Dependent Normalized Random Measures

Changyou Chen^{1,2}

¹ANU College of Engineering and Computer Science The Australian National University ²National ICT, Australia

Joint work with Wray Buntine & Nan Ding June 9, 2012

Changyou Chen Dependent Normalized Random Measures

Outline

Introduction

- 2 Normalized random measures
 - Background
 - Posterior analysis
 - Dependent NRMs
- 3 Applications in dynamic topic modeling
 - Model construction
 - Sampling
- 4 Experiments
- 5 Conclusion & future work

Introduction

Nonparametric Bayesian family

Introduction

Dynamic topic models

- Dynamic topic models try to model topic evolution over time.
- There are several related dynamic topic models, *e.g.*, Blei&Lafferty's DTM [BL06], Ahmed&Xing's iDTM [AX10].

Figure: Topic evolution in NIPS, taken from [AX10].

Main contributions

- Posterior analysis for normalized random measures.
- Develop dependent normalized random measures.
- Apply dependent normalized random measures to dynamic topic modeling to model *birth-death processes*, *dependency* and *power-law* phenomena in topic distributions over time.

Outline

Introduction

- 2 Normalized random measures
 - Background
 - Posterior analysis
 - Dependent NRMs
- 3 Applications in dynamic topic modeling
 - Model construction
 - Sampling

4 Experiments

5 Conclusion & future work

Outline

Introduction

- Normalized random measures
 Background
 - Posterior analysis
 - Dependent NRMs
- 3 Applications in dynamic topic modeling
 - Model construction
 - Sampling

4 Experiments

5 Conclusion & future work

- Basic idea:
 - measurable space:
 - disjoint subsets: $A, B \in \mathbb{S}$.
 - random function:

 $A, B \in \mathbb{S}.$ $\Phi: \mathbb{S} \longmapsto \mathbb{R}^+.$

S.

$$\Phi(A) \perp \Phi(B)$$

 It is shown that completely random measures can be constructed from Poisson processes.

Definition (Poisson Processes:)

A *Poisson process* on \mathbb{S} is a random subset $\Pi \in \mathbb{S}$ such that if N(A) is the number of points of Π in $A \subseteq \mathbb{S}$, then N(A) is a Poisson random variable with mean v(A), and $N(A_1), \dots, N(A_n)$ are independent if A_1, \dots, A_n are disjoint.

- Space: S
- Positive measure: $v : \mathbb{S} \mapsto \mathbb{R}^+$
- Poisson random measure:
 - $N: \mathbb{S} \longmapsto \mathsf{integers}$
- $N(A) \sim \mathsf{Poisson}(v(A))$

Definition (Construction from Poisson processes)

Let N(dt, dx) being a Poisson random measure on a product space $S = R^+ \times X$ with mean measure v(dt, dx). Construct a random measure $\tilde{\mu}$ to be a linear functional of N(dt, dx) as

$$\tilde{\mu}(B) = \int_{\mathbb{R}^+ \times B} tN(\mathrm{d} t, \mathrm{d} x), \forall B \in \mathscr{B}(\mathbb{X}).$$

$$\tilde{\mu}(B) = \int_{\mathbb{R}^+ \times B} t N(\mathrm{d}t, \mathrm{d}x) = \sum_{(J_k, x) \in \Pi \cap (\mathbb{R}^+ \times B)} J_k \delta_x$$

Proposition

 $\tilde{\mu}$ is a completely random measure on X.

- Call $v(dt, dx) = \rho(dt|x)H(dx)$ the *Lévy measure* of $\tilde{\mu}$.
- Taking different Lévy measures v(dt, dx) we get different CRMs.

Example (Gamma CRM (Gamma processes))

A Gamma process on X is obtained by setting

$$\mathbf{v}(\mathrm{d} t, \mathrm{d} x) = \frac{e^{-t}}{t} \mathrm{d} t H(\mathrm{d} x).$$

Sampling a CRM

$$ilde{\mu}(B) = \sum_{(J_k,x)\in\Pi\cap(\mathbb{R}^+ imes B)} J_k \delta_x$$

• Cannot directly sample from the Lévy measure $v(dx, dt) = \rho(dt|x)H(x)$ because it is improper.

Size biased sampling starting from the largest jump, then the second largest largest jump ..., given by Ferguson and Klass [FK72].

- Draw *i.i.d.* samples x_i from the base measure H(dx).
- The *k*-th largest jump has cumulative distribution function:

$$P(J_k \leq j_k | J_{k-1} = j_{k-1}) = \exp\left\{-\int_{\mathbb{X}} \int_{j_k}^{j_{k-1}} v(\mathrm{d}t, \mathrm{d}x)\right\}$$
.

Background

Normalized random measures

Definition (Normalized Random Measures (NRM))

An NRM is obtained by normalizing the CRM $\tilde{\mu}$ as:

$$\mu = rac{ ilde{\mu}}{ ilde{\mu}(\mathbb{X})} = \sum_k rac{J_k}{\sum_{k'} J_{k'}} \delta_{X_k^*} \; .$$

Definition (Normalized generalized Gamma processes (NGG))

A normalized generalized Gamma process is an NRM with Lévy measure being $v(dt, dx) = M \frac{e^{-t}}{d+a} H(dx), (0 < a < 1)^a$.

^{*a*}The general form is $v(dt, dx) = M \frac{e^{-bt}}{t^{1+a}} H(dx) (0 < a < 1, b > 0)$, but *b* can be absorbed into M, thus we use b = 1.

• We denote a NRM with parameters a, M and base measure $H(\cdot)$ as NRM $(a, M, H(\cdot))$.

Outline

Introduction

- 2 Normalized random measures
 - Background
 - Posterior analysis
 - Dependent NRMs
- 3 Applications in dynamic topic modeling
 - Model construction
 - Sampling

4 Experiments

5 Conclusion & future work

Posterior analysis for the NGG

 General form for the posteriors of the NRM is developed in [JLP09], here we focus on NGG¹.

Theorem (Posterior of the NGG)

Consider the NGG(a,M, $H(\cdot)$). For a data vector \vec{X} of length N there are K distinct values $X_1^*, ..., X_K^*$ with counts $n_1, ..., n_K$ respectively. The posterior marginal is given by

$$p\left(\vec{X}|NGG(a,M,H(\cdot))\right) = \frac{e^{M}a^{K-1}T_{a,M}^{N,K}}{\Gamma(N)}\prod_{k=1}^{K}(1-a)_{n_{k}-1}h(X_{k}^{*}).$$
 (1)

where

$$T_{a,M}^{N,K} = a \frac{M^K}{e^M} \int_{\mathbb{R}^+} \frac{u^{N-1}}{(1+u)^{N-Ka}} e^{M-M(1+u)^a} du .$$
 (2)

¹[FT12] also derives some similar results.

Posterior analysis for the NGG

Compare NGG with PYP (Pitman-Yor process)

$$p(\vec{X}|\mathsf{NGG},\cdots) = \frac{e^{M}a^{K-1}T_{a,M}^{N,K}}{\Gamma(N)} \prod_{k=1}^{K} (1-a)_{n_{k}-1}h(X_{k}^{*}) .$$
$$p(\vec{X}|\mathsf{PYP},\cdots) = \frac{(b|a)_{K}}{(b)_{N}} \prod_{k=1}^{K} (1-a)_{n_{k}-1}h(X_{k}^{*}) .$$

Corollary (NGG \leftrightarrow PYP)

Let $\vec{\mu} \sim \text{NGG}(a, M, H(\cdot))$ and suppose $M \sim \Gamma(b/a, 1)$ then it follows that $\vec{\mu} \sim \text{PYP}(a, b, H(\cdot))$

• If we also sample *M* using the prior $\Gamma(b/a, 1)$ for NGG, then we are sampling from a PYP.

Posterior analysis for the NGG

- This relationship is different from the Poisson-Kingman construction of the PYP, where it is constructed by exponentially tilting an σ-stable process, but we believe they are closely related.
- One problem of the above posterior sampling is the evaluation of $T_{a,M}^{N,K}$, which is computationally expensive and cannot easily be tabulated.

Conditional posterior for the NGG

- Likelihood of NGG: $\frac{\prod_{k=1}^{K} J_k^{n_k}}{\left(\sum_{k'=1}^{\infty} J_k'\right)^{\sum_{k=1}^{K} n_k}}.$
- A well studied auxiliary variable is introduced to eliminate this power term in the denominator. We call it *latent relative mass*.

Definition (Latent relative mass)

The latent relative mass is an auxiliary variable U_N defined as

$$U_N = \Gamma_N/(\sum_{k=1}^\infty J_k), ext{ where } \Gamma_N \sim \gamma(1,N)$$

• After a change of variable, we then have:

$$\frac{1}{(\sum_{k=1}^{\infty}J_k)^N}p(\Gamma_N)\mathrm{d}\Gamma_N=\exp\left\{-U_N\sum_{k=1}^{\infty}J_k\right\}\mathrm{d}U_N.$$

Conditional posterior for the NGG

Theorem (Conditional posterior)

Given $NGG(a, M, H(\cdot))$ and *N* observed data \vec{X} , assume there are *K* jumps such that $n_k > 0$, then (marginalize out jumps)

$$p\left(\vec{X}, U_N = u, K | N, \mathsf{NGG}(a, M, H(\cdot))\right)$$

= $\frac{u^{N-1}}{(1+u)^{N-Ka}} (Ma)^K e^{M-M(1+u)^a} \prod_{k=1}^K (1-a)_{n_k-1} h(X_k^*)$. (3)

Moreover (retain jumps),

$$p\left(\vec{X}, U_N = u, K, J_1, ..., J_K | N, \mathsf{NGG}(a, M, H(\cdot))\right)$$

= $u^{N-1} \left(\frac{Ma}{\Gamma(1-a)}\right)^K e^{M-M(1+u)^a} \prod_{k=1}^K J_k^{n_k-a-1} e^{-(1+u)J_k} h(X_k^*)$ (4)

Posterior sampling for the NGG

$$Q = \sum_k J_k \delta_{X_k^a}$$

- Conditional posterior sampling for the NGG:
 - Sample the auxiliary variable:

$$p(U_N|\cdot) \propto \frac{U_N^{N-1}}{(1+U_N)^{N-Ka}} e^{-M(1+U_N)^a}$$

• For the jumps J_k with data attached:

$$J_k \sim \operatorname{Gamma}(U_N+1, n_k-\frac{1}{2}).$$

The rest of jumps form another NGG with an updated Lévy measure

$$e^{-U_N t} \mathbf{v}(\mathrm{d} t, \mathrm{d} x),$$

which is essentially $\sum_{k:n_k=0} J_k \delta_{X_k^*}$

Introduction

- 2 Normalized random measures
 - Background
 - Posterior analysis
 - Dependent NRMs
- 3 Applications in dynamic topic modeling
 - Model construction
 - Sampling

4 Experiments

5 Conclusion & future work

Dependent NRMs

- There are several ways to construct dependent nonparametric Bayesian models.
- We use the standard dependency operations on Poisson processes to construct dependent NRMs, *e.g.*, *superposition*, *subsampling* and *point transition*.
- This has been used in dependent Dirichlet processes by Lin, Grimson and Fisher [LGF10].

Dependency operations

Definition (Superposition of NRMs)

Given *n* independent NRMs μ_1, \dots, μ_n on \mathbb{X} , the superposition (\oplus) is:

$$\mu_1 \oplus \mu_2 \oplus \cdots \oplus \mu_n := c_1 \mu_1 + c_2 \mu_2 + \cdots + c_n \mu_n .$$

where the weights^{*a*} $c_m = \frac{\tilde{\mu}_m(\mathbb{X})}{\sum_j \tilde{\mu}_j(\mathbb{X})}$ and $\tilde{\mu}_m$ is the unnormalized random measures corresponding to μ_m .

^aThis is different from Lin et al.'s [LGF10]

23

Dependency operations

Definition (Subsampling of NRMs)

Given a NRM $\mu = \sum_{k=1}^{\infty} r_k \delta_{\theta_k}$ on \mathbb{X} , and a measurable function $q: \mathbb{X} \to [0,1]$. If we independently draw $z(\theta) \in \{0,1\}$ for each $\theta \in \mathbb{X}$ with $p(z(\theta) = 1) = q(\theta)$, the subsampling of μ , is defined as

$$S^{q}(\mu) := \sum_{k: z(\theta_{k})=1} \frac{r_{k}}{\sum_{j} z(\theta_{j}) r_{j}} \delta_{\theta_{k}},$$
(5)

Dependency operations

Definition (Point transition of NRMs)

Given a NRM $\mu = \sum_{k=1}^{\infty} r_k \delta_{\theta_k}$ on \mathbb{X} , the point transition of μ , is to draw atoms θ'_k from a transformed base measure to yield a new NRM as

$$T(\boldsymbol{\mu}) := \sum_{k=1}^{\infty} r_k \delta_{\boldsymbol{\theta}'_k} \; .$$

Properties of operations

Theorem (Posterior under superposition)

Let $\tilde{\mu}_1, \tilde{\mu}_2, \dots, \tilde{\mu}_n$ be *n* independent CRMs on \mathbb{X} with Lévy measures $v_i(dt, dx), \tilde{\mu} = \bigoplus_{i=1}^n \tilde{\mu}_i$. The posterior of $\tilde{\mu}$ given observed data { (X_k^*, n_k) } is given by

$$\tilde{\mu}_n + \sum_{k=1}^K J_k \delta_{X_k^*},$$

- $\tilde{\mu}_n$: a CRM with $v(dt, dx) = e^{-ut} (\sum_{i=1}^n v_i(dt, dx));$
- 2 X_k^* :fixed points;
- 3 J_k : jumps with densities proportional to $t^{n_k}e^{-ut}(\sum_{i=1}^n v_i(dt, dx)).$

Properties of operations

Theorem (Lévy measure under subsampling)

Let $\tilde{\mu} = \sum_{k=1}^{\infty} J_k \delta_{X_k^*}$ be a CRM on \mathbb{X} with Lévy measure v(dt, dx), $S^q(\tilde{\mu})$ be its subsampling version with acceptance rate $q(\cdot)$, then $S^q(\tilde{\mu})$ has the Lévy measure of

$q(\mathrm{d} x) \mathbf{v}(\mathrm{d} t, \mathrm{d} x)$.

Properties of operations

Lemma (Applied on graphs)

• Subsampling is commutative:

$$S^{q'}(S^q(\tilde{\mu})) = S^q(S^{q'}(\tilde{\mu})) = S^{q'q}(\tilde{\mu}))$$

• Transitions commute under constant subsampling rates:

$$S^q(T(\tilde{\mu})) = T(S^q(\tilde{\mu}))$$

• Subsampling and transition distribute over superposition:

 $S^q(ilde{\mu}\oplus ilde{\mu}')=S^q(ilde{\mu})\oplus S^q(ilde{\mu}')\,,\qquad T(ilde{\mu}\oplus ilde{\mu}')=T(ilde{\mu})\oplus T(ilde{\mu}')\,.$

• Superposition is commutative and associative:

$$ilde{\mu} \oplus ilde{\mu}' = ilde{\mu}' \oplus ilde{\mu}, \qquad (ilde{\mu} \oplus ilde{\mu}') \oplus ilde{\mu}'' = ilde{\mu} \oplus (ilde{\mu}' \oplus ilde{\mu}'')$$

Outline

Introduction

- 2 Normalized random measures
 - Background
 - Posterior analysis
 - Dependent NRMs
- Applications in dynamic topic modeling
 - Model construction
 - Sampling

4 Experiments

5 Conclusion & future work

Outline

Introduction

- 2 Normalized random measures
 - Background
 - Posterior analysis
 - Dependent NRMs
- Applications in dynamic topic modeling
 - Model construction
 - Sampling

4 Experiments

5 Conclusion & future work

Model construction

Applications: Dynamic topic models

We want to model the following phenomenas in dynamic topic models:

- Birth-death processes.
- Dependency of topics between time frames (partially exchangeable).
- Power-law phenomena.

These objectives are well tackled by the dependent NRMs framework.

Model construction

$$\mu'_m = T(S^q(\mu'_{m-1})) \oplus \mu_m$$

- t_i : epochs.
- 2 μ_i : new topics at epoch *i*.
- μ_i' : topic distribution for epoch *i*.
- Each epoch has a hierarchical NRM structure.

Model construction

Relation between NRMs and CRMs

Theorem

The following two generative processes are equivalent:

• Manipulate the normalized random measures:

$$\mu_m' \sim T(S^q(\mu_{m-1}')) \oplus \mu_m,$$
 for $m > 1$.

• Manipulate the completely random measures:

$$\tilde{\mu}'_m \sim \tilde{T}(\tilde{S}^q(\tilde{\mu}'_{m-1})) \oplus \tilde{\mu}_m, \quad \mu'_m = rac{\tilde{\mu}'_m}{\tilde{\mu}'_m(\mathbb{X})} \quad \text{for } m > 1.$$

The resultant NRMs μ'_m 's correspond to:

$$\mu_m' = \sum_{j=1}^m \frac{\left(q^{m-j}\tilde{\mu}_j\right)(\mathbb{X})}{\sum_{j'=1}^m \left(q^{m-j'}\tilde{\mu}_{j'}\right)(\mathbb{X})} T^{m-j}(\mu_j), \qquad \qquad \text{for } m > 1$$

Outline

Introduction

- 2 Normalized random measures
 - Background
 - Posterior analysis
 - Dependent NRMs
- Applications in dynamic topic modeling
 - Model construction
 - Sampling

4 Experiments

5 Conclusion & future work

Sampling

At each time frame *m*, we do:

- **Top level**: slice sample J_{mk} (ends up finite jumps).
- Second Level: subsample J'_{mk} by inheriting from $J_{m'k}$ (top level), $m' \le m$ with Bernoulli trials.
- Third level: construct μ'_m by normalizing J'_{mk} .

Hierarchical NRMs:

- sample topic assignments s_{mji} using a generalized Blackwell-MacQueen sampling scheme for the hierarchical NRM.
- Sample #customers for the parent restaurant n'_{mk} by simulating a generalized Chinese restaurant process for the NRM.

Outline

Introduction

- 2 Normalized random measures
 - Background
 - Posterior analysis
 - Dependent NRMs
- 3 Applications in dynamic topic modeling
 - Model construction
 - Sampling

4 Experiments

Conclusion & future work

Datasets

• Academic, news, Twitter, blog datasets.

dataset	vocab	docs	words	epochs
ICML	2k	765	44k	2007–2011
JMLR	2.4k	818	60k	12 vols
TPAMI	3k	1108	91k	2006–2011
NIPS	14k	2483	3.28M	1987-2003
Person	60k	8616	1.55M	08/96-08/97
Twitter ₁	6k	3200	16k	14 months
Twitter ₂	6k	3200	31k	16 months
Twitter ₃	6k	3200	25k	29 months
BDT	8k	2649	234k	11/07–04/08

Table: Data statistics

Experiments: Quantitative evaluation

- *DHNGG*: dependent hierarchical normalized generalized Gamma processes
- DHDP: dependent hierarchical Dirichlet processes
- HDP: hierarchical Dirichlet processes
- DTM: dynamic topic model²

Datasets	ICML	JMLR	TPAMI	NIPS	Person
DHNGG	-5.3123e+04	-7.3318e+04	-1.1841e+05	-4.1866e+06	-2.4718e+06
DHDP	-5.3366e+04	-7.3661e+04	-1.2006e+05	-4.4055e+06	-2.4763e+06
HDP	-5.4793e+04	-7.7442e+04	-1.2363e+05	-4.4122e+06	-2.6125e+06
DTM	-6.2982e+04	-8.7226e+04	-1.4021e+05	-5.1590e+06	-2.9023e+06
Datasets	Twitter ₁	Twitter ₂	Twitter ₃	BDT	
DHNGG	-1.0391e+05	-2.1777e+05	-1.5694e+05	-3.3909e+05	
DHDP	-1.0711e+05	-2.2090e+05	-1.5847e+05	-3.4048e+05	
HDP	-1.0752e+05	-2.1903e+05	-1.6016e+05	-3.4833e+05	

²Did not compare with Ahmed& Xing's iDTM [AX10], but ours is expected to be better since iDTM is comparable to HDP.

Experiments: Topic evolutions on Twitter

Experiments: Topic evolutions on JMLR

• 12 vol. from JMLR.

Experiments: Topic evolutions on Reuters

• 1 year (1996) news from Reuters.

Experiments: Topic evolutions on blogs

• 6 month blog data from Daily Kos blogs.

| have increased)

12/07	01/08	02/08	03/08		
29.7%) course d ll m made nedia point political l'E really hings time want year years	(31.2%) candidates d john ll M news re really thing things time want world year years	(26.2%) course d ll m political president re really story thing time want work year years	(25.4%) course d ll m made medi news political press re really things time want years		
	(11.8%) campaign caucus Clinton democratic edwards hampahire hillary Obama primary results state update vote voters won	(17.4%) campaign clinton delegates democratic hillary Obama primary state states where update vote voters win won	(16.2%) campaign Clinton delegate delegates wilkey Obama onio polis race state states where texas vote votes		
10.2%) candidate democratic Memocrats district election	(7.8%) blue candidate congress	(6.5%) candidate democrat democratic	(10.2%) ып blue candidate democratic district election		
Changyou Chen Dependent Normalized Random Measures					

43

Outline

Introduction

- 2 Normalized random measures
 - Background
 - Posterior analysis
 - Dependent NRMs
- 3 Applications in dynamic topic modeling
 - Model construction
 - Sampling

4 Experiments

Conclusion

- Reviewed and developed theory of normalized random measures (NRM).
- Extended the Poisson based dependency operations to NRMs.
- Application on dynamic topic models.
- Developed a sampler for the proposed model.
- Future work include:
 - Develop more efficient sampler for NGG, specifically, for the dependent NGG.
 - Explore other ways of constructing dependent NRMs, *e.g.*, Lijoi, Nipoti and Prüster's dependent NRMs [LNP12], which is related but somehow different to ours.

References I

Ferguson, T. S., Klass, M. J.:

A representation of independent increment processes without Gaussian component.

The Annals of Mathematical Statistics (1972)

James, L. F., Lijoi, A., Prünster, I.:

Posterior analysis for normalized random measures with independent increments.

Scandinavian Journal of Statistics (2009)

Lin, D., Grimson, E., Fisher, J.: Construction of Dependent Dirichlet Processes based on Poisson Processes. Annual Conference on Neural Information Processing Systems (2010)

Ahmed, A., Xing, E.:

Timeline: A Dynamic Hierarchical Dirichlet Process Model for Recovering Birth/Death and Evolution of Topics in Text Stream.

Uncertainty in Artificial Intelligence (2010)

Blei, D., Lafferty, J.:

Dynamic topic models.

International Conference on Machine Learning (2006)

References II

Chen, C., Ding, N., Buntine, W.:

Dependent hierarchical normalized random measures for dynamic topic modeling.

International Conference on Machine Learning (2012)

Chen, C., Buntine, W., Ding, N.:

Theory of dependent hierarchical normalized random measures. Technical Report arXiv:1205.4159, NICTA and ANU, Australia (2012)

Favaro, S., Teh, Y. W.:

MCMC for normalized random measure mixture models. Submitted to the Statistical Science (2012)

Lijoi, A., Nipoti, A., Prüster, I.: Bayesian inference with dependent normalized completely random measures. Working paper (2012)

Thanks for your attention!!!

