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Introduction

Dynamic topic models

Dynamic topic models try to model topic evolution over
time.
There are several related dynamic topic models, e.g.,
Blei&Lafferty’s DTM [BL06], Ahmed&Xing’s iDTM [AX10].

Figure: Topic evolution in NIPS, taken from [AX10].
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Introduction

Main contributions

Posterior analysis for normalized random measures.
Develop dependent normalized random measures.
Apply dependent normalized random measures to dynamic
topic modeling to model birth-death processes,
dependency and power-law phenomena in topic
distributions over time.
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Normalized random measures Background

Completely random measures

Basic idea:
measurable space: S.
disjoint subsets: A,B ∈ S.
random function: Φ: S 7−→ R+.

A
B

S

Φ(A) yΦ(B)

It is shown that completely random measures can be
constructed from Poisson processes.
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Normalized random measures Background

Completely random measures

Definition (Poisson Processes: )
A Poisson process on S is a random subset Π ∈ S such that if
N(A) is the number of points of Π in A⊆ S, then N(A) is a
Poisson random variable with mean ν(A), and N(A1), · · · ,N(An)
are independent if A1, · · · ,An are disjoint.

v = area = 3.1
#points ~ Poisson(3.1)

v = area = 6.4
#points ~ Poisson(6.4) Space: S

Positive measure:
ν : S 7−→ R+
Poisson random
measure:
N : S 7−→ integers
N(A)∼ Poisson(ν(A))
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Normalized random measures Background

Completely random measures

Definition (Construction from Poisson processes)

Let N(dt,dx) being a Poisson random measure on a product
space S= R+×X with mean measure ν(dt,dx). Construct a
random measure µ̃ to be a linear functional of N(dt,dx) as

µ̃(B) =
∫
R+×B

tN(dt,dx),∀B ∈B(X).

X

R
+

N(B) = ∑(Jk,x)∈Π∩(R+×B) δ(Jk,x)

→

X

R
+

µ̃(B) = ∑(Jk,x)∈Π∩(R+×B) Jkδx

10 Changyou Chen Dependent Normalized Random Measures



Normalized random measures Background

Completely random measures

µ̃(B) =
∫
R+×B

tN(dt,dx) = ∑
(Jk,x)∈Π∩(R+×B)

Jkδx

Proposition
µ̃ is a completely random measure on X.

Call ν(dt,dx) = ρ(dt|x)H(dx) the Lévy measure of µ̃.
Taking different Lévy measures ν(dt,dx) we get different
CRMs.

Example (Gamma CRM (Gamma processes))
A Gamma process on X is obtained by setting

ν(dt,dx) =
e−t

t
dtH(dx).
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Normalized random measures Background

Sampling a CRM

µ̃(B) = ∑
(Jk,x)∈Π∩(R+×B)

Jkδx

Cannot directly sample from the Lévy measure
ν(dx,dt) = ρ(dt|x)H(x) because it is improper.

Size biased sampling starting from the largest jump, then the
second largest largest jump · · · , given by Ferguson and
Klass [FK72].

Draw i.i.d. samples xi from the base measure H(dx).
The k-th largest jump has cumulative distribution function:

P(Jk ≤ jk|Jk−1 = jk−1) = exp
{
−
∫
X

∫ jk−1

jk
ν(dt,dx)

}
.
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Normalized random measures Background

Normalized random measures

Definition (Normalized Random Measures (NRM))
An NRM is obtained by normalizing the CRM µ̃ as:

µ =
µ̃

µ̃(X)
= ∑

k

Jk

∑k′ Jk′
δX∗k .

Definition (Normalized generalized Gamma processes (NGG))

A normalized generalized Gamma process is an NRM with
Lévy measure being ν(dt,dx) = M e−t

t1+a H(dx),(0 < a < 1)a.

aThe general form is ν(dt,dx) = M e−bt

t1+a H(dx)(0 < a < 1,b > 0), but b can be
absorbed into M, thus we use b = 1.

We denote a NRM with parameters a,M and base
measure H(·) as NRM(a,M,H(·)).
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Normalized random measures Posterior analysis

Posterior analysis for the NGG

General form for the posteriors of the NRM is developed
in [JLP09], here we focus on NGG1.

Theorem (Posterior of the NGG)

Consider the NGG(a,M,H(·)). For a data vector ~X of length N
there are K distinct values X∗1 , ...,X

∗
K with counts n1, ...,nK

respectively. The posterior marginal is given by

p
(
~X|NGG(a,M,H(·)

)
=

eMaK−1TN,K
a,M

Γ(N)

K

∏
k=1

(1−a)nk−1h(X∗k ) . (1)

where

TN,K
a,M = a

MK

eM

∫
R+

uN−1

(1+u)N−Ka eM−M(1+u)a
du . (2)

1 [FT12] also derives some similar results.
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Normalized random measures Posterior analysis

Posterior analysis for the NGG

Compare NGG with PYP (Pitman-Yor process)

p(~X|NGG, · · ·) =
eMaK−1TN,K

a,M

Γ(N)

K

∏
k=1

(1−a)nk−1h(X∗k ) .

p(~X|PYP, · · ·) = (b|a)K

(b)N

K

∏
k=1

(1−a)nk−1h(X∗k ) .

Corollary (NGG←→PYP)

Let ~µ ∼ NGG(a,M,H(·)) and suppose M ∼ Γ(b/a,1) then it
follows that ~µ ∼ PYP(a,b,H(·))

If we also sample M using the prior Γ(b/a,1) for NGG, then
we are sampling from a PYP.
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Normalized random measures Posterior analysis

Posterior analysis for the NGG

This relationship is different from the Poisson-Kingman
construction of the PYP, where it is constructed by
exponentially tilting an σ -stable process, but we believe
they are closely related.
One problem of the above posterior sampling is the
evaluation of TN,K

a,M , which is computationally expensive and
cannot easily be tabulated.
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Normalized random measures Posterior analysis

Conditional posterior for the NGG

Likelihood of NGG: ∏
K
k=1 J

nk
k

(∑
∞

k′=1 Jk′)
∑

K
k=1 nk

.

A well studied auxiliary variable is introduced to eliminate
this power term in the denominator. We call it latent
relative mass.

Definition (Latent relative mass)
The latent relative mass is an auxiliary variable UN defined as

UN = ΓN/(
∞

∑
k=1

Jk), where ΓN ∼ γ(1,N)

After a change of variable, we then have:

1
(∑∞

k=1 Jk)N p(ΓN)dΓN = exp

{
−UN

∞

∑
k=1

Jk

}
dUN .
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Normalized random measures Posterior analysis

Conditional posterior for the NGG

Theorem (Conditional posterior)

Given NGG(a,M,H(·)) and N observed data ~X, assume there
are K jumps such that nk > 0, then (marginalize out jumps)

p
(
~X,UN = u,K |N,NGG(a,M,H(·))

)
=

uN−1

(1+u)N−Ka (Ma)K eM−M(1+u)a
K

∏
k=1

(1−a)nk−1h(X∗k ) . (3)

Moreover (retain jumps),

p
(
~X,UN = u,K,J1, ...,JK |N,NGG(a,M,H(·))

)
= uN−1

(
Ma

Γ(1−a)

)K

eM−M(1+u)a
K

∏
k=1

Jnk−a−1
k e−(1+u)Jk h(X∗k ) .(4)
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Normalized random measures Posterior analysis

Posterior sampling for the NGG

Q = ∑
k

JkδX∗k

Conditional posterior sampling for the NGG:
Sample the auxiliary variable:

p(UN |·) ∝
UN−1

N
(1+UN)N−Ka e−M(1+UN)

a
.

For the jumps Jk with data attached:

Jk ∼Gamma(UN +1,nk−
1
2
).

The rest of jumps form another NGG with an updated Lévy
measure

e−UN t
ν(dt,dx),

which is essentially ∑k:nk=0 JkδX∗k
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Normalized random measures Dependent NRMs

Dependent NRMs

There are several ways to construct dependent
nonparametric Bayesian models.
We use the standard dependency operations on Poisson
processes to construct dependent NRMs, e.g.,
superposition, subsampling and point transition.
This has been used in dependent Dirichlet processes by
Lin, Grimson and Fisher [LGF10].
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Normalized random measures Dependent NRMs

Dependency operations

Definition (Superposition of NRMs)
Given n independent NRMs µ1, · · · ,µn on X, the superposition
(⊕) is:

µ1⊕µ2⊕·· ·⊕µn := c1µ1 + c2µ2 + · · ·+ cnµn .

where the weightsa cm = µ̃m(X)
∑j µ̃j(X)

and µ̃m is the unnormalized
random measures corresponding to µm.

aThis is different from Lin et al.’s [LGF10]

· · · · · ·

· · ·
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Normalized random measures Dependent NRMs

Dependency operations

Definition (Subsampling of NRMs)

Given a NRM µ = ∑
∞
k=1 rkδθk on X, and a measurable function

q : X→ [0,1]. If we independently draw z(θ) ∈ {0,1} for each
θ ∈ X with p(z(θ) = 1) = q(θ), the subsampling of µ, is defined
as

Sq(µ) := ∑
k:z(θk)=1

rk

∑j z(θj)rj
δθk , (5)

· · ·· · ·
Sq(·)

1
2

3

4
5

6 7

1 4
6 7
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Normalized random measures Dependent NRMs

Dependency operations

Definition (Point transition of NRMs)

Given a NRM µ = ∑
∞
k=1 rkδθk on X, the point transition of µ, is to

draw atoms θ ′k from a transformed base measure to yield a new
NRM as

T(µ) :=
∞

∑
k=1

rkδθ ′k
.

T(·, ·)
1

2
3

4
5

6 7

· · ·
1

2
3

4
5

67
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Normalized random measures Dependent NRMs

Properties of operations

Theorem (Posterior under superposition)

Let µ̃1, µ̃2, · · · , µ̃n be n independent CRMs on X with Lévy
measures νi(dt,dx), µ̃ =⊕n

i=1µ̃i. The posterior of µ̃ given
observed data {(X∗k ,nk)} is given by

µ̃n +
K

∑
k=1

JkδX∗k ,

1 µ̃n : a CRM with ν(dt,dx) = e−ut (∑n
i=1 νi(dt,dx));

2 X∗k :fixed points;
3 Jk : jumps with densities proportional to

tnk e−ut (∑n
i=1 νi(dt,dx)).
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Normalized random measures Dependent NRMs

Properties of operations

Theorem (Lévy measure under subsampling)

Let µ̃ = ∑
∞
k=1 JkδX∗k be a CRM on X with Lévy measure ν(dt,dx),

Sq(µ̃) be its subsampling version with acceptance rate q(·),
then Sq(µ̃) has the Lévy measure of

q(dx)ν(dt,dx) .
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Normalized random measures Dependent NRMs

Properties of operations

Lemma (Applied on graphs)

Subsampling is commutative:

Sq′(Sq(µ̃)) = Sq(Sq′(µ̃)) = Sq′q(µ̃))

Transitions commute under constant subsampling rates:

Sq(T(µ̃)) = T(Sq(µ̃))

Subsampling and transition distribute over superposition:

Sq(µ̃⊕ µ̃
′) = Sq(µ̃)⊕Sq(µ̃ ′) , T(µ̃⊕ µ̃

′) = T(µ̃)⊕T(µ̃ ′) .

Superposition is commutative and associative:

µ̃⊕ µ̃
′ = µ̃

′⊕ µ̃, (µ̃⊕ µ̃
′)⊕ µ̃

′′ = µ̃⊕ (µ̃ ′⊕ µ̃
′′)
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Applications in dynamic topic modeling Model construction
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Applications in dynamic topic modeling Model construction

Applications: Dynamic topic models

We want to model the following phenomenas in dynamic topic
models:

Birth-death processes.
Dependency of topics between time frames (partially
exchangeable).
Power-law phenomena.

These objectives are well tackled by the dependent NRMs
framework.
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Applications in dynamic topic modeling Model construction

Model construction

µ ′m = T(Sq(µ ′m−1))⊕µm

H

µ ′2

µ2

µ ′m µ ′nµ ′1

µ1 µm µn

TSq(µ ′1) TSq(µ2) TSq(µ ′m)

µ1j

θ1ji

x1ji

µ2j

θ2ji

x2ji

µmj

θmji

xmji

µnj

θnji

xnji
W1N1

W2 Wm WnN2 Nm Nn

t1 t2 tn-1 tn

......

......

......
1 ti: epochs.
2 µi: new topics at epoch i.
3 µ ′i : topic distribution for

epoch i.
4 Each epoch has a

hierarchical NRM
structure.
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Applications in dynamic topic modeling Model construction

Model construction

µ ′m = T(Sq(µ ′m−1))⊕µm

H

µ ′2

µ2

µ ′m µ ′nµ ′1

µ1 µm µn

TSq(µ ′1) TSq(µ ′2) TSq(µ ′m)

µ1j

θ1ji

x1ji

µ2j

θ2ji

x2ji

µ1j

θmji

xmji

µnj

θnji

xnjiWmNm
WnW2W1 N2 NnN1t1 t2 tm tn

· · ·

· · ·

· · ·
normalized

µ̃ ′m ∼ T̃(S̃q(µ̃ ′m−1))⊕ µ̃m,

µ ′m = µ̃ ′m
µ̃ ′m(X)

H

µ ′2

µ̃2

µ ′m µ ′nµ ′1

µ̃ ′2

µ̃1

µ̃ ′1

µ̃m

µ̃ ′m

µ̃n

µ̃ ′n

TSq(µ̃1)

TSq(µ̃2) TSq(µ̃m)

µ1j

θ1ji

x1ji

µ2j

θ2ji

x2ji

µmj

θmji

xmji

µnj

θnji

xnji
W1N1

W2 Wm WnN2 Nm
Nn

t1 t2 tm tn

· · ·

· · ·

· · ·

unnormalized
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Applications in dynamic topic modeling Model construction

Relation between NRMs and CRMs

Theorem

The following two generative processes are equivalent:
Manipulate the normalized random measures:

µ
′
m ∼ T(Sq(µ ′m−1))⊕µm, for m > 1.

Manipulate the completely random measures:

µ̃
′
m ∼ T̃(S̃q(µ̃ ′m−1))⊕ µ̃m, µ

′
m =

µ̃ ′m
µ̃ ′m(X)

for m > 1.

The resultant NRMs µ ′m’s correspond to:

µ
′
m =

m

∑
j=1

(
qm−jµ̃j

)
(X)

∑
m
j′=1
(
qm−j′ µ̃j′

)
(X)

Tm−j(µj), for m > 1
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Applications in dynamic topic modeling Sampling

Sampling

At each time frame m, we do:
Top level: slice sample Jmk (ends up finite jumps).
Second Level: subsample J′mk by inheriting from
Jm′k(top level),m′ ≤ m with Bernoulli trials.
Third level: construct µ ′m by normalizing J′mk.
Hierarchical NRMs:

sample topic assignments smji using a generalized
Blackwell-MacQueen sampling scheme for the hierarchical
NRM.
Sample #customers for the parent restaurant n′mk by
simulating a generalized Chinese restaurant process for the
NRM.
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Experiments

Datasets

Academic, news, Twitter, blog datasets.

dataset vocab docs words epochs
ICML 2k 765 44k 2007–2011
JMLR 2.4k 818 60k 12 vols
TPAMI 3k 1108 91k 2006–2011
NIPS 14k 2483 3.28M 1987-2003
Person 60k 8616 1.55M 08/96–08/97
Twitter1 6k 3200 16k 14 months
Twitter2 6k 3200 31k 16 months
Twitter3 6k 3200 25k 29 months
BDT 8k 2649 234k 11/07–04/08

Table: Data statistics
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Experiments

Experiments: Quantitative evaluation

DHNGG: dependent hierarchical normalized generalized
Gamma processes
DHDP: dependent hierarchical Dirichlet processes
HDP: hierarchical Dirichlet processes
DTM: dynamic topic model2

Datasets ICML JMLR TPAMI NIPS Person
DHNGG -5.3123e+04 -7.3318e+04 -1.1841e+05 -4.1866e+06 -2.4718e+06
DHDP -5.3366e+04 -7.3661e+04 -1.2006e+05 -4.4055e+06 -2.4763e+06
HDP -5.4793e+04 -7.7442e+04 -1.2363e+05 -4.4122e+06 -2.6125e+06
DTM -6.2982e+04 -8.7226e+04 -1.4021e+05 -5.1590e+06 -2.9023e+06

Datasets Twitter1 Twitter2 Twitter3 BDT
DHNGG -1.0391e+05 -2.1777e+05 -1.5694e+05 -3.3909e+05
DHDP -1.0711e+05 -2.2090e+05 -1.5847e+05 -3.4048e+05
HDP -1.0752e+05 -2.1903e+05 -1.6016e+05 -3.4833e+05
DTM -1.2130e+05 -2.6264e+05 -1.9929e+05 -3.9316e+05

2Did not compare with Ahmed& Xing’s iDTM [AX10], but ours is expected to be
better since iDTM is comparable to HDP.
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Experiments

Experiments: Topic evolutions on Twitter
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Experiments

Experiments: Topic evolutions on JMLR

12 vol. from JMLR.

-Dependency Networks for Inference, 
 Collaborative Filtering, and Data 
 Visualization (0.77)
-Learning with Mixtures of Trees (0.49)

-Learning Equivalence Classes of 
 Bayesian-Network Structures (0.64)

-The Representational Power of Discrete 
 Bayesian Networks (0.52)
-Learning Probabilistic Models of Link 
  Structure (0.45)

-On Inclusion-Driven Learning of 
  Bayesian Networks (0.60)
-Preference Elicitation via Theory
 Refinement (0.46)

-Large-Sample Learning of Bayesian 
 Networks is NP-Hard (0.49)
-Model Averaging for Prediction with
 Discrete Bayesian Networks (0.20)

-Learning Module Networks (0.49)
-Inner Product Spaces for Bayesian 
 Networks (0.36)

-MinReg: A Scalable Algorithm for
 Learning Parsimonious (0.51)
-Bayesian Network Learning with 
 Parameter Constraints (0.43)

- "Ideal Parent" Structure Learning
  for Continuous Variable Bayesian 
  Networks (0.24)

-HPB: A Model for Handling BN Nodes
 with High Cardinality Parents (0.59)
-Finding Optimal Bayesian Network
 Given a Super-Structure (0.44)

-Strong Limit Theorems for the Bayesian
 Scoring Criterion in Bayesian 
 Networks (0.59)

-Kronecker Graphs: An Approach to
 Modeling Networks (0.52)
-Learning Non-Stationary Dynamic
 Bayesian Networks (0.49)

-Efficient Structure Learning of Bayesian
 Networks using Constraints (0.47)
-Parallel Algorithm for Learning Optimal
 Bayesian Network Structure (0.47)

Vol. 1 Vol. 2 Vol. 3 Vol. 4

Vol. 5 Vol. 6 Vol. 7 Vol. 8

Vol. 9 Vol. 10 Vol. 11 Vol. 12

41 Changyou Chen Dependent Normalized Random Measures



Experiments

Experiments: Topic evolutions on Reuters

1 year (1996) news from Reuters.

no
topics

09/1996-01/1997 03/1997

04/1997 05/1997 06/1997

07/1997

02/1997

08/1997
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Experiments

Experiments: Topic evolutions on blogs

6 month blog data from Daily Kos blogs.

43 Changyou Chen Dependent Normalized Random Measures



Conclusion & future work

Outline

1 Introduction

2 Normalized random measures
Background
Posterior analysis
Dependent NRMs

3 Applications in dynamic topic modeling
Model construction
Sampling

4 Experiments

5 Conclusion & future work

44 Changyou Chen Dependent Normalized Random Measures



Conclusion & future work

Conclusion

Reviewed and developed theory of normalized random
measures (NRM).
Extended the Poisson based dependency operations to
NRMs.
Application on dynamic topic models.
Developed a sampler for the proposed model.
Future work include:

Develop more efficient sampler for NGG, specifically, for the
dependent NGG.
Explore other ways of constructing dependent NRMs, e.g.,
Lijoi, Nipoti and Prüster’s dependent NRMs [LNP12], which
is related but somehow different to ours.
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Thanks for your attention!!!
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