Dependent Hierarchical Normalized Random Measures for Dynamic Topic Modeling

Changyou Chen^{1,2}, Ding Nan³, Wray Buntine^{2,1} ¹Australian National University; ²National ICT, Canberra, ACT, Australia; ³Purdue University Changyou.Chen@NICTA.com.au, ding10@purdue.edu, Wray. Buntine@NICTA.com.au

Motivation

- We want to model the birth-death process of topic evolution.
- We want to model the topic dependency between time frames.
- We want to model the power-law phenomena appeared in most of natural datasets, *e.g.*, text datasets.

Normalized Random Measures

Poisson Processes: A *Poisson process* on S is a random subset $\Pi \in \mathbb{S}$ such that if N(A) is the number of points of Π in $A \subseteq \mathbb{S}$, then N(A) is a Poisson random variable with mean $\nu(A)$, and $N(A_1), \dots, N(A_n)$ are independent if A_1, \dots, A_n are disjoint.

Completely Random Measures (CRM): Let $\mathbb{S} = R^+ \times \mathbb{X}$, a CRM $\tilde{\mu}$ is defined as a linear functional of the Poisson random measure $N(\cdot)$ (called $\nu(\cdot)$ the Lévy measure of $\tilde{\mu}$)

$$\tilde{\mu}(B) = \int_{\mathbb{R}^+ \times B} t N(\mathrm{d} t, \mathrm{d} x), \forall B \in \mathcal{B}(\mathbb{X}).$$

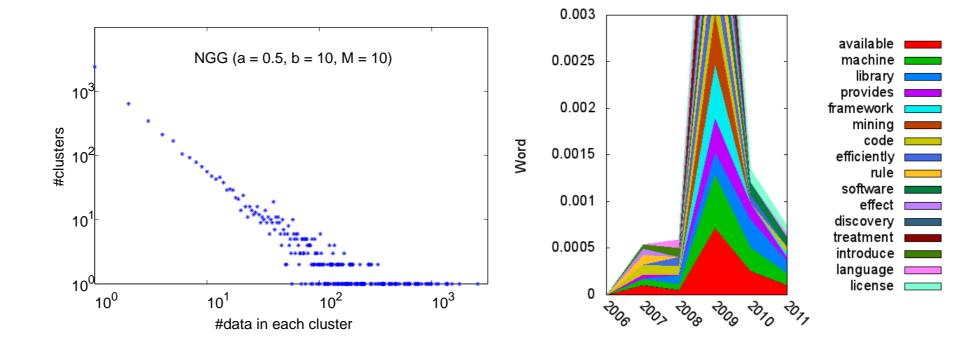


Figure 1: Left: Power-law phenomena in NGG; Right: topic evolution on JMLR. Shows a late developing topic on software, before during and after the start of MLOSS.org in 2008.

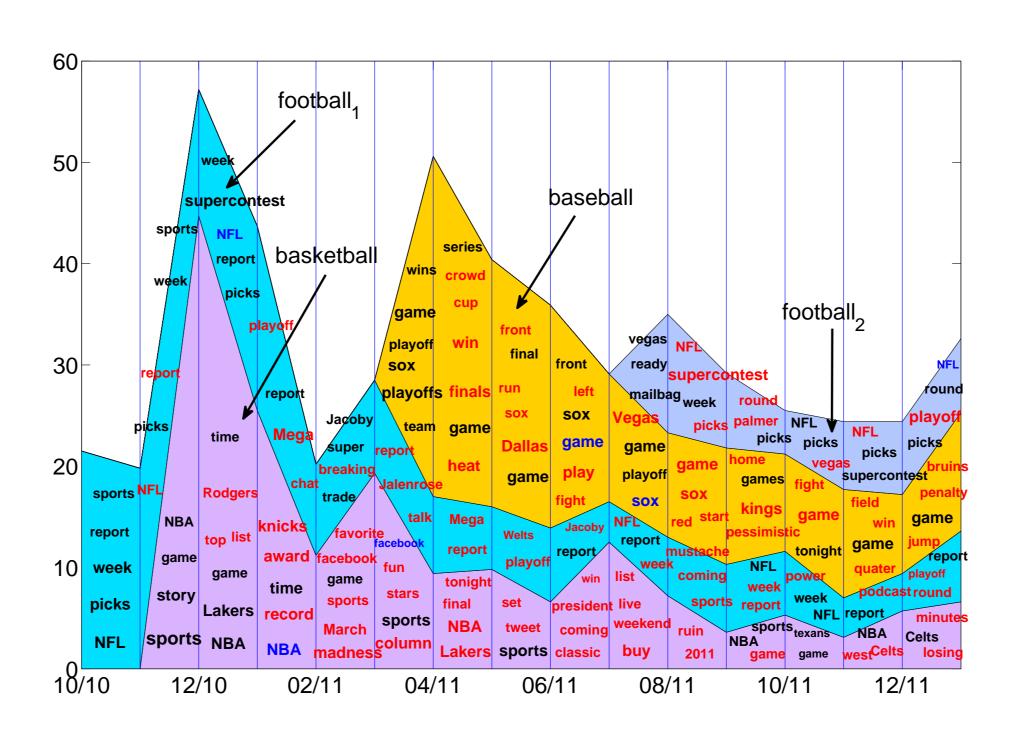
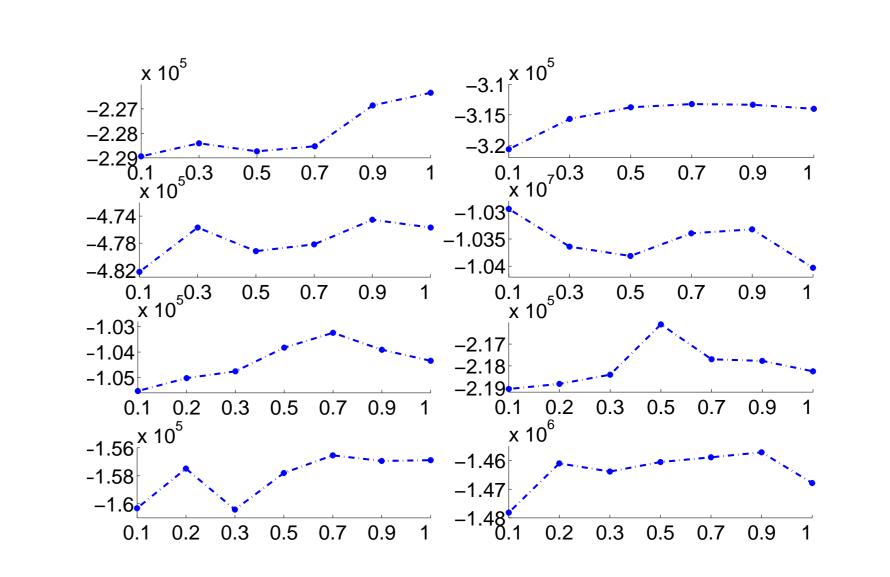
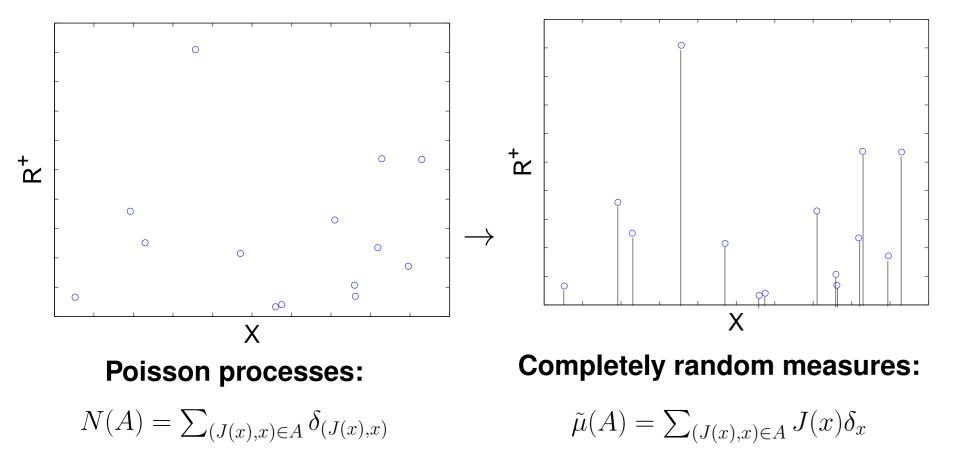


Table 1: Test log-likelihood on 9 datasets. *DHNGG*: dependent hierarchical normalized generalized Gamma processes, *DHDP*: dependent hierarchical Dirichlet processes, HDP: hierarchical Dirichlet processes, *DTM:* dynamic topic model.

Datasets	ICML	JMLR	TPAMI	NIPS	Person
DHNGG	-5.3123e+04	-7.3318e+04	-1.1841e+05	-4.1866e+06	-2.4718e+06
DHDP	-5.3366e+04	-7.3661e+04	-1.2006e+05	-4.4055e+06	-2.4763e+06
HDP	-5.4793e+04	-7.7442e+04	-1.2363e+05	-4.4122e+06	-2.6125e+06
DTM	-6.2982e+04	-8.7226e+04	-1.4021e+05	-5.1590e+06	-2.9023e+06
Datasets	Twitter ₁	Twitter ₂	Twitter ₃	BDT	
DHNGG	-1.0391e+05	-2.1777e+05	-1.5694e+05	-3.3909e+05	
DHDP	-1.0711e+05	-2.2090e+05	-1.5847e+05	-3.4048e+05	
HDP	-1.0752e+05	-2.1903e+05	-1.6016e+05	-3.4833e+05	
DTM	-1.2130e+05	-2.6264e+05	-1.9929e+05	-3.9316e+05	





Normalized Random Measures (NRM): An NRM is obtained by normalizing the CRM $\tilde{\mu}$ as: $\mu = \frac{\mu}{\tilde{\mu}(\mathbb{X})}$. A normalized generalized Gamma process (NGG) is an NRM with Lévy measure being $\frac{e^{-bt}}{t^{1+a}}H(dx), b > 0, 0 < a < 1.$

Normalized Generalized Gamma Process (NGG): A normalized generalized Gamma process (NGG) is an NRM with Lévy measure being $\frac{e^{-at}}{t^{1+a}}H(dx)$, where 0 < a < 1, b > 0.

The three Dependency Operations

Superposition of NRMs: Given *n* independent NRMs μ_1, \dots, μ_n on \mathbb{X} , the superposition (\oplus) is:

 $\mu_1 \oplus \mu_2 \oplus \cdots \oplus \mu_n := c_1 \mu_1 + c_2 \mu_2 + \cdots + c_n \mu_n .$

where the weights
$$c_m = \frac{\mu_m(\mathbb{X})}{\sum_j \tilde{\mu}_j(\mathbb{X})}$$
 and $\tilde{\mu}_m$ is the unnormalized random measures corresponding to μ_m .

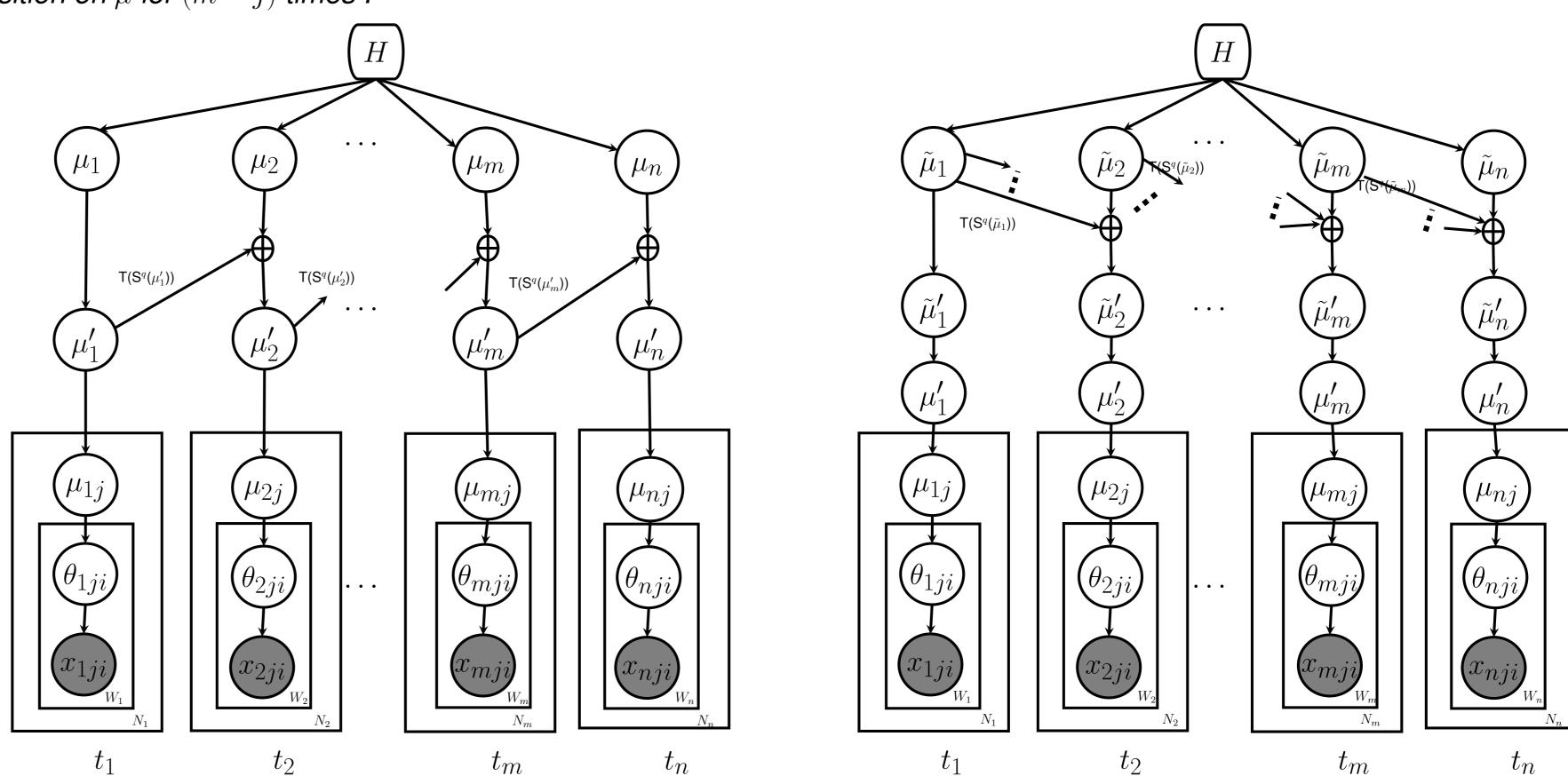
Figure 2: Topic evolution on Twitter. Words in red have increased, and blue decreased.

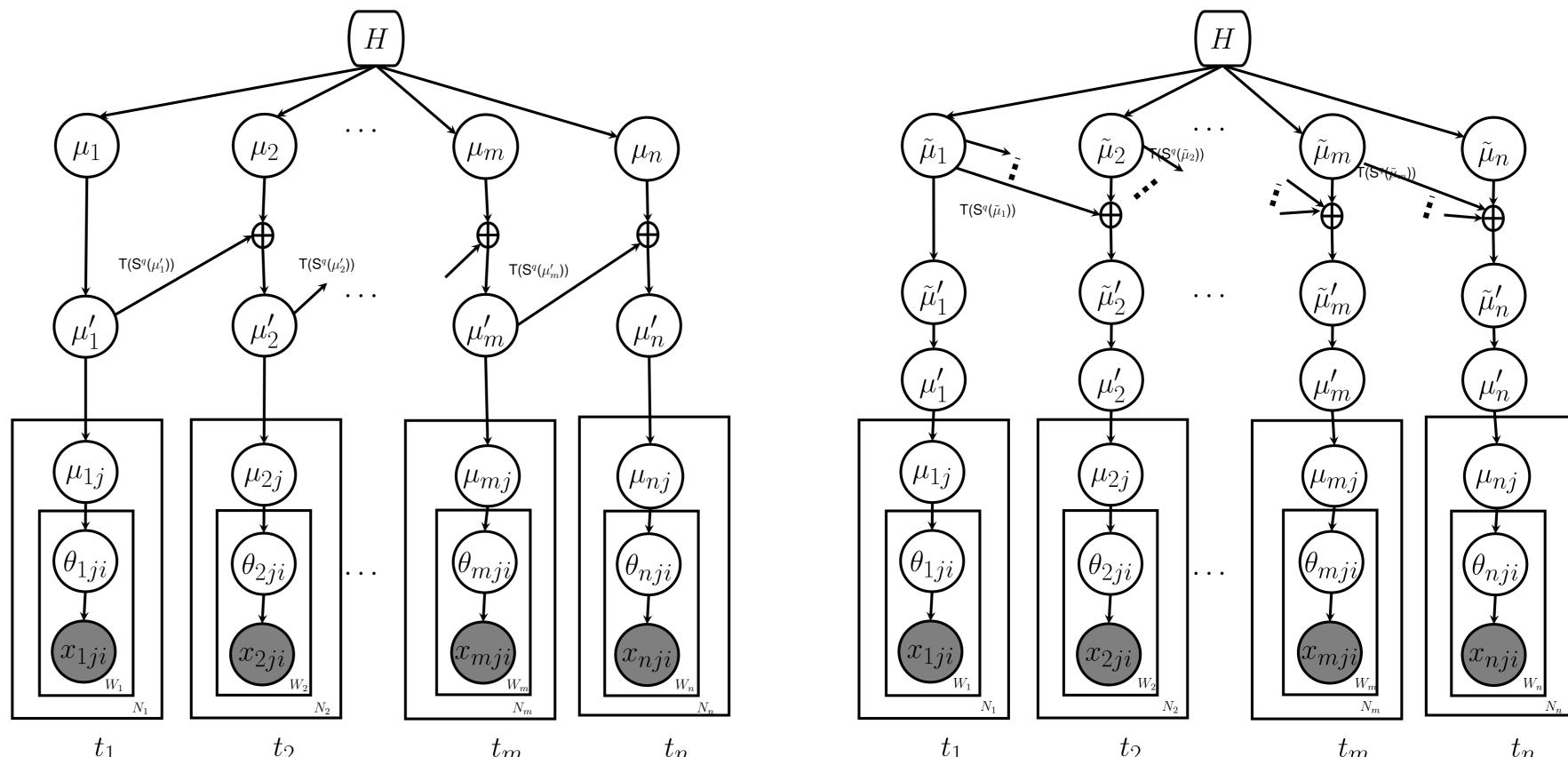
Figure 3: Training log-likelihoods influenced by the subsampling rate q. From top-down, left to right are the results on ICML, JMLR, TPAMI, Person, Twitter₁, Twitter₂, Twitter₃ and BDT datasets, respectively.

Theorem 1 The time dependent random measures represented in Figure 4 are equivalent. Furthermore, both resulting NRMs μ'_m 's are equal to:

$$\mu'_{m} = \sum_{j=1}^{m} \frac{\left(q^{m-j}\tilde{\mu}_{j}\right)(\mathbb{X})}{\sum_{j'=1}^{m} \left(q^{m-j'}\tilde{\mu}_{j'}\right)(\mathbb{X})} T_{m-j}(\mu_{j}), m > 1$$

where $q^{m-j}\tilde{\mu}$ is the random measure with Lévy measure $q^{m-j}\nu(dt, dx)$ ($\nu(dt, dx)$ is the Lévy measure of $\tilde{\mu}$). $T_{m-j}(\mu)$ denotes point transition on μ for (m-j) times.



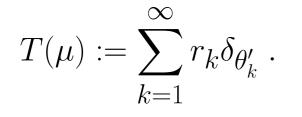


Subsampling of NRMs: Given a NRM $\mu = \sum_{k=1}^{\infty} r_k \delta_{\theta_k}$ on X, and a Bernoulli parameter $q \in [0,1]$, the subsampling of μ , is defined as

$$S^{q}(\mu) := \sum_{k:z_{k}=1} \frac{r_{k}}{\sum_{j} z_{j} r_{j}} \delta_{\theta_{k}},$$

where $z_k \sim \text{Bernoulli}(q)$ are Bernoulli random variables with acceptance rate q.

Point transition of NRMs: Given a NRM $\mu = \sum_{k=1}^{\infty} r_k \delta_{\theta_k}$ on X, the point transition of μ , is to draw atoms θ'_k from a transformed base measure to yield a new NRM as



Sampling 4

The statistics we are interested in are:

•
$$x_{mji}$$
: the customer *i* in the *j*th restaurant.

• s_{mji} : the dish that x_{mji} is eating.

• n'_{mk} : $n'_{mk} = \sum_j \sum_r \delta_{\psi_{mjr}=k}$, the number of customers in μ'_m eating dish k.

• $\tilde{\mu}_m = \sum_k J_{mk} \delta_{\theta_k}, \quad , \tilde{\mu}'_m = \sum_k J'_{mk} \delta_{\theta_k}.$

At each time frame m, we do:

• Slice sample J_{mk} (ends up finite jumps).

• Subsample J'_{mk} by inheriting from $J_{m'k}, m' \leq m$ with Bernoulli

Figure 4: The time dependent topic model. The left plot corresponds to directly manipulating on normalized random measures, the right one corresponds to manipulating on completely random measures. T: Point transition; S^q : Subsampling with acceptance rate q; \oplus : Superposition. Here m = n - 1 in the figures.

Generative Process:

• Generating independent NRMs μ_m for time frame $m = 1, \dots, n$:

 $\mu_m | H, \eta_0 \sim \mathsf{NRM}(M_0, \eta_0, P_0)$

(1)

(3)

NICTA

where $H(\cdot) = M_0 P_0(\cdot)$. M_0 is the total mass for μ_m and P_0 is the base distribution. η_0 is the set of hyperparameters of the

trials.

• Construct μ'_m by normalizing J'_{mk} .

• Sample s_{mji} using a generalized Blackwell-MacQueen sampling scheme for the hierarchical NRM.

• Sample n'_{mk} by simulating a generalized Chinese restaurant process for the NRM.

Experiments 5

Evaluated on 9 datasets including news, blogs, academic and *Twitter* collections. See Figure 1, 2, 3 for demonstration and Table 1 for comparison.

corresponding NRM.

• Generating dependent NRMs μ'_m (from μ_m and μ'_{m-1}), for time frame m > 1:

$$\mu'_m = T(S^q(\mu'_{m-1})) \oplus \mu_m .$$
(2)

• Generating hierarchical NRM mixtures (μ_{mj} , θ_{mji} , x_{mji}) for time frame $m = 1, \dots, n$, document $j = 1, \dots, N_m$, word $i = 1, \dots, W_{mj}$:

 $\mu_{mj} = \mathsf{NRM}(M_m, \eta_m, \mu'_m),$ $\theta_{mji}|\mu_{mj} \sim \mu_{mj}, \ x_{mji}|\theta_{mji} \sim g_0(\cdot|\theta_{mji})$

where M_m is the total mass for μ_{mj} , $g_0(\cdot | \theta_{mji})$ denotes the density function to generate data x_{mji} from atom θ_{mji} .

Statistical Machine Learning (SML) Group

ANU College of **Engineering & Computer Science**