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Introduction

Dynamic topic models

@ Dynamic topic models try to model topic evolution over
time.

@ There are several related dynamic topic models, e.g.,
Blei&Lafferty’s DTM [BL06], Ahmed&Xing’s iDTM [AX10].
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Figure: Topic evolution in NIPS, taken from [AX10].
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Introduction
Main contributions

@ Posterior analysis for normalized random measures.

@ Develop dependent normalized random measures.

@ Apply dependent normalized random measures to dynamic
topic modeling to model birth-death processes,
dependency and power-law phenomena in topic
distributions over time.
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Normalized random measures Background

Completely random measures

@ Basic idea:
@ measurable space:  S.
e disjoint subsets: A,B€S.
e random function: ®: S—— RT.

@) D(A) 1L B(B)

@ It is shown that completely random measures can be
constructed from Poisson processes.
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Normalized random measures Background

Completely random measures

Definition (Poisson Processes: )

A Poisson process on S is a random subset IT € S such that if
N(A) is the number of points of ITin A C S, then N(A) is a
Poisson random variable with mean v(A), and N(A,),--- ,N(A,)
are independent if A, --- ,A, are disjoint.

v=area=3.1
#points ~ Poissc\)n(S.l)

v=area=6.4
#points ~ Poisson(6.4)

@ Space: S

@ Positive measure:
v:S+—R*

@ Poisson random
measure:

N : S +—integers
@ N(A) ~ Poisson(v(A))
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Normalized random measures Background

Completely random measures

Definition (Construction from Poisson processes)

Let N(dz,dx) being a Poisson random measure on a product
space S = R' x X with mean measure v(dz,dx). Construct a
random measure i to be a linear functional of N(dt,dx) as

(B) = /R  IN(dr,dx),VB € ().

»

) ﬁ MM(’

X

X

N(B) = ¥L(s,x)erin®+ xB) O;.») B(B) = L, x)ern(z+ xB) Jk6x

Changyou Chen

Dependent Normalized Random Measures




Normalized random measures Background

Completely random measures

fi(B) :/ tN(dt,dx) = Y i
R+xB (Ji,x) ETIN(RT X B)

Proposition
[l is a completely random measure on X.

@ Call v(dr,dx) = p(dr|x)H(dx) the Lévy measure of fi.
@ Taking different Lévy measures v(dr,dx) we get different
CRMs.

Example (Gamma CRM (Gamma processes))

A Gamma process on X is obtained by setting

—t

v(dr,dx) = ertH(dx).
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Normalized random measures Background

Sampling a CRM

aB)= Y Kb
(Ji,x)ENN(RT X B)

@ Cannot directly sample from the Lévy measure
v(dx,dr) = p(dt|x)H(x) because it is improper.
Size biased sampling starting from the largest jump, then the
second largest largest jump - - -, given by Ferguson and
Klass [FK72].

@ Draw /.i.d. samples x; from the base measure H(dx).
@ The k-th largest jump has cumulative distribution function:

Jk—1
P(Jx < jiklJk=1 = ji—1 —eXP{ // dtdx}
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Normalized random measures Background

Normalized random measures

Definition (Normalized Random Measures (NRM))
An NRM is obtained by normalizing the CRM [i as:

Definition (Normalized generalized Gamma processes (NGG))
A normalized generalized Gamma process is an NRM with

=il

Lévy measure being v(dt,dx) = M H(dx), (0 <a < 1)2.

e—bi

@The general form is v(dz,dx) = M {7 H(dx)(0 < a < 1,b > 0), but b can be
absorbed into M, thus we use b = 1.

@ We denote a NRM with parameters a,M and base
measure H(-) as NRM(a, M, H(-)).
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Normalized random measures Posterior analysis

Posterior analysis for the NGG

@ General form for the posteriors of the NRM is developed
in [JLP09], here we focus on NGG'.

Theorem (Posterior of the NGG)

Consider the NGG(a,M,H(-)). For a data vector X of length N
there are K distinct values X7, ..., Xy with counts ny, ...,ng
respectively. The posterior marginal is given by

M K- 1TNKK

p (XINGG(a, M, H()) = 1‘[ Qnth(X7) . (1)
k=
where
MK uV-1 a
N.K __ M—M(1+u)
Toy = a it /R+ —(1+u)N7Kae du . (2)

1 [FT12] also derives some similar results.
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Normalized random measures Posterior analysis

Posterior analysis for the NGG

@ Compare NGG with PYP (Pitman-Yor process)

M _K—17NK g
e’a T,

PENGG, ) = st [T (1 =) ().
pEIPYP,--y = PR T oy iy
’ (b)N k=1 & ¢

Corollary (NGG«+—PYP)

Letpi ~ NGG(a,M,H(-)) and suppose M ~T'(b/a,1) then it
follows that ii ~ PYP(a,b,H(-))

@ If we also sample M using the prior I'(b/a, 1) for NGG, then
we are sampling from a PYP.
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Normalized random measures Posterior analysis

Posterior analysis for the NGG

@ This relationship is different from the Poisson-Kingman
construction of the PYP, where it is constructed by
exponentially tilting an o-stable process, but we believe

they are closely related.

@ One problem of the above posterior sampling is the
evaluation of 7,3, which is computationally expensive and
cannot easily be tabulated.
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Normalized random measures Posterior analysis

Conditional posterior for the NGG

o Likelihood of NGG: — v/,
(S5, o)™
@ A well studied auxiliary variable is introduced to eliminate
this power term in the denominator. We call it latent

relative mass.

Definition (Latent relative mass)
The latent relative mass is an auxiliary variable Uy defined as

Uy = FN/(ZJ/C)7 where I'y~ }/(I,N)
k=1

@ After a change of variable, we then have:

1 o0
o vP(In)dly =expq —Uy ) Ji pdUy.
(X TN kgl
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Normalized random measures Posterior analysis

Conditional posterior for the NGG

Theorem (Conditional posterior)

Given NGG(a,M,H(-)) and N observed data X, assume there
are K jumps such that n; > 0, then (marginalize out jumps)

p (5( Uy = u,K|N,NGG(a, M, H(-)))

uNfl K

= Gyt Ma)" ¢TI - a-1h(X) . @)
k=1

Moreover (retain jumps),

p ()? Uy =u,K,J1,..Jx |N, NGG(a,M,H(-)))

— - —M( ) I I —a—1 —( ) X
N—1 Ma M—M(14+u)* ng—a 1+u)J; *
<F(l 1)) € e k € ( k)( )

v
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Normalized random measures Posterior analysis

Posterior sampling for the NGG

0=Y) Jidx;
k

@ Conditional posterior sampling for the NGG:
e Sample the auxiliary variable:

Uy~ M(1+Uy)
— + a
PN = AgyyFa® "

e For the jumps J; with data attached:
1
Ji ~ Gamma(Uy + 1,ny — E).

@ The rest of jumps form another NGG with an updated Lévy
measure
e~ UNty(dt, dx),

which is essentially Y., —o Jkx:
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Normalized random measures Dependent NRMs

Dependent NRMs

@ There are several ways to construct dependent
nonparametric Bayesian models.

@ We use the standard dependency operations on Poisson
processes to construct dependent NRMs, e.g.,
superposition, subsampling and point transition.

@ This has been used in dependent Dirichlet processes by
Lin, Grimson and Fisher [LGF10].
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Normalized random measures Dependent NRMs

Dependency operations

Definition (Superposition of NRMs)

Given n independent NRMs uy,--- , u, on X, the superposition
() is:

MOUD- DUy i=crthh +Co2lla+ -+ Cpldy

where the weights? ¢, = > “(( )) and fi,, is the unnormalized

random measures correspondmg to Wy,

4This is different from Lin et al.’s [LGF10]

THT~?H

S %‘TTH il
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Normalized random measures Dependent NRMs

Dependency operations

Definition (Subsampling of NRMs)

Given a NRM u =Y7 , ri0g, 0n X, and a measurable function
q:X —[0,1]. If we independently draw z(6) € {0, 1} for each
0 € X with p(z(0) = 1) = ¢(0), the subsampling of u, is defined
as
Tk
§1(p) = a7 % )
k:z(%=1 Z]Z(GJ)r] ‘

<

3

P11 P

I
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Normalized random measures Dependent NRMs

Dependency operations

Definition (Point transition of NRMs)

Given a NRM u = Y7, ri.0g, on X, the point transition of u, is to
draw atoms 6, from a transformed base measure to yield a new
NRM as

T([.L) = Z rk59]£ o
k=1
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Normalized random measures Dependent NRMs

Properties of operations

Theorem (Posterior under superposition)

Let fiy, fip,--- , [, be n independent CRMs on X with Lévy
measures v;(dt,dx), i = @, fi;. The posterior of ji given
observed data {(X; ,ny)} is given by

K
fin+ Y Jibx:,
k=1
@ [i,: a CRM with v(dr,dx) = e~ (Y7, vi(dt,dx));
Q X; :fixed points;

© Ji : jumps with densities proportional to
e M (L vi(dt,dx)).
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Normalized random measures Dependent NRMs

Properties of operations

Theorem (Lévy measure under subsampling)

Let i =Y JikOx: be a CRM on X with Lévy measure v(dt,dx),
Si(f1) be its subsampling version with acceptance rate q(-),
then S9(fi) has the Lévy measure of

g(dx)v(dr, dx) .
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Normalized random measures Dependent NRMs

Properties of operations

Lemma (Applied on graphs)
@ Subsampling is commutative:

S7(89()) = S7(S7 (1)) = ST9(w))
@ Transitions commute under constant subsampling rates:
ST () =T(S'(1))
@ Subsampling and transition distribute over superposition:
Sl(pop’) = s1(p)esi(i) T(pep) = T(R)eT(R) .

@ Superposition is commutative and associative:

poi =g oh, (ep)ep" =po(@on”)
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Applications in dynamic topic modeling Model construction

Applications: Dynamic topic models

We want to model the following phenomenas in dynamic topic
models:

@ Birth-death processes.

@ Dependency of topics between time frames (partially
exchangeable).

@ Power-law phenomena.

These objectives are well tackled by the dependent NRMs
framework.
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Applications in dynamic topic modeling Model construction

Model construction

@ /i epochs.

© u;: new topics at epoch i.

© u/: topic distribution for
epoch i.

© Each epoch has a
hierarchical NRM
structure.
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Applications in dynamic topic modeling Model construction

Model construction
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Applications in dynamic topic modeling Model construction

Relation between NRMs and CRMs

The following two generative processes are equivalent:
@ Manipulate the normalized random measures:

Mo ~ T(ST(13y1)) © Hon, form > 1.

@ Manipulate the completely random measures:

i’ ~ T q(! i1 I
Hp, T(S (.um 1))@[.1,”, M, ~,;1(X) form > 1.
The resultant NRMs p,,’s correspond to:
o (R X)L
My = T "7 (W), form > 1
L mm ¢
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Applications in dynamic topic modeling Sampling

Sampling

At each time frame m, we do:
@ Top level: slice sample J,,; (ends up finite jumps).

@ Second Level: subsample J/,, by inheriting from
i (top level),m” < m with Bernoulli trials.
@ Third level: construct y,, by normalizing J ,.
@ Hierarchical NRMs:
e sample topic assignments s,,; using a generalized

Blackwell-MacQueen sampling scheme for the hierarchical
NRM.

e Sample #customers for the parent restaurant /,, by

simulating a generalized Chinese restaurant process for the
NRM.
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Experiments
Datasets

@ Academic, news, Twitter, blog datasets.

dataset | vocab docs words epochs
ICML 2k 765 44K 2007-2011
JMLR 24k 818 60k 12 vols
TPAMI 3k 1108 91k 2006—2011
NIPS 14k 2483 3.28M 1987-2003
Person | 60k 8616 1.55M 08/96-08/97
Twitter, 6k 3200 16k 14 months
Twitter; 6k 3200 31k 16 months
Twitter; 6k 3200 25k 29 months
BDT 8k 2649 234k 11/07-04/08

Table: Data statistics
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Experiments

Experiments: Quantitative evaluation

@ DHNGG: dependent hierarchical normalized generalized

Gamma processes
@ DHDP: dependent hierarchical Dirichlet processes
@ HDP: hierarchical Dirichlet processes

@ DTM: dynamic topic model®

Datasets ICML JMLR TPAMI NIPS Person
DHNGG | -5.3123e+04 | -7.3318e+04 | -1.1841e+05 | -4.1866e+06 | -2.4718e+06
DHDP -5.3366e+04 | -7.3661e+04 | -1.2006e+05 | -4.4055e+06 | -2.4763e+06
HDP -5.4793e+04 | -7.7442e+04 | -1.2363e+05 | -4.4122e+06 | -2.6125e+06
DTM -6.2982e+04 | -8.7226e+04 | -1.4021e+05 | -5.1590e+06 | -2.9023e+06
Datasets Twitter; Twitter, Twitters BDT
DHNGG | -1.0391e+05 | -2.1777e+05 | -1.5694e+05 | -3.3909e+05
DHDP -1.0711e+05 | -2.2090e+05 | -1.5847e+05 | -3.4048e+05
HDP -1.0752e+05 | -2.1903e+05 | -1.6016e+05 | -3.4833e+05
DTM -1.2130e+05 | -2.6264e+05 | -1.9929e+05 | -3.9316e+05

2Did not compare with Ahmed& Xing’s iDTM [AX10], but ours is expected to be
better since iDTM is comparable to HDP.
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Experiments

Experiments: Topic evolutions on Twitter

60
football
1
50+ wee) _
paseball
SPQris
series
40 etball] /. J
wiek Wing crowd
cu
’ ootball
. front 2
win X NP
final
30+ 18 front L
R supercanatest
i run ound
s finals left 9 ook m
SOX SOX
Hieks Jagoby| game| picky pa\m_erk NFL W playo
ame picks pick ick;
| uper Dallas| 9 game| I picks picks picl
20 i heat Ia layof| 98Me vegas bruin
= o game| P'ay | playo games| figy u,m.w../v;.
sports Rodgers| trad — | fight sox | SOX kings m penalt
NBA knick: WY Facoby k\fed S game | yin | game
report list avori Welts v i
top report repor; (P tonight game |Jump,
10| week | [ "¢ award playoff wee| e =l quater | gC
Game ame | tonightl win | list coming| Ipo Blayoff
time | ¢ it week _iond
a story sports | Stars . . week catround
picks P final | set  “president live Sports report [—
Lakers| record S it NFL [report—" minutes
sports March ’I’ NBA | tweet | coming|Weekend .- ﬁ:ﬁm | o
NFL 7 NBA | NBA madnesS®'U™"| Lakers| sports|classic | buy | 2011 | gamd game |estCelty losing
18/10 12/10 02/11 04/11 06/11 08/11 10/11 12/11

Changy:

ndent Normalized Random Measures




Experiments

Experiments: Topic evolutions on JMLR

12 vol. from JMLR.
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Experiments

Experiments: Topic evolutions on Reuters

@ 1 year (1996) news from Reuters.
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Experiments

Experiments: Topic evolutions on blogs

@ 6 month blog data from Daily Kos blogs.

12345 678 91011121314151¢

11/07 12/07 01/08 02/08 03/08 04/08
| have increased)
12/07 01/08 02/08 03/08
29.7%) cou=e d I m made (31.2%) candidates « jonn [l M (26.2%) course d Il M political (25.4%) course d Il M made med
nedia port poivcat [€ really news e really thing  things president € really ey thing news political s € really

hings LIME want year years

TIMe vent e year years

time want e year years

things LIME want years

(11.8%) compaien caucus
clinton democratic. ssvacs

- nitay ODaMa
primary results state wase vote
voters wor

ham

(17.4%) amasn clinton detegates
democratic hilary ODAIMA  primary
state States sper wpawe vote voters

(16.2%) camparen Clinton
delegate delegates nuwy ODAMA
oo polls  race slate states

toxas vote voters

10.2%) candidate democratic
e QISEIICE election

(7-8%)

Changyou Chen

(G 5%) e democrat democratm

Dependent Normallzed Random Measures

(10.2%) vu blue c
democratic district eLeclvon




Conclusion & future work

Outline

e Conclusion & future work

Changyou Chen Dependent Normalized Random Measures



Conclusion & future work
Conclusion

@ Reviewed and developed theory of normalized random
measures (NRM).

@ Extended the Poisson based dependency operations to
NRMs.

@ Application on dynamic topic models.

@ Developed a sampler for the proposed model.
@ Future work include:

e Develop more efficient sampler for NGG, specifically, for the
dependent NGG.

e Explore other ways of constructing dependent NRMs, e.g.,
Lijoi, Nipoti and Pruster's dependent NRMs [LNP12], which
is related but somehow different to ours.
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Thanks for your attention!!!
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