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Theorem 1 The time dependent random measures represented in Figure 4 are equivalent. Furthermore, both resulting NRMs µ′m’s
are equal to:

µ′m =

m∑
j=1

(
qm−jµ̃j

)
(X)∑m

j′=1

(
qm−j′µ̃j′

)
(X)

Tm−j(µj),m > 1

where qm−jµ̃ is the random measure with Lévy measure qm−jν(dt, dx) (ν(dt, dx) is the Lévy measure of µ̃). Tm−j(µ) denotes point
transition on µ for (m− j) times .
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Figure 4: The time dependent topic model. The left plot corresponds to directly manipulating on normalized random measures, the
right one corresponds to manipulating on completely random measures. T: Point transition; Sq: Subsampling with acceptance rate q;
⊕: Superposition. Here m = n− 1 in the figures.

Generative Process:
•Generating independent NRMs µm for time frame m = 1, · · · , n:

µm|H, η0 ∼ NRM(M0, η0, P0) (1)

where H(·) = M0P0(·). M0 is the total mass for µm and P0 is the base distribution. η0 is the set of hyperparameters of the
corresponding NRM.
•Generating dependent NRMs µ′m (from µm and µ′m−1), for time frame m > 1:

µ′m = T (Sq(µ′m−1))⊕ µm . (2)

•Generating hierarchical NRM mixtures (µmj, θmji, xmji) for time frame m = 1, · · · , n, document j = 1, · · · , Nm, word i = 1, · · · ,Wmj:

µmj = NRM(Mm, ηm, µ
′
m), (3)

θmji|µmj ∼ µmj, xmji|θmji ∼ g0(·|θmji)

where Mm is the total mass for µmj, g0(·|θmji) denotes the density function to generate data xmji from atom θmji.
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1 Motivation

•We want to model the birth-death process of topic evolution.
•We want to model the topic dependency between time frames.
•We want to model the power-law phenomena appeared in

most of natural datasets, e.g., text datasets.

2 Normalized Random Measures

Poisson Processes: A Poisson process on S is a random sub-
set Π ∈ S such that if N(A) is the number of points of Π in A ⊆ S,
then N(A) is a Poisson random variable with mean ν(A), and
N(A1), · · · , N(An) are independent if A1, · · · , An are disjoint.

Completely Random Measures (CRM): Let S = R+ × X, a
CRM µ̃ is defined as a linear functional of the Poisson random
measure N(·) (called ν(·) the Lévy measure of µ̃)

µ̃(B) =

∫
R+×B

tN(dt, dx),∀B ∈ B(X).

X

R
+

Poisson processes:

N(A) =
∑

(J(x),x)∈A δ(J(x),x)

→

X

R
+

Completely random measures:

µ̃(A) =
∑

(J(x),x)∈A J(x)δx

Normalized Random Measures (NRM): An NRM is obtained
by normalizing the CRM µ̃ as: µ = µ̃

µ̃(X)
. A normalized gener-

alized Gamma process (NGG) is an NRM with Lévy measure
being e−bt

t1+a
H(dx), b > 0, 0 < a < 1.

Normalized Generalized Gamma Process (NGG): A normal-
ized generalized Gamma process (NGG) is an NRM with Lévy
measure being e−bt

t1+a
H(dx), where 0 < a < 1, b > 0.

3 The three Dependency Operations

Superposition of NRMs: Given n independent NRMs µ1, · · · , µn
on X, the superposition (⊕) is:

µ1 ⊕ µ2 ⊕ · · · ⊕ µn := c1µ1 + c2µ2 + · · · + cnµn .

where the weights cm =
µ̃m(X)∑
j µ̃j(X)

and µ̃m is the unnormalized
random measures corresponding to µm.

Subsampling of NRMs: Given a NRM µ =
∑∞
k=1 rkδθk on X,

and a Bernoulli parameter q ∈ [0, 1], the subsampling of µ, is
defined as

Sq(µ) :=
∑
k:zk=1

rk∑
j zjrj

δθk,

where zk ∼ Bernoulli(q) are Bernoulli random variables with ac-
ceptance rate q.

Point transition of NRMs: Given a NRM µ =
∑∞
k=1 rkδθk on X,

the point transition of µ, is to draw atoms θ′k from a transformed
base measure to yield a new NRM as

T (µ) :=

∞∑
k=1

rkδθ′k
.

4 Sampling

The statistics we are interested in are:
• xmji: the customer i in the jth restaurant.
• smji: the dish that xmji is eating.
• n′mk: n

′
mk =

∑
j
∑
r δψmjr=k, the number of customers in µ′m

eating dish k.
• µ̃m =

∑
k Jmkδθk, , µ̃′m =

∑
k J
′
mkδθk.

At each time frame m, we do:
• Slice sample Jmk (ends up finite jumps).
• Subsample J ′mk by inheriting from Jm′k,m

′ ≤ m with Bernoulli
trials.
•Construct µ′m by normalizing J ′mk.
• Sample smji using a generalized Blackwell-MacQueen sam-

pling scheme for the hierarchical NRM.
• Sample n′mk by simulating a generalized Chinese restaurant

process for the NRM.

5 Experiments

Evaluated on 9 datasets including news, blogs, academic and
Twitter collections. See Figure 1, 2, 3 for demonstration and
Table 1 for comparison.
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Figure 1: Left: Power-law phenomena in NGG; Right: topic evo-
lution on JMLR. Shows a late developing topic on software, be-
fore during and after the start of MLOSS.org in 2008.
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Figure 2: Topic evolution on Twitter. Words in red have in-
creased, and blue decreased.

Table 1: Test log-likelihood on 9 datasets. DHNGG: dependent
hierarchical normalized generalized Gamma processes, DHDP:
dependent hierarchical Dirichlet processes, HDP: hierarchical
Dirichlet processes, DTM: dynamic topic model.

Datasets ICML JMLR TPAMI NIPS Person
DHNGG -5.3123e+04 -7.3318e+04 -1.1841e+05 -4.1866e+06 -2.4718e+06
DHDP -5.3366e+04 -7.3661e+04 -1.2006e+05 -4.4055e+06 -2.4763e+06
HDP -5.4793e+04 -7.7442e+04 -1.2363e+05 -4.4122e+06 -2.6125e+06
DTM -6.2982e+04 -8.7226e+04 -1.4021e+05 -5.1590e+06 -2.9023e+06

Datasets Twitter1 Twitter2 Twitter3 BDT
DHNGG -1.0391e+05 -2.1777e+05 -1.5694e+05 -3.3909e+05
DHDP -1.0711e+05 -2.2090e+05 -1.5847e+05 -3.4048e+05
HDP -1.0752e+05 -2.1903e+05 -1.6016e+05 -3.4833e+05
DTM -1.2130e+05 -2.6264e+05 -1.9929e+05 -3.9316e+05
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Figure 3: Training log-likelihoods influenced by the subsam-
pling rate q. From top-down, left to right are the results on
ICML, JMLR, TPAMI, Person, Twitter1, Twitter2, Twitter3 and
BDT datasets, respectively.


