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Why MPI?

The Message Passing Model

A “parallel” calculation in which each process (out of a specified
number of processes) works on a local copy of the data, with local
variables. Namely, no process is allowed to directly access the
memory (available data) of another process.
The mechanism by which individual processes share information
(data) is through explicit sending (and receiving) of data between
the processes.
General assumption - a one-to-one mapping of processes to
processors (although this is not necessarily always the case).
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Why MPI?

Upside of MPI

Advantages:
Very general model (message passing)
Applicable to widest variety of hardware platforms (SMPs, NOWs,
etc.).
Allows great control over data location and flow in a program.
Programs can usually achieve higher performance level
(scalability).
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Why MPI?

Downside of MPI

Disadvantages:
Programmer has to work hard(er) to implement.
Best performance gains can involve re-engineering the code.
The MPI standard does not specify mechanism for launching
parallel tasks (“task launcher”). Implementation dependent - it can
be a bit of a pain.
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Why MPI?

The MPI Standard(s)

MPI-1 1.0 released in 1994
1.1 mostly corrections & clarifications in 1995
1.2 clarifications (& MPI_GET_VERSION

function!) in 1997.
1.3 clarifications/corrections, 2008.

MPI-2 2.0 1997, significant enhancements to MPI-1,
including C++ bindings, replace “deprecated”
functions of MPI-1. Only in the last year or
so is MPI-2 becoming more widely adopted.

2.1 2008, mostly clarifications/corrections.
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Why MPI?

MPI-1

Major MPI-1 features:
1 Point-to-point Communications
2 Collective Operations
3 Process Groups
4 Communication Domains
5 Process Topologies
6 Environmental Management & Inquiry
7 Profiling Interface
8 FORTRAN and C Bindings
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Why MPI?

MPI-2

MPI-2 Enhancements (not fully implemented by all vendors!):
1 Dynamic Process Management (pretty available)
2 Input/Output (supporting hardware is hardest to find)
3 One-sided Operations (hardest to find)
4 C++ Bindings (generally available)
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Why MPI?

MPI References

Using MPI: Portable Programming With the Message Passing
Interface, second edition, W. Gropp, E. Lusk, and A. Skellum (MIT
Press, Cambridge, 1999).
MPI–The Complete Reference, Vol. 1, The MPI Core, M. Snir, S.
Otto, S. Huss-Lederman, D. Walker, and J. Dongarra (MIT Press,
Cambridge, 1998).
MPI–The Complete Reference, Vol. 2, The MPI Extensions, W.
Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W.
Saphir, M. Snir, and J. Dongarra (MIT Press, Cambridge, 1998).
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Why MPI?

More MPI References

The MPI Forum, http://www.mpi-forum.org.
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html,
first edition of the title MPI – The Complete Reference, also
available as a PostScript file.
A useful online reference to all of the routines and their bindings:
http://www-unix.mcs.anl.gov/mpi/www/www3
Note that this is for MPICH 1.2, but it’s quite handy.
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Introduction

MPI: “Large” and “Small”

MPI is Large
MPI 1.2 has 128 functions.
MPI 2.0 has 152 functions.

MPI is Small
Many programs need to use only about 6 MPI functions.

MPI is the “right size”.
Offers enough flexibility that users don’t need to master > 150
functions to use it properly.
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Introduction

Some Available MPI Implementations

Some of the more common MPI implementations, and supported
network hardware:

MPICH , from ANL - has many available ’devices’, but the most
common is ch_p4 (using TCP/IP)

MPICH-GM/MX , Myricom’s port of MPICH to use their low-level
network APIs

LAM , many device ports, including TCP/IP and GM (now in
maintenance mode)

OpenMPI , latest from LAM and other (FT-MPI, LA-MPI, PACX-MPI)
developers, includes TCP/IP, GM/MX, and IB (infiniband)
support

and those are just some of the more common free ones ...
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Introduction

Appropriate Times to Use MPI

When you need a portable parallel API
When you are writing a parallel library
When you have data processing that is not conducive to a data
parallel approach
When you care about parallel performance
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Introduction

Appropriate Times NOT to Use MPI

When you are can just use a parallel library (which may itself be
written in MPI).
When you need only simple threading on data-parallel tasks.
When you don’t need large (many processor) parallel speedup.
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Introduction MPI Fundamentals

Basic Features of Message Passing

Message passing codes run the same (usually serial) code on multiple
processors, which communicate with one another via library calls
which fall into a few general categories:

Calls to initialize, manage, and terminate communications
Calls to communicate between two individual processors
(point-to-point)
Calls to communicate among a group of processors (collective)
Calls to create custom datatypes

I will briefly cover the first three, and present a few concrete examples.
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Introduction MPI Fundamentals

Outline of a Program Using MPI

General outline of any program using MPI:
1 Inc lude MPI header f i l e s
2 Declare v a r i a b l e s & Data S t ruc tu res
3 I n i t i a l i z e MPI
4 .
5 Main program − message passing enabled
6 .
7 Terminate MPI
8 End program
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Introduction MPI Fundamentals

MPI Header Files

All MPI programs need to include the MPI header files to define
necessary datatypes.

In C/C++:
1 #include " mpi . h "
2 #include < s t d i o . h>
3 #include <math . h>

In FORTRAN 77
1 program main
2 i m p l i c i t none
3 inc lude ’ mpi f . h ’

Fortran 90/95
1 program main
2 i m p l i c i t none
3 use MPI
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Introduction MPI Fundamentals

MPI Naming Conventions

MPI functions are designed to be as language independent as
possible.

Routine names all begin with MPI_:
FORTRAN names are typically upper case:
1 c a l l MPI_XXXXXXX( param1 , param2 , . . . , IERR)

C functions use a mixed case:
1 i e r r = MPI_Xxxxxxx ( param1 , param2 , . . . )

MPI constants are all upper case in both C and FORTRAN:
1 MPI_COMM_WORLD, MPI_REAL, MPI_DOUBLE, . . .
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Introduction MPI Fundamentals

MPI Routines & Their Return Values

Generally the MPI routines return an error code, using the exit status in
C, which can be tested with a predefined success value:

1 i n t i e r r ;
2 . . .
3 i e r r = MPI_INIT (& argc ,& argv ) ;
4 i f ( i e r r != MPI_SUCCESS) {
5 . . . e x i t w i th an e r r o r . . .
6 }
7 . . .
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Introduction MPI Fundamentals

and in FORTRAN the error code is passed back as the last argument in
the MPI subroutine call:

1 integer : : i e r r
2
3 c a l l MPI_INIT ( i e r r )
4 i f ( i e r r . ne .MPI_SUCCESS) STOP ’ MPI_INIT f a i l e d . ’

M. D. Jones, Ph.D. (CCR/UB) Intermediate MPI HPC-I Fall 2008 21 / 82



Introduction MPI Fundamentals

MPI Handles

MPI defines its own data structures, which can be referenced by
the use through the use of handles.
handles can be returned by MPI routines, and used as arguments
to other MPI routines.
Some examples:
MPI_SUCCESS - Used to test MPI error codes. An integer in

both C and FORTRAN.
MPI_COMM_WORLD - A (pre-defined) communicator consisting

of all of the processes. An integer FORTRAN, and a
MPI_Comm object in C.
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Introduction MPI Fundamentals

MPI Datatypes

MPI defines its own datatypes that correspond to typical datatypes
in C and FORTRAN.
Allows for automatic translation between different representations
in a heterogeneous parallel environment.
You can build your own datatypes from the basic MPI building
blocks.
Actual representation is implementation dependent.
Convention: program variables are usually declared as normal C
or FORTRAN types, and then calls to MPI routines use MPI type
names as needed.
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Introduction MPI Fundamentals

MPI Datatypes in C

In C, the basic datatypes (and their ISO C equivalents) are:

MPI Datatype C Type
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_INT signed int
MPI_LONG signed long int
MPI_SHORT signed short int
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED_LONG unsigned long int
MPI_UNSIGNED unsigned int
MPI_CHAR signed char
MPI_UNSIGNED_CHAR unsigned char
MPI_BYTE –
MPI_PACKED –
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Introduction MPI Fundamentals

MPI Datatypes in FORTRAN

In FORTRAN, the basic datatypes (and their FORTRAN equivalents) are:

MPI Datatype C Type
MPI_INTEGER integer
MPI_REAL real
MPI_DOUBLE_PRECISION double precision
MPI_COMPLEX complex
MPI_DOUBLE_COMPLEX double complex
MPI_LOGICAL logical
MPI_CHARACTER character*1
MPI_BYTE –
MPI_PACKED –
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Introduction MPI Fundamentals

Initializing & Terminating MPI

The first MPI routine called by any MPI program must be
MPI_INIT, called once and only once per program.
C:

1 i n t i e r r ;
2 i e r r = MPI_INIT (& argc ,& argv ) ;
3 . . .

FORTRAN:

1 integer i e r r
2 c a l l MPI_INIT ( i e r r )
3 . . .
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Introduction MPI Fundamentals

MPI Communicators

Definition (MPI Communicator)
A communicator is a group of processors that can communicate with
each other.

There can be many communicators
A given processor can be a member of multiple communicators.
Within a communicator, the rank of a processor is the number
(starting at 0) uniquely identifying it within that communicator.
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Introduction MPI Fundamentals

A processor’s rank is used to specify source and destination in
message passing calls.
A processor’s rank can be different in different communicators.
MPI_COMM_WORLD is a pre-defined communicator encompassing
all of the processes. Additional communicators can be defined to
define subsets of this group.
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Introduction MPI Fundamentals

More on MPI Communicators

Typically a program executes two MPI calls immediately after
MPI_INIT to determine each processor’s rank:

C:

1 i n t MPI_Comm_rank (MPI_Comm comm, i n t ∗ rank ) ;
2 i n t MPI_Comm_size (MPI_Comm comm, i n t ∗ s ize ) ;

FORTRAN:

1 MPI_COMM_RANK(comm, rank , i e r r )
2 MPI_COMM_SIZE(comm, size , i e r r )

where rank and size are integers returned with (obviously) the rank
and extent (0:number of processors-1).
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Introduction MPI Fundamentals

Six Function MPI

Many MPI codes can get away with using only the six most frequently
used routines:

MPI_INIT for intialization
MPI_COMM_SIZE size of communicator
MPI_COMM_RANK rank in communicator
MPI_SEND send message
MPI_RECEIVE receive message
MPI_FINALIZE shut down communicator
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Point to Point Communications

Basic P2P in MPI

Basic features:
In MPI 1.2, only “two-sided” communications are allowed,
requiring an explicit send and receive. (2.0 allows for “one-sided”
communications, i.e. get and put).
Point-to-point (or P2P) communication is explicitly two-sided, and
the message will not be sent without the active participation of
both processes.
A message generically consists of an envelope (tags indicating
source and destination) and a body (data being transferred).
Fundamental - almost all of the MPI comms are built around
point-to-point operations.
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Point to Point Communications Message Bodies

MPI Message Bodies

MPI uses three points to describe a message body:
1 buffer: the starting location in memory where the data is to be

found.
C: actual address of an array element

FORTRAN: name of the array element
2 datatype: the type of data to be sent. Commonly one of the

predefined types, e.g. MPI_REAL. Can also be a user defined
datatype, allowing great flexibility in defining message content for
more advanced applications.

3 count: number of items being sent.
MPI standardizes the elementary datatypes, avoiding having the
developer have to worry about numerical representation.
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Point to Point Communications Message Envelopes

MPI Message Envelopes

MPI message wrappers have the following general attributes:
communicator - the group of processes to which the sending and

receiving process belong.
source - originating process

destination - receiving process
tag - message identifier, allows program to label classes of

messages (e.g. one for name data, another for place
data, status, etc.)
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Point to Point Communications Message Envelopes

Blocking vs. Non-Blocking

blocking routine does not return until operation is complete.
blocking sends, for example, ensure that it is safe to
overwrite the sent data.
blocking receives, the data is here and ready for use.

nonblocking routine returns immediately, with no info about
completion. Can test later for success/failure of operation.
In the interim, the process is free to go on to other tasks.
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Point to Point Communications Send Modes

Point-to-point Semantics

For MPI sends, there are four available modes:
standard - no guarantee that the receive has started.

synchronous - complete when receipt has been acknowledged.
buffered - complete when data has been copied to local buffer. No

implication about receipt.
ready - the user asserts that the matching receive has been

posted (allows user to gain performance).
MPI receives are easier - they are complete when the data has arrived
and is ready for use.
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Point to Point Communications Sends & Receives

Blocking Send

MPI_SEND
MPI_SEND(buff,count,datatype,dest,tag,comm)

buff (IN), initial address of message buffer
count (IN), number of entries to send (int)

datatype (IN), datatype of each entry (handle)
dest (IN), rank of destination (int)
tag (IN), message tag (int)

comm (IN), communicator (handle)
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Point to Point Communications Sends & Receives

Blocking Receive

MPI_RECV
MPI_RECV(buff,count,datatype,source,tag,comm,

status)

buff (IN), intial address of message buffer
count (IN), number of entries to send (int)

datatype (IN), datatype of each entry (handle)
source (IN), rank of source (int)

tag (IN), message tag (int)
comm (IN), communicator (handle)
status (OUT), return status (Status)
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Point to Point Communications Sends & Receives

Blocking Send/Receive Restrictions

source, tag, and comm must match those of a pending message
for the message to be received. Wildcards can be used for source
and tag, but not communicator.
An error will be returned if the message buffer exceeds that
allowed for by the receive.
It is the user’s responsibility to ensure that the send/receive
datatypes agree - if they do not, the results are undefined.
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Point to Point Communications Sends & Receives

Status of a Receive

More information about message reception is available by examining
the status returned by the call to MPI_RECV. C:
status is a structure of type MPI_STATUS that contains at minimum the
three fields:

1 MPI_SOURCE

2 MPI_TAG

3 MPI_ERROR

FORTRAN:
status is an integer array of length MPI_STATUS_SIZE. MPI_SOURCE,
MPI_TAG, and MPI_ERROR are indices of entries that store the source,
tag, and error fields.
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Point to Point Communications Sends & Receives

MPI_GET_COUNT

The routine MPI_GET_COUNT is an auxiliary routine that allows you to
test the amount of data received:

MPI_GET_COUNT
MPI_GET_COUNT(status,datatype,count)

status (IN), return status of receive (Status)
datatype (IN), datatype of each receive buffer entry (handle)

count (OUT), number of entries received (int)

MPI_UNDEFINED will be returned in the event of an error.
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Point to Point Communications Sends & Receives

A Simple Send/Receive Example

1 #include < s t d i o . h>
2 #include " mpi . h "
3 i n t main ( i n t argc , char ∗∗argv )
4 {
5 i n t i , i e r r , rank , s ize , dest , source , from , to , count , tag ;
6 i n t sta t_count , s ta t_source , s t a t_ tag ;
7 f l o a t data [ 1 0 0 ] ;
8 MPI_Status s ta tus ;
9

10 MPI_ In i t (& argc ,& argv ) ;
11 MPI_Comm_rank (MPI_COMM_WORLD, &rank ) ;
12 MPI_Comm_size (MPI_COMM_WORLD, &s ize ) ;
13 p r i n t f ( " I am process %d of %d \ n " , rank , s ize ) ;
14 dest=size−1;
15 source =0;
16 i f ( rank == source ) { /∗ I n i t i a l i z e and Send Data ∗ /
17 to = dest ;
18 count = 100;
19 tag = 11;
20 for ( i =0; i <=99; i ++) data [ i ]= i ;
21 i e r r = MPI_Send ( data , count , MPI_REAL, to , tag ,MPI_COMM_WORLD) ;
22 }
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Point to Point Communications Sends & Receives

23 else i f ( rank == dest ) { /∗ Receive & Check Data ∗ /
24 tag = MPI_ANY_TAG; /∗ wi ldcard ∗ /
25 count = 100;
26 from = MPI_ANY_SOURCE; /∗ another w i ldcard ∗ /
27 i e r r = MPI_Recv ( data , count , MPI_REAL, from , tag ,MPI_COMM_WORLD,& s ta tus ) ;
28 i e r r = MPI_Get_count (& sta tus , MPI_REAL,& s ta t_coun t ) ;
29 s ta t_source = s ta tus .MPI_SOURCE;
30 s ta t_ tag = s ta tus .MPI_TAG;
31 p r i n t f ( " Status o f rece ive : dest=%d , source=%d , tag=%d ,
32 count=%d \ n " , rank , s tat_source , s ta t_ tag , s ta t_coun t ) ;
33 }
34 i e r r = MPI_Final ize ( ) ;
35 return 0;
36 }
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Point to Point Communications Sends & Receives

Semantics of Blocking Point-to-point

For MPI_RECV “completion” is easy - the data is here, and can
now be used.
A bit trickier for MPI_SEND - completes when the data has been
stored away such that the program is free to overwrite the send
buffer. It can be non-local - the data could be copied directly to
the receive buffer, or it could be stored in a local buffer, in which
case the send could return before the receive is initiated (thereby
allowing even a single threaded send process to continue).
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Point to Point Communications Perils of Buffering

Message Buffering

Decouples send/receive operations.
Entails added memory-memory copying (additional overhead)
Amount of buffering is application and implementation dependent:

applications can choose communication modes - and gain finer
control (with additional hazards) over messaging behavior.
the standard mode is implementation dependent
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Point to Point Communications Perils of Buffering

More on Message Buffering

A properly coded program will not fail if the buffer throttles back on
the sends, thereby causing blocking (imagine the assembly line
controlled by the rate at which the final inspector signs off on each
item).
An improperly coded program can deadlock ...
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Point to Point Communications Perils of Buffering

Deadlock

safe MPI programs do not rely on system buffering for success.
Any system will eventually run out of buffer space as message
buffer sizes are increased.
Users are free to take advantage of knowledge of an
implementation’s buffering policy to increase performance, but
they do so by relaxing the margin for safety (as well as decreasing
portability, of course).
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Point to Point Communications Perils of Buffering

Deadlock Examples

Safe code (no buffering requirements):
1 CALL MPI_COMM_RANK(comm, rank , i e r r )
2 IF ( rank . eq . 0 ) THEN
3 CALL MPI_SEND( sbuf f , count , MPI_REAL,1 , tag ,comm, i e r r )
4 CALL MPI_RECV( r b u f f , count , MPI_REAL,1 , tag ,comm, status , i e r r )
5 ELSE IF ( rank . eq . 1 ) THEN
6 CALL MPI_RECV( r b u f f , count , MPI_REAL,0 , tag ,comm, status , i e r r )
7 CALL MPI_SEND( sbuf f , count , MPI_REAL,0 , tag ,comm, i e r r )
8 END IF
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Point to Point Communications Perils of Buffering

Complete & total deadlock (oops!):
1 CALL MPI_COMM_RANK(comm, rank , i e r r )
2 IF ( rank . eq . 0 ) THEN
3 CALL MPI_RECV( r b u f f , count , MPI_REAL,1 , tag ,comm, status , i e r r )
4 CALL MPI_SEND( sbuf f , count , MPI_REAL,1 , tag ,comm, i e r r )
5 ELSE IF ( rank . eq . 1 ) THEN
6 CALL MPI_RECV( r b u f f , count , MPI_REAL,0 , tag ,comm, status , i e r r )
7 CALL MPI_SEND( sbuf f , count , MPI_REAL,0 , tag ,comm, i e r r )
8 END IF
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Point to Point Communications Perils of Buffering

Buffering dependent:
1 CALL MPI_COMM_RANK(comm, rank , i e r r )
2 IF ( rank . eq . 0 ) THEN
3 CALL MPI_SEND( sbuf f , count , MPI_REAL,1 , tag ,comm, i e r r )
4 CALL MPI_RECV( r b u f f , count , MPI_REAL,1 , tag ,comm, status , i e r r )
5 ELSE IF ( rank . eq . 1 ) THEN
6 CALL MPI_SEND( sbuf f , count , MPI_REAL,0 , tag ,comm, i e r r )
7 CALL MPI_RECV( r b u f f , count , MPI_REAL,0 , tag ,comm, status , i e r r )
8 END IF

for this last buffer-dependent example, one of the sends must buffer
and return - if the buffer can not hold count reals, deadlock occurs.
Non-blocking communications can be used to avoid buffering, and
possibly increase performance.
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Point to Point Communications Non-blocking Sends & Receives

Non-blocking Sends & Receives

Advantages:
1 Easier to write code that doesn’t deadlock
2 Can mask latency in high latency environments by

posting receives early (requires a careful attention to
detail).

Disadvantages:
1 Makes code quite a bit more complex.
2 Harder to debug and maintain code.
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Point to Point Communications Non-blocking Sends & Receives

Non-blocking Send Syntax

MPI_ISEND
MPI_ISEND(buff,count,datatype,dest,tag,comm,

request)

buff (IN), intial address of message buffer
count (IN), number of entries to send (int)

datatype (IN), datatype of each entry (handle)
dest (IN), rank of destination (int)
tag (IN), message tag (int)

comm (IN), communicator (handle)
request (OUT), request handle (handle)
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Point to Point Communications Non-blocking Sends & Receives

Non-blocking Receive Syntax

MPI_IRECV
MPI_IRECV(buff,count,datatype,dest,tag,comm,

request)

buff (OUT), intial address of message buffer
count (IN), number of entries to send (int)

datatype (IN), datatype of each entry (handle)
dest (IN), rank of destination (int)
tag (IN), message tag (int)

comm (IN), communicator (handle)
request (OUT), request handle (handle)
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Point to Point Communications Non-blocking Sends & Receives

Non-blocking Send/Receive Details

The request handle is used to query the status of the
communication or to wait for its completion.
The user must not overwrite the send buffer until the send is
complete, nor use elements of the receiving buffer before the
receive is complete (intuitively obvious, but worth stating
explicitly).
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Point to Point Communications Non-blocking Sends & Receives

Non-blocking Send/Receive Completion Operations

MPI_WAIT
MPI_WAIT(request,status)

request (INOUT), request handle (handle)
status (OUT), status object (status)

MPI_TEST
MPI_TEST(request,flag,status)

request (INOUT), request handle (handle)
flag (OUT), true if operation complete (logical)

status (OUT), status status object (Status)
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Point to Point Communications Non-blocking Sends & Receives

Completion Operations Details

The request handle should identify a previously posted send or
receive
MPI_WAIT returns when the operation is complete, and the status
is returned for a receive (for a send, may contain a separate error
code for the send operation).
MPI_TEST returns immediately, with flag = true if posted operation
corresponding to the request handle is complete (and status
output similar to MPI_WAIT).
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Point to Point Communications Non-blocking Sends & Receives

A Non-blocking Send/Recv Example

1 #include < s t d i o . h>
2 #include " mpi . h "
3 i n t main ( i n t argc , char ∗∗argv )
4 {
5 i n t rank , nprocs , i e r r , s ta t_coun t ;
6 MPI_Request request ;
7 MPI_Status s ta tus ;
8 f l o a t a [100 ] , b [ 1 0 0 ] ;
9

10 MPI_ In i t (& argc ,& argv ) ;
11 MPI_Comm_rank (MPI_COMM_WORLD, &rank ) ;
12 MPI_Comm_size (MPI_COMM_WORLD, &nprocs ) ;
13 i f ( rank == 0) {
14 MPI_Irecv ( b ,100 ,MPI_REAL,1 ,19 ,MPI_COMM_WORLD,& request ) ;
15 MPI_Send ( a ,100 ,MPI_REAL,1 ,17 ,MPI_COMM_WORLD) ;
16 MPI_Wait (& request ,& s ta tus ) ;
17 }
18 else i f ( rank == 1) {
19 MPI_Irecv ( b ,100 ,MPI_REAL,0 ,17 ,MPI_COMM_WORLD,& request ) ;
20 MPI_Send ( a ,100 ,MPI_REAL,0 ,19 ,MPI_COMM_WORLD) ;
21 MPI_Wait (& request ,& s ta tus ) ;
22 }
23 MPI_Get_count (& sta tus , MPI_REAL,& s ta t_coun t ) ;
24 p r i n t f ( " Exchange complete : process %d of %d \ n " , rank , nprocs ) ;
25 p r i n t f ( " source %d , tag %d , count %d \ n " , s ta tus .MPI_SOURCE, s ta tus .MPI_TAG
26 , s ta t_coun t ) ;
27
28 MPI_Final ize ( ) ;
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Point to Point Communications Non-blocking Sends & Receives

More About Send Modes

1 receive mode, 4 send modes
1 standard - used thus far, implementation dependent choice of

asynchronous buffer transfer, or synchronous direct transfer.
(rationale - MPI makes a better low-level choice)

2 synchronous - synchronize sending and receiving process. when
a synchronous send is completed, the user can assume that the
receive has begun.

3 ready - matching receive has already been posted, else the result
is undefined. Can save time and overhead, but requires a very
precise knowledge of algorithm and its execution.

4 buffered - force buffering - user is also responsible for maintaining
the buffer. Result is undefined if buffer is insufficient. (see
MPI_BUFFER_ATTACH and MPI_BUFFER_DETACH).
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Point to Point Communications Non-blocking Sends & Receives

Send Routines for Different Modes

Standard MPI_SEND MPI_ISEND
Synchronous MPI_SSEND MPI_ISSEND
Ready MPI_RSEND MPI_IRSEND
Buffered MPI_BSEND MPI_IBSEND

Call syntax is the same as for MPI_SEND and MPI_ISEND.
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Collective Communications

MPI Collective Communications

Routines that allow groups of processes to communicate (e.g.
one-to-many or many-to-one). Although they can usually be built from
point-to-point calls, intrinsic collective routines allow for

simplified code - one routine replacing many point-to-point calls
optimized forms - implementation can take advantage of faster
algorithms

Categories:
barrier synchronization

broadcast
gather
scatter

reduction
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Collective Communications Barrier

Barrier Synchronization

A very simple MPI routine provides the ability to block the calling
process until all processes have called it:

MPI_BARRIER
MPI_BARRIER( comm )

comm (IN), communicator (handle)

returns only when all group members have entered the call.
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Collective Communications Broadcast

Broadcast

MPI_BCAST
MPI_BCAST(buffer,count,datatype,root,comm)

buffer (INOUT), starting address of buffer (choice)
count (IN), number of entries in buffer (int)

datatype (IN), data type of buffer (handle)
root (IN), rank of broadcasting process (int)

comm (IN), communicator (handle)
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Collective Communications Broadcast

Broadcast Details

broadcast a message from the process to all members of the
group (including itself).
root must have identical value on all processes.
comm must be the same intra-group domain.
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Collective Communications Broadcast

Figure: Broadcast in action - 5 data elements on 5 processes.
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Collective Communications Gather

Gather

MPI_GATHER
MPI_GATHER(sendbuffer, sendcount, sendtype,recvbuffer,recvcount,

recvtype,root,comm)

sendbuffer (IN), starting address of send buffer (choice)

sendcount (IN), number of entries in send buffer (int)

sendtype (IN), data type of send buffer (handle)

recvbuffer (OUT), starting address of receive buffer (choice)

recvcount (IN), number of entries any single receive (int)

recvtype (IN), data type of receive buffer elements (handle)

root (IN), rank of receiving process (int)

comm (IN), communicator (handle)
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Collective Communications Gather

Gather Details

each process sends contents of send buffer to root.
root stores receives in rank order (as if there were N posted
receives of sends from each process).
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Collective Communications Gather

Figure: Scatter/Gather in action - 5 data elements on 5 processes.
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Collective Communications Gather

Gather Example

1 MPI_Comm comm;
2 i n t myrank , nprocs , root , i a r r a y [ 1 0 0 ] ;
3 . . .
4 MPI_Comm_rank (comm,&myrank ) ;
5 i f ( myrank == roo t ) {
6 MPI_Comm_size (comm,& nprocs ) ;
7 r b u f f = ( i n t ∗) mal loc ( nprocs∗100∗sizeof ( i n t ) ) ;
8 }
9 MPI_Gather ( i a r r ay ,100 ,MPI_INT , rbuf ,100 ,MPI_INT , root ,comm) ;

10 . . .
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Collective Communications Gather

AllGather

MPI_ALLGATHER
MPI_ALLGATHER(sendbuffer,sendcount,sendtype,recvbuffer,

recvcount,recvtype,root,comm)

sendbuffer (IN), starting address of send buffer (choice)

sendcount (IN), number of entries in send buffer (int)

sendtype (IN), data type of send buffer (handle)

recvbuffer (OUT), starting address of receive buffer (choice)

recvcount (IN), number of entries any single receive (int)

recvtype (IN), data type of receive buffer elements (handle)

root (IN), rank of receiving process (int)

comm (IN) communicator (handle)
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Collective Communications Gather

Allgather Details

basically a variant of MPI_GATHER where all of the processes in
comm get the result (similar to GATHER + BCAST).
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Collective Communications Gather

Figure: AllGather in action - 5 data elements on 5 processes.
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Collective Communications Scatter

Scatter

MPI_SCATTER
MPI_SCATTER( sendbuffer, sendcount, sendtype, recvbuffer,

recvcount,recvtype, root, comm)

sendbuffer (IN), starting address of send buffer (choice)

sendcount (IN), number of entries sent to each process (int)

sendtype (IN), data type of send buffer elements (handle)

recvbuffer (OUT), starting address of receive buffer (choice)

recvcount (IN), number of entries any single receive (int)

recvtype (IN), data type of receive buffer elements (handle)

root (IN), rank of receiving process (int)

comm (IN), communicator (handle)
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Collective Communications Scatter

Scatter Details

basically the reverse operation to MPI_GATHER.
a one-to-all operation in which each recipient get a different chunk.
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Collective Communications Scatter

Figure: Scatter/Gather in action - 5 data elements on 5 processes.
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Collective Communications Scatter

All to All

MPI_ALLTOALL
MPI_ALLTOALL( sendbuffer, sendcount, sendtype,

recvbuffer, recvcount,recvtype, root, comm)

sendbuffer (IN), starting address of send buffer (choice)

sendcount (IN), number of entries sent to each process (int)

sendtype (IN), data type of send buffer elements (handle)

recvbuffer (OUT), starting address of receive buffer (choice)

recvcount (IN), number of entries any single receive (int)

recvtype (IN), data type of receive buffer elements (handle)

root (IN), rank of receiving process (int)

comm (IN), communicator (handle)
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Collective Communications Scatter

Alltoall Details

an extension of MPI_ALLGATHER to case where each process
sends distinct data to each receiver.
the j-th block from process i is received by process j and placed in
the i-th block of recvbuffer.
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Collective Communications Scatter

Figure: All to All in action - 5 data elements on 5 processes.
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Collective Communications Reduction

Reduction

MPI_REDUCE
MPI_REDUCE( sendbuffer, recvbuffer, count,

datatype, op, root, comm)

sendbuffer (IN), starting address of send buffer (choice)
recvbuffer (OUT), starting address of receive buffer (choice)

count (IN), number of entries in buffer (int)
datatype (IN), data type of buffer (handle)

op (IN), reduce operation (handle)
root (IN), rank of broadcasting process (int)

comm (IN), communicator (handle)
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Collective Communications Reduction

Reduce Details

combine elements provided in sendbuffer of each process and
use op to return combined value in recvbuffer of root process.
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Collective Communications Reduction

Predefined Reduction Operations

MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical and
MPI_BAND bit-wise and
MPI_LOR logical or
MPI_BOR bit-wise or
MPI_LXOR logical xor
MPI_BXOR bit-wise xor
MPI_MINLOC min value and location
MPI_MAXLOC max value and location

M. D. Jones, Ph.D. (CCR/UB) Intermediate MPI HPC-I Fall 2008 81 / 82



Collective Communications More Variations

More (Advanced) Collective Ops

MPI_ALLREDUCE - combine elements of each input buffer, store
output in receive buffer of all group members.

User Defined Reduction Ops - you can define your own reduction
operations

Gather/Scatter Vector Ops - allows a varying count of data from or to
each process in a gather or scatter operation
(MPI_GATHERV/MPI_SCATTERV)

MPI_SCAN - prefix reduction on data throughout the comm, returns
reduction of values of all processes.

MPI_REDUCE_SCATTER - combination of MPI_REDUCE and
MPI_SCATTERV.
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