 800 1000 1200
Size (bytes)

(W. Gropp and R. Thakur, “Thread-safety in an MPI implementation: Requirements and analysis,”
Parallel Comp. 33, 595-604 (2007).)

M. D. Jones, Ph.D. (CCR/UB) Advanced MPI HPC-I Fall 2009 80/80

	User Defined Datatypes
	Datatype Construction
	Datatype Inquiry & Management (Accessors)
	Using Derived Datatypes
	Derived Type Example

	Message Packing
	Communicators & Process Topologies
	Communicators
	Groups
	Topologies

	Environmental Tools & Utility Routines
	Process Startup
	Inquiry Routines
	Timing & Synchronization
	MPI Error Codes

	Profiling
	MPI-2 Key Features
	Dynamic Process Management
	One-sided Communication
	MPI I/O
	C++ Bindings
	MPI and Threads

