
Shared Memory Programming With OpenMP

M. D. Jones, Ph.D.

Center for Computational Research
University at Buffalo

State University of New York

High Performance Computing I, 2009

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 1 / 68

Introduction to OpenMP

Specifications

All specs and API descriptions can be found at:

http://www.openmp.org

This presentation covers
1 Unified 3.0 API (2008-05) [Highlights]
2 Unified 2.5 API (2005-05) [This Talk]
3 C/C++ 2.0 API (2002-03)
4 FORTRAN 2.0 API (2000-11)

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 3 / 68

http://www.openmp.org

Introduction to OpenMP

History

Brief history of OpenMP:
1997-10 FORTRAN 1.0
1998-10 C/C++ 1.0
1999-11 FORTRAN 1.1
2000-11 FORTRAN 2.0
2002-03 C/C++ 2.0
2005-05 FORTRAN/C/C++ 2.5
2008-05 Unified API 3.0

for the most part I am FORTRAN-centric, so many of the syntax
descriptions (not all, though) will use FORTRAN 90.

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 4 / 68

Introduction to OpenMP

What is OpenMP?

Open Specifications for Multi Processing
An Application Programming Interface (API) intended for directing
multi-threaded shared memory parallelism:

Compiler directives
Run-time library routines
Environmental variables

Portable - specified for C/C++ and FORTRAN (requires OpenMP
compliant compiler)
Standard - joint effort by major hardware and software vendors
(not yet an ANSI standard)

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 5 / 68

Introduction to OpenMP

OpenMP Strengths

Ease of (mis)use
Incremental parallelization
Fairly easy to get speedup
Potentially scalable on large (SMP) systems
HPC architectures are evolving towards OpenMP’s
design(Multi-core, single socket CPUs are already here, and
gaining rapidly in popularity)

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 6 / 68

Introduction to OpenMP

OpenMP Weaknesses

OpenMP is not
intended for distributed memory parallel computing (can be used
in combination with MPI, however)

Intel’s Cluster OpenMP, extend over distributed memory
UPC, Co-Array FORTRAN, proposed PGAS language extensions for
shared & distributed memory

implemented identically by all vendors (not a surprise)
promised to be the most efficient way to make use of shared
memory (data locality is still an outstanding issue)

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 7 / 68

Introduction to OpenMP

OpenMP Design Goals

Thread-based: a shared memory process can consist of multiple
threads - OpenMP is based on the idea of controlling and using
these threads
Explicitly parallel: not automatic - OpenMP allows the
programmer full control over parallelization
Compiler directive-based: most OpenMP parallelism is controlled
through the use of compiler directives
Dynamic threads: the number of threads can be dynamically
changed for different parallel regions

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 8 / 68

Introduction to OpenMP

Nested support: parallel regions can be nested, but this feature is
left as implementation dependent OpenMP 3.0 clarifies nesting
and includes new routines and control variables for nesting
parallel regions.
Fork-join model: the master thread (originating process) spawns a
team of parallel threads on encountering the first parallel region.
The threads synchronize and terminate at the end of the parallel
region construct

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 9 / 68

Introduction to OpenMP

Execution Model

Master
Thread

Master
Thread

Team

$OMP_NUM_THREADS=8

(i
m

p
li

ci
t

sy
n

ch
ro

n
iz

a
ti

o
n

)

!$
o

m
p

 p
a

ra
ll

el

!$
o

m
p

 e
n

d
 p

a
ra

ll
el

Fork-Join, the master thread spawns a team of threads inside parallel
regions.

Typical Use: split compute-intensive loops among the thread team. See
the previous slide.

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 10 / 68

Introduction to OpenMP

OpenMP General Syntax

Most OpenMP constructs are compiler directives or pragmas (we will
deal with the OpenMP API separately):

C/C++:
#pragma omp cons t ruc t [c lause [c lause] . . .]

F77:
C$OMP cons t ruc t [c lause [c lause] . . .]

F90:
!$OMP cons t ruc t [c lause [c lause] . . .]

to compilers that do not support OpenMP, these directives are
comments, and have no effect.

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 11 / 68

Introduction to OpenMP

Ease-of-use can come with a price...

OpenMP does not force the programmer to explicitly manage
communication or how the program data is mapped onto
individual processors - sounds great ...
OpenMP program can easily run into common SMP programming
errors, usually from resource contention issues.

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 12 / 68

Introduction to OpenMP

Shared vs. Distributed

Compare shared memory (SM, OpenMP) versus distributed memory
(DM, MPI) in the following table of features:

Feature SM DM
Parallelize subsections Pretty easy; often significant Pretty difficult (often have

of application reward for small investment to rework application)
Scalability on large Few such systems (large ccNUMA) Clusters with high performance

processor counts interconnects very common
Complexity over serial Simple algorithms easy, more Complex even in simple cases

code complex ones can be involved
Code maintainability Directives in otherwise serial Message handling requires

code - minimal in many cases significant overhead

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 13 / 68

Introduction to OpenMP

Components of OpenMP

OpenMP

Environment

Variables

OpenMP

Run−time

Library

OpenMP Directives
#pragma omp ...
!$omp ...

We will consider the smaller pieces of the OpenMP puzzle first (they
are reasonable self-contained and will help to inform the rest)

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 14 / 68

Introduction to OpenMP

OpenMP References

Book: "Using OpenMP: Portable Shared Memory Parallel
Programming,” by B. Chapman, G. Jost, and R. van der Pas (MIT,
Boston, 2008).

Sample codes available online at www.openmp.org

Book: "Parallel Programming in OpenMP," by R. Chandra et. al.
(Academic, New York, 2001).
Web: www.openmp.org

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 15 / 68

www.openmp.org
www.openmp.org

The OpenMP Run-time Library

Categories

The OpenMP API is relatively small. The API provides routines in
several categories:

Control and query the parallel execution environment
Monitor threads and processors
Allow dynamic thread adjustments
Enable nested parallelism

Lock functions to be used to serialize/synchronize data access
Initialize, test, remove simple and nestable locks

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 17 / 68

The OpenMP Run-time Library Run-Time Control

Accessing the Run-time Library Functions

Syntax for setting the number of OpenMP threads:
in C/C++ :

#include <omp. h>
. . .
void omp_set_num_threads (i n t num_threads) ;

in FORTRAN 77 :
include " omp_lib . h "
. . .
c a l l omp_set_num_threads (num_threads) ;

in FORTRAN 90 :
USE omp_lib
. . .
c a l l omp_set_num_threads (num_threads) ;

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 18 / 68

The OpenMP Run-time Library Run-Time Control

Environmental Functions

FORTRAN C/C++
subroutine OMP_SET_NUM_THREADS void omp_set_num_threads(int nthreads)
integer function OMP_GET_NUM_THREADS int omp_get_num_threads(void)
integer function OMP_GET_MAX_THREADS int omp_get_max_threads(void)
integer function OMP_GET_THREAD_NUM int omp_get_thread_num(void)
integer function OMP_GET_NUM_PROCS int omp_get_num_procs(void)
logical function OMP_IN_PARALLEL int omp_in_parallel(void)
subroutine OMP_SET_DYNAMIC(scalar_logical_expr) void omp_set_dynamic(int dthreads)
logical function OMP_GET_DYNAMIC int omp_get_dynamic(void)
subroutine OMP_SET_NESTED(scalar_logical_expr) void omp_set_nested(int nested)
logical function OMP_GET_NESTED int omp_get_nested(void)

Some new routines added in OpenMP 3.0 will be discussed later.

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 19 / 68

The OpenMP Run-time Library Run-Time Control

Run-time Locks Overview

simple locks may not be locked if already in a locked state.
nestable locks may be locked multiple times by the same thread.

Lock variables:
INTEGER (KIND=OMP_LOCK_KIND) : : svar
INTEGER (KIND=OMP_NEST_LOCK_KIND) : : nvar

omp_lock_t ∗ l ock ;
omp_nest_lock_t ∗ l ock ;

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 20 / 68

The OpenMP Run-time Library Run-Time Control

Lock Functions

FORTRAN C/C++
subroutine OMP_INIT_LOCK(svar) void omp_init_lock(omp_lock_t *lock)
subroutine OMP_INIT_NEST_LOCK(nvar) void omp_init_nest_lock(omp_nest_lock_t *lock)
subroutine OMP_DESTROY_LOCK(svar) omp_destroy_lock(omp_lock_t *lock)
subroutine OMP_DESTROY_NEST_LOCK(nvar) void omp_destroy_nest_lock(omp_nest_lock_t *lock)
subroutine OMP_SET_LOCK(svar) void omp_set_lock(omp_lock_t *lock)
subroutine OMP_SET_NEST_LOCK(nvar) void omp_set_nest_lock(omp_nest_lock_t *lock)
subroutine OMP_UNSET_LOCK(svar) void omp_unset_lock(omp_lock_t *lock)
subroutine OMP_UNSET_NEST_LOCK(nvar) void omp_unset_nest_lock(omp_nest_lock_t *lock)
logical function OMP_TEST_LOCK(svar) int omp_test_lock(omp_lock_t *lock)
logical function OMP_TEST_NEST_LOCK(nvar) int omp_test_nest_lock(omp_nest_lock_t *lock)

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 21 / 68

The OpenMP Run-time Library Run-Time Control

Simple Lock Example

It is easy to get into trouble with locks - setting a lock will cause the
non-owning threads to block until the lock is unset, consider:

#include <omp. h>

omp_lock_t ∗ lock1 ;

/∗ l o t s o f i n t e r v e n i n g code . . . ∗ /

omp_ in i t_ lock (lock1) ;

#pragma omp p a r a l l e l for shared (lock1)
for (i =0; i <=N−1; i ++) { /∗ simple lock example ∗ /

i f (A [i] > CURRENT_MAX) {
omp_set_lock (& lock1) ;
i f (A [i] > CURRENT_MAX) {

CURRENT_MAX = A[i] ;
}

}
omp_unset_lock (& lock1) ;

}
omp_destroy_lock (& lock1) ;

Similar serialization can also be obtained using directives, albeit not
with the same level of control.

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 22 / 68

The OpenMP Run-time Library Timing

Timing Routines

The run-time library includes two timing routines that implement a
portable wall-clock timer.

in FORTRAN :
double precision function OMP_GET_WTIME()
double precision function OMP_GET_WTICK()
[number of seconds between c lock t i c k s]

in C/C++ :
double omp_get_wtime (vo id)
double omp_get_wtick (vo id)

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 23 / 68

The OpenMP Run-time Library Timing

Usage example:
in FORTRAN :

DOUBLE PRECISION t s t a r t , tend
t s t a r t =OMP_GET_WTIME()
c a l l b ig job (i , j ,M,N, a)
tend=OMP_GET_WTIME()
pr in t ∗ , ’ b i g j ob exec t ime = ’ , tend−t s t a r t

in C/C++ :
double t s t a r t ;
double tend ;
t s t a r t = omp_get_wtime () ;
. . . work to be timed . . .
tend = omp_get_wtime () ;
p r i n t f ("Work took %f seconds \ n " , tend − t s t a r t) ;

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 24 / 68

OpenMP Environmental Controls

OpenMP Environmental Controls

OMP_NUM_THREADS integer
how many default threads used in parallel regions

OMP_SCHEDULE (type[,chunk])
control default for SCHEDULE directive, type can be one of
static, dynamic, andguided. Also auto in OpenMP 3.0.

OMP_DYNAMIC true|false
allows/disallows variable number of threads

OMP_NESTED true|false
allows/disallows nested parallelism. If allowed, number of
threads used to execute nested parallel regions is
implementation dependent (can even be serialized!).

Vendors may have additional env variables (e.g. Intel for
data/thread placement or CPU affinity).

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 26 / 68

OpenMP Environmental Controls

Environmental Examples

tcsh :
setenv OMP_NUM_THREADS 2
setenv OMP_SCHEDULE " guided ,4 "
setenv OMP_SCHEDULE " dynamic "

bash :
expor t OMP_NUM_THREADS=2
expor t OMP_SCHEDULE=" guided ,4 "
expor t OMP_SCHEDULE=" dynamic "

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 27 / 68

OpenMP Basics Sentinels

Directive Sentinels

in FORTRAN: Fixed-form source code, must start in column 1 with no
intervening white space:

!$OMP
C$OMP
∗$OMP

Free-form source uses just the first (can appear in any
column as long as it is preceded only by white space):

!$OMP

in C/C++: (free-form source, of course)
#pragma omp d i r e c t i v e−name [clause [[,] c lause] . . .]

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 29 / 68

OpenMP Basics Conditional Compilation

OpenMP Conditional Compilation Details

in FORTRAN: fixed-source form, conditional compilation sentinels
must start in column 1

! $
C$
∗$
c$

Examples:
! $ 10 IAM = OMP_GET_THREAD_NUM() +
! $ & INDEX
i f d e f _OPENMP

10 IAM = OMP_GET_THREAD_NUM() +
& INDEX

end i f

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 30 / 68

OpenMP Basics Conditional Compilation

FORTRAN (cont’d) for free-form source code,
! $

and again,
! $ IAM = OMP_GET_THREAD_NUM() + &
! $& INDEX
i f d e f _OPENMP

IAM = OMP_GET_THREAD_NUM() + &
INDEX

end i f

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 31 / 68

OpenMP Basics Conditional Compilation

in C/C++: just use conventional preprocessing macros:
i f d e f _OPENMP

iam = omp_get_thread_num () + index ;
#endif

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 32 / 68

OpenMP Basics Conditional Compilation

"Hello, World" in OpenMP

Even though we have not covered the OpenMP directives, we can
write our canonical "Hello, world" example by introducing the simplest
directive to denote a parallel region:

#include < s t d i o . h>
i f d e f _OPENMP

inc lude <omp. h> /∗ Needed f o r API rou t i nes ∗ /
end i f

i n t main (i n t argc , char ∗argv []) {
i n t t h_ i d =0 , nthreads =1;

#pragma omp p a r a l l e l p r i v a t e (t h_ i d)
{

i f d e f _OPENMP
th_ id = omp_get_thread_num () ;

end i f
p r i n t f (" He l lo World from thread %d \ n " , t h_ i d) ;

#pragma omp b a r r i e r
i f (t h_ i d == 0) {

i f d e f _OPENMP
nthreads = omp_get_num_threads () ;

end i f
p r i n t f (" There are %d threads \ n " , nthreads) ;

}
} /∗ Ends p a r a l l e l reg ion ∗ /
return 0;

}

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 33 / 68

OpenMP Directives

OpenMP Directives

Parallel Regions
Work-sharing
Data Environment
Synchronization

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 35 / 68

OpenMP Directives Parallel Regions

OpenMP Parallel Regions

PARALLEL/END PARALLEL directives define parallel regions.
!$OMP PARALLEL [clause [, c lause] . . .]
.
.
!$OMP END PARALLEL

Valid data environment clauses (we will come back to look at these in more detail):

PRIVATE(list)

SHARED(list)

DEFAULT(PRIVATE|SHARED|NONE)

FIRSTPRIVATE(list)

REDUCTION({operator|intrinsic_procedure_name}:list)

COPYIN(list)

IF(scalar_logical_expression)

NUM_THREADS(scalar_integer_expression)

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 36 / 68

OpenMP Directives Parallel Regions

Simple PARALLEL Example

integer : : myid , nthreads , npoints , i p o i n t s , i s t a r t

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(myid , nthreads , i p o i n t s , i s t a r t)
myid = OMP_GET_THREAD_NUM()
nthreads = OMP_GET_NUM_THREADS()
i p o i n t s = npo in ts / nthreads ! s ize o f p a r t i t i o n by thread
i s t a r t = myid∗ i p o i n t s +1 ! u n i t o f f s e t f o r f o r t r a n
i f (myid . eq . nthreads−1) then

i p o i n t s = npo in ts − i s t a r t ! ex t ra b i t s go to l a s t thread
endif
c a l l subdomain (x , i s t a r t , i p o i n t s) ! x (:) i s g loba l shared ar ray

!$OMP END PARALLEL

Single PARALLEL region in which we sub-divide the computation
This example is more coarse-grained, depending on the size of
the computation

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 37 / 68

OpenMP Directives Work-Sharing

OpenMP Work-Sharing

These are the real workhorses of loop-level parallelism ...
!$OMP DO [clause [, c lause] . . .]
#pragma omp for [c lause [, c lause] . . .]

!$OMP SECTIONS [clause [, c lause] . . .]
!$OMP SINGLE [clause [, c lause] . . .]
!$OMP WORKSHARE

Let’s explore these work-sharing directives one at a time ...

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 38 / 68

OpenMP Directives Work-Sharing

Work-Sharing Illustrated

FORK

JOIN

FORK

JOIN

FORK

JOIN

DO/for loop

Master Thread

Team

Master Thread

Master Thread

Master Thread Master Thread

Master Thread

(a) (b) (c)

SECTIONS SINGLE

Team Team

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 39 / 68

OpenMP Directives Work-Sharing

Work-Sharing DO/for directive

!$OMP DO [clause [, c lause] . . .]
#pragma omp for [c lause [, c lause] . . .]

clause PRIVATE(list)

clause FIRSTPRIVATE(list)

clause LASTPRIVATE(list)

clause REDUCTION({operator|intrinsic_procedure_name}:list)

clause SCHEDULE(type[,chunk])
control how loop iterations are mapped onto threads.

(static[,chunk]) chunk-sized blocks for each thread
(dynamic[,chunk]) threads get chunk-sized blocks until exhausted
(guided[,chunk]) block starts large, shrinks down to chunk size

(runtime) determined at runtime by env variable OMP_SCHEDULE

clause ORDERED

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 40 / 68

OpenMP Directives Work-Sharing

Simple DO/for Examples

void load_arrays (i n t n , i n t m, double ∗A, double ∗B, double ∗C, double ∗D) {
i n t i ;

#pragma omp p a r a l l e l
{

#pragma omp for nowait
for (i =0; i <n ; i ++) {

B [i] = (A [i]−A[i −1]) / 2 .0 ;
}

#pragma omp for nowait
for (i =0; i <m; i ++) {

D[i] = s q r t (C[i]) ;
}

}
}

Multiple (independent) loops within PARALLEL region
Can use NOWAIT clause to avoid implicit barriers

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 41 / 68

OpenMP Directives Work-Sharing

Work-Sharing SECTIONS

!$OMP SECTIONS [clause [, c lause] . . .]
[!$OMP SECTION]
.
block
.
!$OMP SECTION
.
block
.
!$OMP END SECTIONS [NOWAIT]

available clauses:

PRIVATE(list)
FIRSTPRIVATE(list)
LASTPRIVATE(list)
REDUCTION({operator|intrinsic_procedure_name}:list)

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 42 / 68

OpenMP Directives Work-Sharing

SECTIONS Get Assigned How?

Implied barrier at the end of a SECTIONS directive, unless the
NOWAIT clause is used
It is not allowed to branch out of section blocks
SECTION directives must occur within the lexical extent of a
SECTIONS directive
What if the number of threads does not match the number of
sections?
if threads > sections, some threads are idled, if sections >
threads, implementation dependent

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 43 / 68

OpenMP Directives Work-Sharing

SECTIONS Example

!$OMP PARALLEL
!$OMP SECTIONS
!$OMP SECTION

CALL XAXIS () ! xax is () , yax is () , zax is () independent

!$OMP SECTION
CALL YAXIS ()

!$OMP SECTION
CALL ZAXIS ()

!$OMP END SECTIONS
!$OMP END PARALLEL

Three subroutines executed concurrently
Scheduling of individual SECTION blocks is implementation
dependent.

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 44 / 68

OpenMP Directives Work-Sharing

Work-Sharing SINGLE

SINGLE serializes a parallel region
!$OMP SINGLE [clause [, c lause] . . .]
.
.
!$OMP END SINGLE [COPYPRIVATE|NOWAIT]

available clauses:

PRIVATE(list)
FIRSTPRIVATE(list)

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 45 / 68

OpenMP Directives Work-Sharing

Example of SINGLE Directive

void single_example () {
#pragma omp p a r a l l e l

{
#pragma omp s i n g l e

p r i n t f (" Beginning do_lots_of_work . . . \ n ") ;

do_lots_of_work () ;

#pragma omp s i n g l e
p r i n t f (" F in ished do_lots_of_work . \ n ") ;

#pragma omp s i n g l e nowait
p r i n t f (" Beginning do_lots_more_work . . . \ n ") ;

do_lots_more_work () ;
}

}

No guarantee which thread executes SINGLE region
Can use a NOWAIT clause if other threads can continue without
waiting at implicit barrier

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 46 / 68

OpenMP Directives Work-Sharing

WORKSHARE Directive

!$OMP WORKSHARE
.
.
!$OMP END WORKSHARE [NOWAIT]

available clauses:

divides work in enclosed code into segments executed once by
thread team members.
units of work assigned in any manner subject to execution-once
constraint.
BARRIER is implied unless END WORKSHARE NOWAIT is used.

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 47 / 68

OpenMP Directives Work-Sharing

Restrictions on WORKSHARE:
FORTRAN only
Requires OpenMP version >= 2.0 (often seems to be exception
even in 2.5)
Enclosed block can only consist of:

array or scalar assignments
FORALL|WHERE statements/constructs
ATOMIC, CRITICAL, PARALLEL constructs

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 48 / 68

OpenMP Directives Work-Sharing

Example of WORKSHARE Directive

integer : : i , j
integer , parameter : : n=1000
real , dimension (n , n) : : A ,B,C,D

do i =1 ,n
do j =1 ,n

a (i , j) = i ∗2.0
b (i , j) = j +2.0

enddo
enddo

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP WORKSHARE
C = A∗B
D = A+B
f i r s t = C(1 ,1)+D(1 ,1)
l a s t = C(n , n)+D(n , n)

!$OMP END WORKSHARE

!$OMP END PARALLEL

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 49 / 68

OpenMP Directives Work-Sharing

Combined Parallel Work-Sharing

Combined Parallel region and work-sharing directives, shortcuts for
regions with a single work-sharing directive,

!$OMP PARALLEL DO [clause [, c lause] . . .]
#pragma omp p a r a l l e l for [c lause [, c lause] . . .]

!$OMP PARALLEL SECTIONS [clause [, c lause] . . .]
#pragma omp p a r a l l e l sec t ions [c lause [, c lause] . . .]

!$OMP PARALLEL WORKSHARE [clause [, c lause] . . .]
#pragma omp p a r a l l e l workshare [c lause [, c lause] . . .]

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 50 / 68

OpenMP Directives Work-Sharing

Work-Sharing Illustrated (summary)

FORK

JOIN

FORK

JOIN

FORK

JOIN

DO/for loop

Master Thread

Team

Master Thread

Master Thread

Master Thread Master Thread

Master Thread

(a) (b) (c)

SECTIONS SINGLE

Team Team

(a) DO/for : ’data parallelism’, this workhorse directive shares iterations of a loop across a
thread team

(b) SECTIONS : ’functional parallelism’, break work into separated discrete sections, each of
which gets executed by a different thread

(c) SINGLE : serialize a section (otherwise parallel) of code

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 51 / 68

OpenMP Directives Data Environment

Data Environment

Constructs for controlling the data environment in parallel regions,
clause THREADPRIVATE(list) :

makes named common blocks and named variables private to each thread
(Initialize with COPYIN or use DATA statements), persists between parallel
regions (if thread count is the same)

clause PRIVATE(list) :
variables in list private to each member of thread team. Not initialized. Masks
globals.

clause SHARED(list) :
shares variables in list among all team members (may need a FLUSH to
ensure consistent copies!)

clause DEFAULT(PRIVATE|SHARED|NONE) :
C/C++ does not support DEFAULT(PRIVATE).

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 52 / 68

OpenMP Directives Data Environment

Data Environment (cont’d)

clause FIRSTPRIVATE(list) :
same as PRIVATE, but values initialized with value of original.

clause LASTPRIVATE(list) :
same as PRIVATE, but thread executing last iteration updates value of original
object.

clause REDUCTION({operator|intrinsic_procedure_name}:list) :
performs reduction with given operator on list variables.

clause COPYIN(list) :
used in conjunction with THREADPRIVATE to initialize values in all threads.

clause COPYPRIVATE(list) :
used with END SINGLE to broadcast a value from one team member to the
others.

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 53 / 68

OpenMP Directives Data Environment

More on the REDUCTION clause

REDUCTION (operator | i n t r i n s i c : l i s t)
reduc t ion (operator : l i s t)

A private copy of each list variable is created for each thread, the
reduced value is written to the global shared variable
listed variables must be named scalars (not arrays or structures),
declared as SHARED
Watch out for cummutativity-associativity (subtraction, for
example)

FORTRAN C/C++
intrinsic max,min,iand,ior,ieor
operator +, ∗,−, .and ., .or ., .eqv ., .neqv . +,*,-,^,&,|,&&,||,

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 54 / 68

OpenMP Directives Data Environment

REDUCTION Example

void ex_reduct ion (double ∗x , double ∗y , i n t n) {
i n t i , b ;
double a ;

a =0 .0 ;
b=0;

#pragma omp p a r a l l e l for p r i v a t e (i) shared (x , y , n) \
reduc t ion (+ : a) reduc t ion (^ : b)

for (i =0; i <n ; i ++) {
a += x [i] ;
b ^= y [i] ; /∗ b i t w i s e XOR ∗ /

}
}

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 55 / 68

OpenMP Directives Synchronization

Synchronization

Directives to synchronize thread team or control thread access to code
fragments,
!$OMP MASTER :

execute section only with master thread (no implied barrier).

!$OMP CRITICAL [name]:
restrict access to one thread at a time (otherwise block).

!$OMP BARRIER :
synchronize all threads.

!$OMP ATOMIC :
special case of CRITICAL, the statement following allows a specific memory
location to be updated atomically (no multiple writes, can take advantage of
specific hardware instructions for atomic writes).

!$OMP FLUSH [(list)]:
ensure threads have consistent view of shared variables (else just the named
list).

!$OMP ORDERED :
execute code in same order as under sequential execution.

!$OMP SINGLE :
block executed by only one thread (implied BARRIER and FLUSH at the end)

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 56 / 68

OpenMP Directives Synchronization

MASTER Example

!$OMP PARALLEL

!$OMP DO
do i =1 ,n

c a l l lo ts_of_ independent_work (i)
enddo

!$OMP MASTER
pr in t ∗ , ’ F in ished lots_of_ independent_work . . . ’

!$OMP END MASTER

. . . more work . . .
!$OMP END PARALLEL

Code inside MASTER construct executed only by master thread
No implicit barrier (more efficient version of SINGLE)

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 57 / 68

OpenMP Directives Synchronization

Synchronization Example: ATOMIC

i n t main () {
i n t index [10000] ;
double x [1000] , y [10000] ;
i n t i ;

for (i =0; i <10000; i ++) {
index [i] = i % 1000;
y [i] = 0 . 0 ;

}
for (i =0; i <1000; i ++) {

x [i] = 0 . 0 ;
}
atomic_ex (x , y , index ,10000) ;
return 0;

}

void atomic_ex (double ∗x , double ∗y , i n t ∗ index , i n t n) {
i n t i ;

#pragma omp p a r a l l e l for shared (x , y , index , n)
for (i =0; i <n ; i ++) {

#pragma omp atomic
x [index [i]] += work1 (i) ;

y [i] += work2 (i) ;
}

}

why use ATOMIC? CRITICAL would execute serially, while ATOMIC
can execute in parallel on different elements of x.

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 58 / 68

OpenMP Directives Synchronization

FLUSH Example

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(ISYNC)
IAM = OMP_GET_THREAD_NUM()
ISYNC(IAM) = 0

!$OMP BARRIER
CALL WORK()

! I AM DONE WITH MY WORK, SYNCHRONIZE WITH MY NEIGHBOR
ISYNC(IAM) = 1

!$OMP FLUSH
! WAIT TILL NEIGHBOR IS DONE

DO WHILE (ISYNC(NEIGH) . EQ. 0)
!$OMP FLUSH(ISYNC)

ENDDO
!$OMP END PARALLEL

Ensure that all threads have consistent view of memory

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 59 / 68

OpenMP Directives Synchronization

Example of ORDERED Clause/Construct

void work (i n t k) {
#pragma omp ordered

p r i n t f (" %d \ n " , k) ;
}

void ex_ordered (i n t lower , i n t upper , i n t s t r i d e) {
i n t i ;

#pragma omp p a r a l l e l for ordered schedule (dynamic)
for (i =lower , i <upper ; i ++) {

work (i) ;
}

}

i n t main () {
ex_ordered (0 ,100 ,5) ;
return 0;

}

ORDERED must be within extent of PARALLEL DO, which must
have ORDERED clause
Above example prints indices in order

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 60 / 68

New Features in OpenMP 3.0

The task Directive

A new directive in OpenMP 3.0:
#pragma omp task [c lause [[,] c lause] . . .]
{

/∗ s t r u c t u r e d block ∗ /
}

SHARED(list)
PRIVATE(list)
FIRSTPRIVATE(list)
DEFAULT(PRIVATE|SHARED|NONE)
IF(expr)
UNTIED (tasks not necessarily executed by parent thread)

Advantage - very good for irregular workloads (e.g., recursion,
unbounded loops).

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 62 / 68

New Features in OpenMP 3.0

Task Synchronization

Explicit:
#pragma omp taskwa i t

Encountering task waits until child tasks completed

Implicit/Explicit:
tasks created by any thread of the current team guaranteed to be
completed at barrier exit

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 63 / 68

New Features in OpenMP 3.0

More Task Details

More aspects of the TASK directive:
Data scoping rules similar to PARALLEL regions:

static and global variables shared
automatic variables private

lack of DEFAULT clause:
FIRSTPRIVATE by default

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 64 / 68

New Features in OpenMP 3.0 Improvements to Loop Parallelism

Loop COLLAPSE

Frequent occurrence of perfectly nested loops:
for (i =1; i <=N; i ++) {

for (j =1; j <=M; j ++) {
for (k =1; k<=P; k++) {
. . .

In 3.0, the COLLAPSE directive can be used on work-sharing directives
rather than attempting to nest regions (which is costly and prone to
error):

#pragma omp for co l lapse (2)
for (i =1; i <=N; i ++) {

for (j =1; j <=M; j ++) {
for (k =1; k<=P; k++) {
. . .

The compiler needs to be able to form a single loop to be parallelized -
iteration space needs to be rectangular (i.e. loop indices are
independent and unchanged).

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 65 / 68

New Features in OpenMP 3.0 Improvements to Loop Parallelism

Schedule Changes

There are several scheduling changes in 3.0:
AUTO schedule - leave it to the runtime environment to decide the
best schedule (very implementation dependent)
schedule API functions (per-task control variables):

omp_set_schedule ()
omp_get_schedule ()

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 66 / 68

New Features in OpenMP 3.0 Improvements to Loop Parallelism

Nested Parallelism Improvements

Nested parallelism changes in 3.0:
Per-task internal control variables (e.g., call
omp_set_num_threads inside a parallel region to control team
size at next level of parallelism
New API routines:

/∗ depth o f nes t ing ∗ /
omp_get_leve ()
omp_get_act ive_level ()

/∗ IDs o f (grand) parent ∗ /
omp_get_ancestor_thread_num (l e v e l)

/∗ team sizes o f (grand) parent ∗ /
omp_get_team_size (l e v e l)

/∗ also OMP_MAX_ACTIVE_LEVELS ∗ /
omp_set_max_act ive_levels ()
omp_get_max_active_levels ()

/∗ also OMP_THREAD_LIMIT ∗ /
omp_get_thread_l imi t ()

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 67 / 68

New Features in OpenMP 3.0 Improvements to Loop Parallelism

Miscellany

Environmental variables added in 3.0 (not previously mentioned):
OMP_STACKSIZE - child threads’ stack limit
OMP_WAIT_POLICY - active for dedicated systems, passive
should be good for shared systems

M. D. Jones, Ph.D. (CCR/UB) Shared Memory Programming With OpenMP HPC-I Fall 2009 68 / 68

	Introduction to OpenMP
	The OpenMP Run-time Library
	Run-Time Control
	Timing

	OpenMP Environmental Controls
	OpenMP Basics
	Sentinels
	Conditional Compilation

	OpenMP Directives
	Parallel Regions
	Work-Sharing
	Data Environment
	Synchronization

	New Features in OpenMP 3.0
	Improvements to Loop Parallelism

