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Abstract

This is the supplementary material for the ICML 2013 paper Dependent Normalized Random Measures
by the same authors.

A. Notation & Preliminary

We list some of the notation used in this paper in Table 1 for reminder.

A.1. Definitions

For completeness, we restate the definition of MNRM and TNRM. We are given a Poisson process on a product
space R+×Θ×R with intensity measure ν(dw,dθ,da) (we will use the notation νr(dw,dθ) =

∫
R̃r
ν(dw,dθ,da)),

denote the corresponding Poisson random measure as N (dw,dθ,da), the constructions are then defined as follow:

Mixed Normalized Random Measures (MNRM)

µ̃r(dθ) =

∫
R+×R̃r

wN (dw,dθ,da), r = 1, · · · ,#R

µ̃t(dθ) =

#R∑
r=1

qrtµ̃r(dθ) t = 1, · · · , T

µt(dθ) =
1

Zt
µ̃t(dθ) , where Zt = µ̃t(Θ) (1)
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Dependent Normalized Random Measures

Table 1. List of notation.
Notation Description
I or #R #regions for R, indexed by r
T #times for the observations
Lt #observations in time t
stl latent variable indexes which atom the l-observation in time t belongs to.
gtl latent variable indexes which region the l-observation in time t belongs to.

(wrk, θrk) points/atoms in the Poisson process in region R̃r. When used to construct an NRM,
sometimes we also call wrk as the jumps and θrk as the atoms

Kr #atoms with observation in the NRM in region R̃r
Mr mass parameter for the NRM in region R̃r
~Xt observations in the NRM in time t

ntrk #observations in time t attached to the k-th jump of the NRM in region R̃r
Nt total number of observations in time t
n·rk =

∑
t ntrk

ut auxiliary variable for the NRM in time t
F (·|θrk) likelihood function under atom θrk
N (w, θ) a Poisson random measure on W ×Θ
ν(dw,dθ) Lévy measure for the NRM on R+×Θ, we assume it is decomposed as ρ(dw)H(dθ),

where H(·) is a probability measure on Θ. We use ν(dw,dθ,da) to denote the Lévy
measure on the augmented space R+ × Θ × R and is assume to be factorized as
ν′(dw,dθ)Q(da)

Thinned Normalized Random Measures (TNRM)

µ̃r(dθ) =

∫
R+×R̃r

wN (dw,dθ,da), r = 1, · · · ,#R

zrtk ∼ Bernoulli(qrt), k = 1, 2, · · ·

µ̂t(dθ) =

∞∑
k=1

zrtkwrkδθrk , t = 1, · · · , T

µt(dθ) =
1

Zt
µ̂(dθ), where Zt = µ̃t(Θ) (2)

A.2. Preliminary Lemmas

We give three lemmas used in analyzing the properties and deriving the posteriors for the proposed MNRM,
TNRM and their variants.

Lemma 1 below is a celebrated formula for Lévy processes know as the Lévy-Khintchine formula.

Lemma 1 (Lévy-Khintchine Formula) Given a completely random measure µ̃ (we consider the case where
it only contains random atoms) constructed from a Poisson process on a produce space R+ × Θ with intensity
measure ν(dw,dθ). For any measurable function f :W ×Θ −→ R+, the following formula holds:

E
[
e−µ̃(f)

]
M
= E

[
e−
∫
Θ
f(w,θ)N (dw,dθ)

]
= exp

{
−
∫
W×Θ

(
1− e−f(w,θ)

)
ν(dw,dθ)

}
, (3)

where the expectation is taken over the space of bounded finite measures. Using (3), the characteristic functional
of µ̃ is given by

ϕµ̃(u)
M
= E

[
e
∫
Θ
iuµ̃(dθ)

]
= exp

{
−
∫
W×Θ

(
1− eiuw

)
ν(dw,dθ)

}
, (4)
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where u ∈ R and i is the imaginary unit.

Lemma 2 is about the disintegration property of a Poisson random measure N and some fixed points θk ∈ Θ.
This is a specific result derived using either the Poisson process partition calculus (James, 2005), or the well
known Palm formula.

Lemma 2 Let N be a Poisson random measure defined on R+ × Θ with intensity measure ν(dw,dθ), µ̃ be the
CRM constructed from N . Given samples {ϕn} with ties (θk)Kk=1 and the corresponding counts (n1, · · · , nK),
for any nonnegative function f : R+ ×Θ 7→ R+, the following formula holds:

E

[
e−N (f)

K∏
k=1

µ̃(θk)nk

]
= E

[
e−N (f)

] K∏
k=1

∫
R+

wnkk e−f(wk,θk)ν(dwk, θk) , (5)

where N (f) =
∫
R+×Θ f(w, θ)N (dw,dθ).

Lemma 3, originally from Proposition 2.1 of (James, 2005), gives the posterior intensity measure of the Poisson
process under an exponential tilting operation. It is used in the proof of the posterior Lévy measure for MNRM
and TNRM.

Lemma 3 Let N denotes a Poisson random measure with intensity measure ν, taking values in space of bound-
edly finite measures M with sigma-field denoted as B(M). BM+(W) denotes the collection of Borel measurable
functions of bounded support on W. Then for each f ∈ BM+(W) and each g on (M,B(M)),∫

M
g(N )e−N (f)P (dN|ν) = LN (f |N )

∫
M
g(N )P (dN|e−fν) ,

where P (dN|e−fν) is the law of a Poisson process with intensity e−f(w)ν(dw), LN (f |N ) =
exp

{
−
∫
W
(
1− e−f(w)

)
ν(dw)

}
denotes the Laplace functional of N . In other words, exponential tilting of a

Poisson random measure as e−N (f)P (dN|ν) is equivalent to dealing with a Poisson random measure with inten-
sity e−fν.

A.3. Normalized Generalized Gamma Processes

In this subsection we briefly introduce a special class of normalized random measures called the normalized
generalized Gamma process (NGG), and list some of its well known properties. A NGG is defined by normalizing
a generalized Gamma process (GGP), whose Lévy measure ν(dw,dθ) is defined on the produce space R+ × Θ
with the following form1:

ν(dw,dθ) =
σM

Γ(1− σ)
w−σ−1e−wdwH(θ)dθ , (6)

where 0 < σ < 1 is called the index parameter, M ∈ R+ is called the mass parameter, and H(·) is a probability
measure on space Θ, called the base distribution. We will use NGG(σ,M,H(·)) to denote a NGG in the rest of
the paper.

We give the Laplace functional and the marginal posterior of the NGG below. These results can be used in the
following sections.

Lemma 4 (Laplace Functional of a GGP) For a generalized Gamma process µ̃g with Lévy measure defined
in (6), let f : R+ 7−→ R+ be a measurable function, the Laplace functional of µ̃g is given by

L(f |µ̃g)
M
= E

[
e−µ̃g(f)

]
= exp

{
−
∫
W×Θ

(
1− e−f(w)

)
ν(dw,dθ)

}
f(w)

M
=uw−−−−−−→ exp {−M ((1 + u)σ − 1)} ,

where µ̃g(f) =
∫
R+×Θ f(w)N (dw,dθ), and u > 0 is a real constant.

1The Lévy measure of GGP can be formulated in different ways (Favaro & Teh, 2012), some via two parameters while
some via three parameters, but they can be transformed to each other by using a change of variable formula. We only
consider the form (6) in this paper for simplicity.
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The following posterior result of a NGG is taken from (Corollary 2 Chen et al., 2012a), similar results can also
be found in other references such as (James et al., 2009; Favaro & Teh, 2012).

Lemma 5 (Posterior of a NGG) Let ~X = (x1, · · · , xN ) be samples from the NGG(σ,M,H(·)) with distinct
values (ties) (x∗1, · · · , x∗K) and the corresponding counts (n1, · · · , nK). Introduce a latent variable u (called latent
relative mass (Chen et al., 2012a)), the marginal posterior is given by:

p
(
~X, u,K |σ,M

)
=

uN−1

Γ(N)(1 + u)N−Kσ
(Mσ)

K
eM−M(1+u)σ

K∏
k=1

(1− σ)nk−1H(x∗k) ,

where (1− σ)nk−1 = (1− σ) · · · (nk − 1− σ) if nk > 1, and 1 if nk ≤ 1.

B. Properties of MNRMs and TNRMs

We have the following property for the MNRM.

Proposition 6 (Proposition 1 in the main text) Conditioned on the weights qrt’s, each random probability

measure µt defined in (1) is marginally distributed as a NRM with Lévy intensity
∑#R
r=1 νr(w/qrt, θ)/qrt.

Proof First, from the definiton we have

µ̃t =

#R∑
r=1

qrtµ̃r .

Because each µ̃r’s is a CRM, we have for any collection of disjoint subsets (A1, · · · , An) of Θ, the random variables
µ̃r(An)’s are independent. Moreover, since the µ̃r’s are independent, we have that {µ̃t(Ai)}ni=1 are independent.
Thus µ̃t is a completely random measure. To work out its Lévy measure, we calculate the characteristic functional
of each random measure qrtµ̃r using Lemma 1:

ϕqrtµ̃r (u) = e−
∫
R+×Θ(1−eiuqrtw)νr(w,θ)dwdθ,

= e−
∫
R+×Θ(1−eiuw)νr(w/qrt,θ)dw/qrtdθ ,

where the last step follows by using a change of variable w′ = qrtw. Because qrtµ̃r’s are independent, we have
that the characteristic functional of µ̃t is

ϕµ̃t(u) =

#R∏
r=1

ϕqrtµ̃r (u)

= e−
∫
R+×Θ(1−eiuw)

∑#R
r=1 νr(w/qrt,θ)dw/qrtdθ , (7)

The Lévy intensity of µ̃t is thus
∑#R
r=1 νr(w/qrt, θ)/qrt.

�

The following two properties are proved for TNRMs.

Proposition 7 (Proposition 2 in the main text) Conditioned on the set of qrt’s, each random probabil-
ity measure µt defined in (2) is marginally distributed as a normalized random measure with Lévy measure∑
r qrtνr(dw,dθ).

Proof One approach is to follow the proof of Lemma 11 in (Chen et al., 2012a), here we give a simplified proof
using the characteristic function of a CRM (4).

Denote B = {0, 1}#R×T , from the definition of µ̃t, the underlying point process can be considered as a Mark-
Poisson process in the product space R+ ×Θ×R×B, where each atom (w, θ) in region Rr is associated with a
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Bernoulli variable z with parameter qrt. From the marking theorem of a Poisson process we conclude that µ̃t’s
are again CRMs. To derive the Lévy measures, denote dz as the infinitesimal of a Bernoulli random variable z,
using the Lévy-Khintchine formula for a CRM as in Lemma 1, the corresponding characteristic functional can
be calculated as

E
[
e
∫
Θ
iuµ̃t(dθ)

]
= exp

{
−
∫
R+×Θ×R×B

(
1− eiuw

)
ν(dw,dθ,da)dz

}
= exp

{
−
∫
R+×Θ×R

(
1− eiuw

)
qratν(dw,dθ,da)

}
(8)

= exp

{
−
∫
R+×Θ

(
1− eiuw

)(#R∑
r=1

qrtνr(dw,dθ)

)}
, (9)

where (8) follows by integrating out the Bernoulli random variable z with parameter qrat, (9) follows by inte-
grating out the region space. Again according to the uniqueness property of the characteristic functional, µt’s
are marginally normalized random measure with Lévy measures

∑#R
r=1 qrtνr(dw,dθ).

�

Proposition 8 (Proposition 3 in the main text) Denote the Lévy measure in region Rr as νr(dw,dθ), and
fix the subsampling rates qrt. Given observations associated with a set of weights W , and auxiliary variables ut
for each t ∈ T , the remaining weights in region Rr are independent of W , and are distributed as a CRM with
Lévy measure

ν′r(dw,dθ) =
∏
t

(
1− qrt + qrte

−utw
)
νr(dw,dθ) .

Proof The independence of the atoms with and without observations directly follows from the property of the
completely random measures (James et al., 2009). It remains to proof the Lévy measure of the random measure
formed by the random atoms of the corresponding Poisson process.

The way to prove the posterior Lévy measure is to apply Lemma 3, where the idea is to formulate the joint
distribution of the Poisson random measure and the observations into an exponential tilted Poisson random
measure. Note it suffices to consider one region case because the CRM between regions are independent. For
notational simplicity we omit the subscript r in all the statistics related to r, e.g., ntrw is simplified as ntw.

Now denote the base random measure as µ̃, then construct a set of dependent NRMs µt’s by thinning µ̃ with
different rates qj . Given observations for µt’s, by the Poisson partition calculus (James, 2005) it follows that the
joint distribution for {µt} and observations with statistics {ntw} is

p({ntw}, {µt}) =
∏
t

∏
k w

ntwk
k

(
∑
k′ ztk′wk′)

Nt
P (N|ν) .

Now we introduce an auxiliary variable ut for each t via Gamma identity, and the joint becomes

p({ntw}, {µt}, {ut}) =
∏
t

∏
k:ntwk>0 w

ntwk
k

Γ(Nt)

∏
k

e−
∑
t ztkutwkP (N|ν) .

Now integrate out all the ztk’s in the exponential terms we have:

E{ztk}

[∏
k

e−
∑
j zjikujwk

]
=

∏
k

∏
j

(
1− qj + qje

−ujwk
)

= exp

−∑
k

∑
j

− log
(
1 + qj

(
e−ujwk − 1

))
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Let f = −
∑
k

∑
j log (1 + qj (e−ujwk − 1)), g(N ) = 1 in Lemma 3, then by applying Lemma 3, we conclude that

the Poisson process has posterior intensity of

e−f(w)ν(dw,dθ) =
∏
j

(
1− qj + qje

−ujw
)
ν(dw,dθ) ,

which is the conditional Lévy measure of µ̃ by the relationship between a Poisson process and the CRM con-
structed from it.

�

C. Inference

C.1. Mixed Normalized Random Measures

C.1.1. Posterior Inference for Mixed Normalized Generalized Gamma Processes with
Marginal Sampler

We first derive the posterior of MNRMs. Given observations ~X, denote µr as the NRM in region R̃r, the
likelihood can be expressed as

p( ~X|{µr}, {qrt}) =

∏T
t=1

∏I
r=1

∏Kr
k=1 (qrtwrk)

ntrk∏T
t′=1

(∑I
r′=1

∑∞
k′=1 qr′t′wr′k′

)Nt′ T∏
t=1

Lt∏
l=1

F (xtl|θgtlstl) (10)

Now introduce auxiliary variables {ut} using Gamma identity, the joint becomes

p( ~X, ~u|{µr}, {qrt}) (11)

=

(
I∏
r=1

T∏
t=1

qnrt·rt

)(
I∏
r=1

Kr∏
k=1

wn·rkrk exp

{
−

(
T∑
t=1

qrtut

)
wrk

})
(

T∏
t=1

uNt−1
t

Γ(Nt)

)
exp

{
−

I∑
r=1

∞∑
k=1

(
T∑
t=1

qrtut

)
wrk

}(
T∏
t=1

Lt∏
l=1

F (xtl|θgtlstl)

)

We assume the Lévy measure is factorized as

ν(dw,dθ,da) = ν′(dw,dθ)Q(da) ,

where Q(·) is a measure on A. Now it is easily seen µr’s are normalized generalized Gamma processes with Lévy
measures

νr(dw,dθ) =

∫
Rr

ν(dw,dθ,da) =
σMrQ(Rr)

Γ(1− σ)
w−1−σe−wdwH(θ)dθ ,

re-writing Qr = Q(Rr) and integrating out µr’s by applying Lemma 2 we get:

p( ~X, ~u|σ, {Mr}, {qrt}) = E{µr}
[
p( ~X, ~u|{µr}, {qrt})

]
(12)

∝

(
T∏
t=1

#R∏
r=1

qnrt·rt

)(
σ

Γ(1− σ)

)K· (#R∏
r=1

(QrMr)
Kr

)(
#R∏
r=1

Kr∏
k=1

Γ(n·rk − σ)

(1 +
∑
t qrtut)

n·rk−σ

)
(

T∏
t=1

uNt−1
t

Γ(Nt)

)(
#R∏
r=1

e−QrMr((1+
∑
t qrtut)

σ−1)

)(
T∏
t=1

Lt∏
l=1

F (xtl|θgtlstl)

)
,

since Qr and Mr always appear together, thus we omit Qr and only use Mr to represent QrMr, this applies to
TNRM without further statement.

The variables needed to be sampled are C = {{stl}, {gtl}{Mr}, {ut}, {qrt}}, based on (12), these can be iteratively
sampled as follows:
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Sampling (stl, gtl): The posterior of (stl, gtl) is

p(stl = k, gtl = r|C − stl − gtl)

∝


qrt(n

\tl
·rk−σ)

1+
∑
t′ qrt′ut′

F
\tl
rk (xtl), if k already exists,

σ

(∑
r′

qr′tMr′

(1+
∑
t′ qr′t′ut′)

1−σ

)∫
Θ
F (xtl|θ)H(θ)dθ, if k is new ,

where F
\tl
rk (xtl) =

∫
F (xtl|θrk)

∏
t′l′ 6=tl,s

t′l′=k,gt′l′=r
F (xt′l′ |θrk)H(θrk)dθrk∫ ∏

t′l′ 6=tl,s
t′l′=k,gt′l′=r

F (xt′l′ |θrk)H(θrk)dθrk
is the conditional density.

Sampling Mr: The posterior of Mr follows a Gamma distribution:

p(Mr|C −Mr) ∼ Gamma

(
Kr + am,

(
1 +

∑
t

qrtut

)σ
+ bm − 1

)
,

where am, bm are parameters of Gamma prior for Mr.

Sampling ut: The posterior distribution of ut is:

p(ut|C − ut) ∝
uNt−1
t exp {−

∑
rMr (1 +

∑
t′ qrt′ut′)

σ}∏
r (1 +

∑
t′ qrt′ut′)

∑
kr
n·rk−σKr

,

which is log-concave if we use a change of variables: vt = log(ut).

Sampling qrt: Note we should introduce priors for {qrt}’s, here we use a Gamma prior with parameter qa and
qb, then the posterior of qrt has the following posterior:

p(qrt|C − qrt) ∝
qntr·+qa−1
rt exp {−Mr (1 +

∑
t′ qrt′ut′)

σ − qbqrt}
(1 +

∑
t′ qrt′ut′)

n·r·−σKr ,

which is also log-concave in interval [−∞, 0] with a change of variables: Qrt = log(qrt).

Sampling σ: From (12), we first instantiate a set of jumps {wrk} as

wrk ∼ Gamma

(
n·rk − σ, 1 +

∑
t

qrtut

)
,

then the posterior of σ is proportional to:

p(σ|C − σ) ∝
(

σ

Γ(1− σ)

)K· (#R∏
r=1

Kr∏
k=1

wrk

)−σ (#R∏
r=1

e−Mr(1+
∑
t qrtut)

σ

)
(13)

which is log-concave as well.

C.1.2. Posterior Inference for Mixed Normalized Generalized Gamma Processes with Slice
Sampler

The idea of slice sampling MNGG is similar to that of TNGG but with different detailed techniques, readers
unfamiliar with the slice sampler are encouraged to first refer to the slice sampler for TNRM in Appendix C.2.2
for more detailed introduction of the underlying ideas.

Starting from (11), we introduce a slice auxiliary variable vtl for each observation such that

vtl ∼ Uniform(wgtlstl) .
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Now (11) can be rewritten as

p( ~X, ~u, { ~vtl}, {stl}, {gtl}|{µr}, {qrt})

=

(∏
t

∏
l

1 (wgtlstl > vtl) qgtlstlF (xtl|θgtlstl)

)(∏
t

uNt−1
t

Γ(Nt)

)
(

exp

{
−
∑
t

∑
r

∑
k

qrtutwrk

})
(14)

Now the joint distribution of observations, related auxiliary variables and the corresponding Poisson random
measure {Nr} becomes

p( ~X, ~u, { ~vtl}, {µr}, {stl}, {gtl}|{qrt})

=

(∏
t

∏
l

1(wgtlstl > vtl)qgtlstlF (xtl|θgtlstl)

)(∏
t

uNt−1
t

Γ(Nt)

)
(

exp

{
−
∑
t

∑
r

∑
k

qrtutwrk

})∏
r

P (Nr)

slice at Lr=

(∏
t

∏
l

1(wgtlstl > vtl)qgtlstlF (xtl|θgtlstl)

)(∏
t

uNt−1
t

Γ(Nt)

)

exp

{
−
∑
t

∑
r

∑
k

qrtutwrk

}
︸ ︷︷ ︸

jumps larger than Lr∏
r

p({(wr1, θr1)}, · · · , {(wrK′r , θrK′r )}) (K ′r is # jumps larger than Lr) (15)

∏
r

exp

{
− σMr

Γ(1− σ)

∫ Lr
0

(
1− e−

∑
t qrtutx

)
ρ′(dx)

}
︸ ︷︷ ︸

jumps less than Lr

, (16)

where ρ′(dx) = x−1−σe−x and (15) has the following form based on the fact that {(wrk, θrk)} are points from
a compound Poisson process:

p({(wr1, θr1)}, · · · , {(wrK′r , θrK′r )}) =

(
σMr

Γ(1− σ)

)K′r
exp

{
− σMr

Γ(1− σ)

∫ ∞
Lr

ρ′(dx)

}∏
k

w−1−σ
rk e−wrk ,

see Appendix C.2.2 for the derivation.

Now the sampling goes as:

Sample (stl, gtl): (stl, gtl) are jointly sampled as a block, it is easily seen the posterior is:

p(stl = k, gtl = r|C − {stl, gtl}) ∝ 1(wrk > vtl)qrkF (xtl|θrk) . (17)

Sample vtl: vtl is uniformly distributed in interval (0, wgtlstl ], so

vtl|C − vtl ∼ Uniform(0, wgtlstl) . (18)

Sample wrk: There are two kinds of wrk’s, one is with observations, the other is not, because they are inde-
pendent, we sample these separately:



Dependent Normalized Random Measures

• Sample wrk’s with observations: It can be easily seen that these wrk’s follow Gamma distributions
as

wrk|C − wrk ∼ Gamma

(∑
t

ntrk − σ, 1 +
∑
t

qrtut

)
,

• Sample wrk’s without observations: These wrk’s are Poisson points in a Poisson process with
intensity

ν(dw,dθ) = ρ(dw)H(dθ) = e−
∑
t qrtutwνr(dw,dθ) ,

where ν(dw,dθ) is the Lévy measure of µr. This is a generalization of the result in (James et al., 2009).
In regard of sampling, we use the adaptive thinning approach used in (Favaro & Teh, 2012) with a
proposal adaptive Poisson process intensity as

γx(s) =
σMr

Γ(1− σ)
e−(1+

∑
t qrtut)sx−1−σ (19)

See Appendix C.2.2 for the detailed description of this approach and the case for TNGG.

Sample Mr: Mr follows a Gamma distribution as

Mr|C −Mr ∼ Gamma

(
K ′r + 1,

σ

Γ(1− σ)

∫ ∞
Lr

ρ′(dx) +

∫ Lr
0

(
1− e−

∑
t qrtutx

)
ρ′(dx)

)
,

where K ′r is the number of jumps larger than the threshold Lr and the integrals can be evaluated using
numerical integration or via the incomplete Gamma function as described in (Chen et al., 2012a).

Sample ut: From (16), we sample ut using rejection sampling by first sample from the following proposal
Gamma distribution

ut|C − ut ∼ Gamma

(
Nt,

∑
r

∑
k

qrtwrk

)
,

then do the rejection step by evaluating it on the posterior (16).

Sample qrt: qrt can also be rejection sampled by using the following proposal Gamma distribution:

p(qrt|C − qrt) ∝∼ Gamma

(
ntr· + aq,

∑
k

utwrk + bq

)
,

where aq, bq are the hyperparameters of the Gamma prior.

Sample σ: Based on (16), the posterior of σ is proportional to:

p(σ|C − σ) ∝
(

σ

Γ(1− σ)

)∑
r K
′
r

(∏
r

∏
k

wrk

)−σ

exp

{
− σMr

Γ(1− σ)

(∫ ∞
Lr

ρ′(dx) +

∫ Lr
0

(
1− e−

∑
t qrtutx

)
ρ′(dx)

)}
,

which can be sampled using the slice sampler (Neal, 2003).

C.2. Thinned Normalized Random Measures

C.2.1. Marginal Posterior for Thinned Normalized Generalized Gamma Processes

Though Proposition 3 in the main text shows us the posterior intensity of the Poisson process in region Rr,
unfortunately marginalization over this Poisson random measure usually does not end up a simple form. The
following proposition gives the marginal posterior of the TNRM under a specific class of the normalized random
measure–the normalized generalized Gamma process.
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Proposition 9 Given observations ~X for all times, introduce a set of auxiliary variables {ut}. Using the nota-
tion and statistics defined in Table 1, the marginal posterior for the TNGG is given by

p( ~X, ~u, {stl}, {gtl}|σ, {Mr}, {zrtk}k:n·rk>0, {qrt}) (20)

=

(
σ

Γ(1− σ)

)∑
r Kr

(∏
r

MKr
r

)(∏
t

uNt−1
t

Γ(Nt)

)
(∏

r

∏
k:n·rk>0

Γ(n·rk − σ)

(1 +
∑
t zrtkut)

n·rk−σ

)(∏
t

∏
l

F (xtl|θgtlstl)

)
(21)

∏
r

exp

−Mr

 ∑
z′rt∈{0,1}

for t=1···T

((∏
t′

q
z′
rt′
rt′ (1− qrt′)1−z′

rt′

)(
(1 +

∑
t′

z′rt′ut′)
σ − 1

))
 ,

where in the last line
∑

z′rt∈{0,1}
for t=1···T

=
1∑

z′r1=0

1∑
z′r2=0

· · ·
1∑

z′rT=0

.

Proof Let Grt =
∑
k

ztrkwrk∑
k′ ztrk′wrk′

δθrk , from the property of Poisson process we see that it is a CRM in the

augmented space R+ ×Θ × {0, 1}. Given the observed data, the likelihood is given by

p( ~X, {stl}, {gtl}|{Grt})

=

∏T
t=1

∏I
r=1

∏Kr
k=1 w

ntrk
rk∏T

t′=1 (
∑
r′
∑
k′ zr′t′k′wr′k′)

Nt′

T∏
t=1

Lt∏
l=1

F (xtl|θgtlstl ) , (22)

where zrtk ∼ Bernoulli(qrt), 0 ≤ qrt ≤ 1.

Now introducing auxiliary variables ~u via the Gamma identity, we have

p( ~X, ~u, {stl}, {gtl}|{Grt})

=

(
T∏
t=1

I∏
r=1

Kr∏
k=1

wntrkrk

)(
T∏
t=1

Lt∏
l=1

F (xtl|θgtlstl)

)(∏
t

uNt−1
t

Γ(Nt)

)
(

exp

{
−
∑
t

∑
r

∑
k

zrtkutwrk

})
(23)

Denote Υ = {0, 1} ⊗ · · · ⊗ {0, 1}︸ ︷︷ ︸
T

, d~Rr = dzr1 · · · dzrT , since {Grt}’s are CRMs, now integrate out {Gr}’s with

Lévy-Khintchine formula (3) and Lemma 2 we have

p( ~X, ~u, {stl}, {gtl}|σ, {Mr}) = E{Grt}
[
p( ~X, ~u, {stl}, {gtl}|{Grt})

]
=

(
σ

Γ(1− σ)

)∑
r Kr

(∏
r

MKr
r

)(∏
t

uNt−1
t

Γ(Nt)

)
(∏

r

∏
k:n·rk>0

Γ(n·rk − σ)

(1 +
∑
t z
′
rtkut)

n·rk−σ

)(
T∏
t=1

Lt∏
l=1

F (xtl|θgtlstl)

)
∏
r

exp

{
− σMr

Γ(1− σ)

∫
Υ

∫
Θ

∫
R+

(
1− e−

∑
t zrtxutx

) e−x

x1+σ
dxdθd~Rr

}
(24)



Dependent Normalized Random Measures

Taylor
=

expansion

(
σ

Γ(1− σ)

)∑
r Kr

(∏
r

MKr
r

)(∏
t

uNt−1
t

Γ(Nt)

)
(∏

r

∏
k:n·rk>0

Γ(n·rk − σ)

(1 +
∑
t z
′
rtkut)

n·rk−σ

)(
T∏
t=1

Lt∏
l=1

F (xtl|θgtlstl)

)
∏
r

exp

{
− σMr

Γ(1− σ)

∫
Υ

∫
Θ

∫
R+

∞∑
n=1

(−1)n−1 (
∑
t zrtxut)

n
xn

n!

e−x

x1+σ
dxdθd~Rr

}
Integrate out

=
all zrtx

(
σ

Γ(1− σ)

)∑
r Kr

(∏
r

MKr
r

)(∏
t

uNt−1
t

Γ(Nt)

)
(∏

r

∏
k:n·rk>0

Γ(n·rk − σ)

(1 +
∑
t z
′
rtkut)

n·rk−σ

)(
T∏
t=1

Lt∏
l=1

F (xtl|θgtlstl)

)

∏
r

exp

−
σMr

Γ(1− σ)

 ∑
z′rt∈{0,1}

for t=1···T

∞∑
n=1

(−1)n−1 (
∑
t′ z
′
rt′ut′)

n

n!

(∏
t′

q
z′
rt′
rt′ (1− qrt′)1−z′

rt′

∫
R+

xn−σ−1e−xdx

)]}

=

(
σ

Γ(1− σ)

)∑
r Kr

(∏
r

MKr
r

)(∏
t

uNt−1
t

Γ(Nt)

)
(∏

r

∏
k:n·tk>0

Γ(n·rk − σ)

(1 +
∑
t z
′
rtkut)

n·rk−σ

)(
T∏
t=1

Lt∏
l=1

F (xtl|θgtlstl)

)
(25)

∏
r

exp

−Mr

 ∑
z′rt∈{0,1}

for t=1···T

((∏
t′

q
z′
rt′
rt′ (1− qrt′)1−z′

rt′

)(
(1 +

∑
t′

z′rt′ut′)
σ − 1

))


where zrtx in (24) means a Bernoulli random variable drawn at atom x with parameter qrt. Furthermore, the
last equation follows by applying the following result

∞∑
n=1

(−1)n−1λ
n

n!
Γ(n− σ)

=

∞∑
n=1

(−1)n−1λn
Γ(n− σ)

n!

=
1

σ

( ∞∑
n=1

(−1)n−1σΓ(n− σ)

n!
λn

)

=
Γ(1− σ)

σ

( ∞∑
n=1

σ(σ − 1) · · · (σ − n+ 1)

n!
λn

)
(26)

=
Γ(1− σ)

σ
[(1 + λ)σ − 1] ,

where the summation in (26) is the Taylor expansion of (1 + λ)σ − 1.

�

A Marginal Sampler for TNGG We derive a marginal sampler for TNGG based on the posterior (20). To
sample the topic allocation variables (stl, gtl), we need to further integrated out the Bernoulli random variables
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zrtk’s for the fixed jumps in (21). Thus we augment the terms in the first parenthesis of (21) by instantiating a
set of jump size variables wrk’s distributed as

wrk ∼ Gamma

(
n·rk − σ, 1 +

∑
t

zrtkut

)
. (27)

Further denote u = (u1, · · · , uT ), and b as a length T binary vector, and denote∑
b

=

1∑
b1=0

1∑
b2=0

· · ·
1∑

bT=0

,

then the first parenthesis in (21) can be rewritten as∏
r

∏
k:n·rk>0

wn·rk−σrk e−wrk
∏
t

e−zrtkutwrk

integrate out zrtk−−−−−−−−−−−−−→
∏
r

∏
k:n·rk>0

wn·rk−σrk e−wrk
∏
t

(
1− qrt + qrte

−utwrk
)

=
∏
r

∏
k:n·rk>0

wn·rk−σrk

∑
b

(∏
t

qbtrt(1− qrt)bt
)
e−(1+<u,b>)wrk

integrate out wrk−−−−−−−−−−−−−→
∏
r

∏
k:n·rk>0

∑
b

(∏
t

qbtrt(1− qrt)bt
)

Γ(n·rk − σ)

(1+ < u,b >)
n·rk−σ ,

where < ·, · > denotes the inner produce. Based on this, the sampling goes as

Sample (stl, gtl): for the current time t, the corresponding bt value is equal to 1, thus the conditional probability
for (stl, gtl) is proportional to

p(stl = k, gtl = r|C − stl − gtl)

∝


qrt(n

\tl
·rk − σ)

(∑
b:bt=1

∏
t′ 6=t q

b
t′
rt′ (1−qrt)

1−b
t′

1+<u,b>

)
F
\tl
rk (xtl), if k already exists,

σ

(∑
r′ qr′tMr′

∑
b:bt=1

∏
t′ 6=t q

b
t′
r′t′ (1−qr′t′ )

1−b
t′

(1+<u,b>)1−σ

)∫
Θ
F (xtl|θ)H(θ)dθ, if k is new.

When T = 2 this becomes:

∝

qrt(n
\tl
·rk − σ)

(
1−qrt̃
1+ut̃

+
qrt̃

1+u1+u2

)
F
\tl
rk (xtl), if k already exists,

σ
(∑

r′ qr′tMr′

(
1−qr′ t̃

(1+ut̃)
1−σ +

qr′ t̃
(1+u1+u2)1−σ

)) ∫
Θ
F (xtl|θ)H(θ)dθ, if k is new

where t̃ = 1 when t = 2, and t̃ = 2 when t = 1. F
\tl
rk (xtl) =

∫
F (xtl|θrk)

∏
t′l′ 6=tl,s

t′l′=k,gt′l′=r
F (xt′l′ |θrk)H(θrk)dθrk∫ ∏

t′l′ 6=tl,s
t′l′=k,gt′l′=r

F (xt′l′ |θrk)H(θrk)dθrk

is the conditional density.

Sample Mr: Mr has a Gamma distributed posterior as

Mr|C −Mr ∼ Gamma

(
Kr + am,

∑
b

(∏
t

qbtrt(1− qrt)1−bt

)
((1+ < u,b >)σ − 1) + bm

)
,

where (am, bm) are parameters of the Gamma prior for Mr.

To sample ({ut}, {qrt}, σ), we first instantiate the fixed jumps wrk as in (27), and sample the latent Bernoulli
variables zrtk for (k : n·rk > 0) using the following rule

p(zrtk = 1|C − zrtk) =

{
1, if ntrk > 0 ,

qrte
−utwrk

1−qrt+qrte−utwrk
, if ntrk = 0 .

With these latent variables, sampling for other parameters goes as
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Sample ut: the posterior of ut has the following form:

p(ut|C − ut) ∝ uNt−1
t e

−
(∑

r

∑
k:n·rk>0 zrtkwrk

)
ute
−
∑
rMr

∑
b

(∏
t′ q

b
t′
rt′ (1−qrt′ )

1−b
t′
)

(1+<u,b>)σ)
, (28)

this is log-concave after using a change of variable vt = log(ut). Another possible way to sample is to
first sample ut from a Gamma distribution Gamma

(
Nt,

∑
r

∑
k:n·rk>0 zrtkwrk

)
, then use a rejection step

evaluated on the true posterior (28), though the acceptance rate would probably be low.

Sample qrt: the posterior of qrt follows:

p(qrt|C − qrt) ∝ q
∑
k:n·tk>0 1(zrtk=1)+aq−1

rt (1− qrt)
∑
k:n·tk>0 1(zrtk=0)+bq−1

(29)

e
−Mr

∑
b

(∏
t′ q

b
t′
rt′ (1−qrt′ )

1−b
t′
)

((1+<u,b>)σ−1)
, (30)

where (aq, bq) are parameters of the Beta prior for qrt’s. This is again log-concave, and can be
sampled using the slice sampler. Also, similar to sampling ut, we can also first sample qrt from a
Beta

(∑
k:n·tk>0 1(zrtk = 1) + aq,

∑
k:n·tk>0 1(zrtk = 0) + bq

)
proposal distribution and do a rejection step

based on the true posterior (29).

Sample σ: From (20), σ has the following posterior:

p(σ|C − σ) ∝
(

σ

Γ(1− σ)

)K· (∏
r

∏
k:n·rk>0

wrk

)σ∏
r

e−Mr
∑

b(
∏
t q
bt
rt(1−qrt)

1−bt)(1+<u,b>)σ),

this is log-concave as well and can be sampled with the slice sampler.

We can see from the above marginal sampler for TNGG that it is computationally infeasible even for a moderately
large time T . The reason being that the marginal posterior contains a 2T summation term, thus computation
complexity grows exponentially with the number of times. Alternatively, based on the recent development of
sampling for normalized random measures (Griffin & Walker, 2011; Favaro & Teh, 2012), we are able to develop
a slice sampler for TNGG that greatly reduces the computational cost. This is described in the next section.

C.2.2. Posterior Inference for the TNGG via Slice Sampling

This section describes a slice sampler for a specific class of the NRM, i.e., thinned-spatial normalized generalized
Gamma process (TNGG). The idea behind the slice sampler is to introduce auxiliary slice variables such that
conditioned on these, the realization of normalized random measures only have a finite set of jumps larger than
a threshold, thus turning the inference from infinite parameter spaces to finite parameter spaces.

To derive the slice sampling formula, we first introduce a slice auxiliary variable vtl for each observation such
that

vtl ∼ Uniform(wgtlstl) .

Based on (23), now the joint posterior of observations and related auxiliary variables becomes

p( ~X, ~u, { ~vtl}, {stl}, {gtl}|{µr}, {zrtk}, {qrt})

=

(∏
t

∏
l

1 (wgtlstl > vtl)F (xtl|θgtlstl)

)(∏
t

uNt−1
t

Γ(Nt)

)
(

exp

{
−
∑
t

∑
r

∑
k

zrtkutwrk

})
(31)

Denote ρ′(dx) = x−1−σe−x. In the slice sampler we want to instantiate the jumps larger than a threshold, say
Lr, for region R̃r. As a result, the joint distribution of the observations, related auxiliary variables and the
Poisson random measure {Nr} becomes

p( ~X, ~u, { ~vtl}, {µr}, {stl}, {gtl}|{zrtk}, {qrt})
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=

(∏
t

∏
l

1(wgtlstl > vtl)F (xtl|θgtlstl)

)(∏
t

uNt−1
t

Γ(Nt)

)
(

exp

{
−
∑
t

∑
r

∑
k

zrtkutwrk

})∏
r

P (Nr)

slice at Lr=

(∏
t

∏
l

1(wgtlstl > vtl)F (xtl|θgtlstl)

)(∏
t

uNt−1
t

Γ(Nt)

)

exp

{
−
∑
t

∑
r

∑
k

zrtkutwrk

}
︸ ︷︷ ︸

jumps larger than Lr∏
r

p({(wr1, θr1)}, · · · , {(wrK′r , θrK′r )}) (K ′r is # jumps larger than Lr)

∏
r

exp

{
− σMr

Γ(1− σ)

∫ Lr
0

(
1−

∏
t

(
1− qrt + qrte

−utx
))

ρ′(dx)

}
︸ ︷︷ ︸

jumps less than Lr, according to Proposition 8

(32)

small Lr=

(∏
t

∏
l

1(wgtlstl > vtl)F (xtl|θgtlstl)

)(∏
t

uNt−1
t

Γ(Nt)

)

exp

{
−
∑
t

∑
r

∑
k

zrtkutwrk

}
︸ ︷︷ ︸

jumps larger than Lr∏
r

(
σMr

Γ(1− σ)

)K′r
exp

{
− σMr

Γ(1− σ)

∫ ∞
Lr

ρ′(dx)

}∏
k

w−1−σ
rk e−wrk︸ ︷︷ ︸

p({(w1k,θ1k)},{(w2k,θ2k)},··· ,{(wIk,θIk)})

(33)

∏
r

exp

− σMr

Γ(1− σ)

∫ Lr
0

(
∑
j

qrtut)x+O((utx)2)

 ρ′(dx)

︸ ︷︷ ︸
jumps less than Lr

(34)

≈

(∏
t

∏
l

1(wgtlstl > vtl)F (xtl|θgtlstl)

)(∏
t

uNt−1
t

Γ(Nt)

)
exp

{
−
∑
t

∑
r

∑
k

zrtkutwrk

}
︸ ︷︷ ︸

jumps larger than Lr∏
r

(
σMr

Γ(1− σ)

)K′r
exp

{
− σMr

Γ(1− σ)

∫ ∞
Lr

ρ′(dx)

}∏
k

w−1−σ
rk e−wrk︸ ︷︷ ︸

p({(w1k,θ1k)},{(w2k,θ2k)},··· ,{(wIk,θIk)})

exp

{
−
∑
r

(
∑
t

qrtut)Mr
σL1−σ

r

(1− σ)Γ(1− σ)

}
︸ ︷︷ ︸

jumps less than Lr

, (35)

where (33) is the joint density of a finite jumps from the Poisson process, since it is a compound Poisson process,
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so the density is:

p((wr1, θr1), (wr2, θr2), · · · , (wrKr , θrKr ))

= Poisson

(
Kr;

σMr

Γ(1− σ)

∫ ∞
Lr

ρ′(dx)

)
Kr!

Kr∏
k=1

ρ′(wrk)∫∞
Lr ρ

′(dx)
,

where we assume the Lévy measure is decomposed as ν(dw,dθ) = ρ(dw)H(dθ), Poisson(k;A) means the density
of the Poisson distribution with mean A under value k.

Further integrate out all the {zrtk}’s, we have

p( ~X, ~u, { ~vtl}, {wrk}, {stl}, {gtl}|σ, {Mr})

≈

(
T∏
t=1

Lt∏
l=1

1(wgtlstl > vtl)F (xtl|θgtlstl)

)(∏
t

uNt−1
t

Γ(Nt)

)
∏

t

∏
r

∏
k:ntrk=0

(
1− qrt + qrte

−utwrk
) ∏
k:ntrk>0

e−utwrk


︸ ︷︷ ︸

jumps larger than Lr∏
r

(
σMr

Γ(1− σ)

)K′r
exp

{
− σMr

Γ(1− σ)

∫ ∞
Lr

ρ′(dx)

}∏
k

w−1−σ
rk e−wrk︸ ︷︷ ︸

p({(w1k,θ1k)},{(w2k,θ2k)},··· ,{(wIk,θIk)})

exp

{
−
∑
r

(
∑
t

qrtut)Mr
σL1−σ

r

(1− σ)Γ(1− σ)

}
︸ ︷︷ ︸

jumps less than Lr

(36)

C.2.3. Bound analysis

Note that in the above derivation, we have used a linear approximation for an exponential function in (32) to make
it become (35). Actually, this approximation is quite accurate given ut � 1/Lr, and this is easily satisfied by
choosing an appropriate threshold Lr in the sampling (we chose Lr = min

{
0.001/maxt{ut},min(t,l):gtl=r{vtl}

}
in the experiments).

In this section we will give an analysis on the tightness of the bound in the approximation (35) with respect
to Lr, we analysis the lower bound and upper bound of the true posterior (32). First, we define the following
notation:

trmin = arg min
t:qrt 6=0

{qrt(1− e−utLr )},

trmax = arg max
t
{qrtut}.

Also denote the last term in (32) as Q̃r(Lr), i.e.,

Q̃r(Lr) = exp

{
− σMr

Γ(1− σ)

∫ Lr
0

(
1−

∏
t

(
1− qrt + qrte

−utx
))

ρ′(dx)

}
.

We use the following inequality:

1− utx ≤ e−utx ≤ 1− 1− e−utL

L
x, ∀L ≥ x. (37)

Then we have the upper bound for Q̃r(Lr):

Q̃r(Lr) ≤ exp

{
−
∫ Lr

0

σMr

Γ(1− σ)

(
1−

∏
t

(
1− qrt(1− e−utLr )

Lr
x

))(
x−σ−1 − x−σ

)
dx

}
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≤ exp

−
∫ Lr

0

σMr

Γ(1− σ)

1−

(
1−

qrtrmin(1− e−utrminLr )
Lr

x

)T(x−σ−1 − x−σ
)

dx


≤ exp

−
∫ Lr

0

σMr

Γ(1− σ)

(
2− qrtrmin(1− e−utrminLr )

)T/2(qrtrmin(1− e−utrminLr )
Lr

)T/2
xT/2

(
x−σ−1 − x−σ

)
dx
}

= exp

− σMr

Γ(1− σ)

(
qrtrmin(1− e−utrminLr )

Lr

)T/2 (
2− qrtrmin(1− e−utrminLr )

)T/2
(

2

T − 2σ
− 2Lr
T − 2σ + 2

)
L
T
2 −σ
r

}
. (38)

Similarly, we have the lower bound:

Q̃r(Lr) ≥ exp

{
−
∫ Lr

0

σMr

Γ(1− σ)

(
1−

∏
t

(1− qrtutx)

)(
x−σ−1 − 1− e−Lr

Lr
x−σ

)
dx

}

≥ exp

{
−
∫ Lr

0

σMr

Γ(1− σ)

(
1−

(
1− qrtrmaxutrmaxx

)T)(
x−σ−1 − 1− e−Lr

Lr
x−σ

)
dx

}

≥ exp

{
−
∫ Lr

0

σMr

Γ(1− σ)
2T/2

(
qrtrmaxutrmax

)T/2
xT/2

(
x−σ−1 − 1− e−Lr

Lr
x−σ

)
dx

}

= exp

{
− σMr

Γ(1− σ)

(
qrtrmaxuttmax

)T/2
2T/2

(
2

T − 2σ
− 2(1− e−Lr )
T − 2σ + 2

)
L
T
2 −σ
r

}
. (39)

C.2.4. Sampling

The variables needed to be sampled include the jumps {wrk}’s (with or without observations), the Bernoulli
variables {zrtk}’s, mass parameters {Mr}’s, atom assignment {stl}’s, source assignment {gtl}’s and auxiliary
variables ut’s as well as the index parameter σ. We denote the whole set as C, then the sampling goes as follows:

Sample (stl, gtl): (stl, gtl) are jointly sampled as a block, it is easily seen the posterior is:

p(stl = k, gtl = r|C − {stl, gtl}) ∝ 1(wrk > vtl)1(zrtk = 1)F (xtl|θgtlstl) . (40)

Sample vtl: vtl is uniformly distributed in interval (0, wgtlstl ], so

vtl|C − vtl ∼ Uniform(0, wgtlstl) . (41)

Sample wrk: There are two kinds of wrk’s, one is with observations, the other is not, because they are inde-
pendent, we sample these separately:

• Sample wrk’s with observations: It can easily be seen that these wrk’s follow Gamma distributions
as

wrk|C − wrk ∼ Gamma

(∑
t

ntrk − σ, 1 +
∑
t

zrtkut

)
,

• Sample wrk’s without observations: We already know that these wrk’s are Poisson points in a
Poisson process, and from Proposition 8 we know the intensity of the Poisson process is

ν(dw,dθ) = ρ(dw)H(dθ) =
∏
t

(1− qrt + qrte
−utw)νr(dw,dθ) ,
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where νr(dw,dθ) is the Lévy measure of µr. So now sampling wrk’s means instantiating a Poisson
process with the above intensity, since such Poisson process has infinite points but we only need those
points with wrk larger than the threshold Lr, this is finite and the instantiation can be done. An
efficient way to do this is to use the adaptive thinning approach in (Favaro & Teh, 2012), as it does
not require any numerical integrations but only the evaluation of the intensity ρ(dw). The idea behind
this approach is to sample the points from a nice Poisson process with intensity pointwise larger than
the intensity needed to be sampled. In another word, we need define a Poisson process with intensity
γx(s) that adaptively bounds ρ, i.e.: 

γx(x) = ρ(x)

γx(s) ≥ ρ(s) ∀s > x

γx(s) ≥ γx′(s) ∀x′ ≥ x

Furthermore, it is expected both γx(s) and the inversion are analytically tractable with
∫∞
x
γx(s′)ds′ <

∞. Then the samples from the Poisson process with intensity ρ(dw) can be obtained by adaptively
thinning some of the instantiated points in the Poisson process with intensity γx(s). For TNGG, the
following adaptive intensity is found to be a good one:

γx(s) =
σMr

Γ(1− σ)

∏
t

(
1− qrt + qrte

−utx
)
e−sx−1−σ (42)

Then the procedure goes similarly as in (Favaro & Teh, 2012).

Sample zrtk: For those wrk’s with observations from time t, clearly the posterior is

p(zrtk = 1|C − zrtk) = 1 .

For those without observation, according to (22), given all the wrk’s, the posterior of the Bernoulli random
variable zrtk is

p(zrtk = 1|C − zrtk) =
qrte

−utwrk

1− qrt + qrte−utwrk
.

Sample Mr, ut, qrt and σ: The simplest procedure to sample Mr, ut and qrt is to use an approximated Gibbs
sampler based on the accurate approximated posterior (35) and (36):

• Sample Mr: Mr has a Gamma distribution as

Mr|C −Mr ∼ Gamma

(
K ′r + 1,

σ

Γ(1− σ)

∫ ∞
Lr

ρ′(dx) +
σL1−σ

r

(1− σ)Γ(1− σ)

∑
t

qrtut

)
,

where K ′r is the number of jumps larger than the threshold Lr.
• Sample ut: ut also has a Gamma distribution as

ut|C − ut ∼ Gamma

(
Nt,

∑
r

∑
k

zrtkwrk +
σ

(1− σ)Γ(1− σ)

∑
r

qrtMrL1−σ
r

)
.

• Sample qrt: the posterior of qrt is proportional to:

p(qrt|C − qrt) ∝
∏

k:ntrk=0

(
1− qrt + qrte

−utwrk
)
e−

σMrutL1−σ
r

(1−σ)Γ(1−σ)
qrt , (43)

which is log-concave. Now if we use the construction (??), and we further employ a Beta prior with
parameter aq and bq for each qrt, then it can be easily seen that given zrtk, the approximated conditional
posterior of qrt is

qrt|C − qrt ∼ Beta

(∑
k

1(zrtk = 1) + aq,
∑
k

1(zrtk = 0) + bq

)
.
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• Sample σ: based on (35), the posterior of σ is proportional to:

p(σ|C − σ) ∝
(

σ

Γ(1− σ)

)∑
r K
′
r

exp

{
− σMr

Γ(1− σ)

∫ ∞
Lr

ρ′(dx)

}(∏
r

∏
k

wrk

)−σ

exp

{
−
∑
r

(
∑
t

qrtut)Mr
σL1−σ

r

(1− σ)Γ(1− σ)

}
,

which can be sampled using the slice sampler (Neal, 2003).

Sample Mr, ut, qrt using pseudo-marginal Metropolis-Hastings: Note the above sampler for Mr, ut
and qrt is not exact because it is based on an approximated posterior. A possible way for exact sam-
pling is by a Metropolis-Hastings schema. However, note that the integral in (34) is hard to evaluate,
making the general MH sampler infeasible. A strategy to overcome this is to use the pseudo-marginal
Metropolis-Hastings (PMMH) method (Andrieu & Roberts, 2009). The idea behind PMMH is to use an
unbiased estimation of the likelihood which is easy to evaluate instead of the original likelihood.

Formally, assume we have a system with two sets of random variables M and J , in which J is closely related
to M 2, i.e.,

p(M,J) = p(M)p(J |M) .

To sample M , we use the proposal distribution

Q(M∗, J∗|M,J) = Q(M∗|M)p(J∗|M∗) ,

the acceptance rate is:

A = min

(
1,
p(M∗, J∗, X)Q(M,J |M∗, J∗)
p(M,J,X)Q(M∗, J∗|M,J)

)
= min

(
1,
p(M∗, J∗, X)Q(M |M∗)p(J |M)

p(M,J,X)Q(M∗|M)p(J∗|M∗)

)
= min

(
1,
p(M∗)Q(M |M∗)p(X|M∗, J∗)
p(M)Q(M∗|M)p(X|M,J)

)
(44)

Here p(X|M,J) is an approximation to the original likelihood. To make the PMMH correct, p(X|M,J) is
required to be unbiased estimation of the true likelihood p∗(X|M,J), that is

E[p(X|M,J)] = cp∗(X|M,J),

where c is a constant.

To sample Mr, ut and qrt, we can use the approximation (35), which is unbiased with respective to the ran-
dom points wrk’s, and also according to the bound analysis in Section C.2.3, the approximated likelihood
is accurate if Lr is small enough. Note that to sample with the PMMH, we need to evaluate the approx-
imated likelihood p(X|{ut}, {Mr}, {qrt}, {wrk}) on the proposed M∗r , u

∗
t and q∗rt, which usually has heavy

computationally cost given a large number of simulated atoms. This procedure goes as in Algorithm 1.

We usually use Gamma priors for Mr, ut and Beta prior for qrt, e.g.:

p(Mr) ∼ Gamma(aM , bM ) =
baMM

Γ(aM )
MaM−1
r e−bMMr ,

p(ut) ∼ Gamma(au, bu) =
bauu

Γ(au)
uau−1
t e−buut ,

p(qrt) ∼ Beta(aq, bq) =
Γ(aq + bq)

Γ(aq)Γ(bq)
q
aq−1
rt (1− qrt)bq−1 .

2In our case J corresponds to the random points {wrk} in the Poisson process, and M corresponds to Mr, ut or qrt.
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Algorithm 1 PMMH sampling for Mr and ut
1: repeat
2: Assume the current state as Mr, ut, qrt, use this state to simulate the jumps larger than Lr from a Poisson

process, following ideas as in (Favaro & Teh, 2012).
3: Sample the Bernoulli variables zrtk’s
4: Use these jumps and zrtk’s to evaluate the approximated likelihood (35).
5: Propose a move

M∗r ∼ QM (M∗r |Mr),

ut ∼ Qu(u∗t |ut) , and

qrt ∼ Qq(q∗rt|qrt) .

6: Use this state to simulate the jumps larger than Lr from a Poisson process, following similar procedure as
in (Favaro & Teh, 2012).

7: Use these jumps to evaluate the approximated likelihood (35).
8: Do the accept-reject step using (44).
9: until converged

Also we would choose a random walk proposal in the log spaces of Mr, ut and qrt, i.e.,

Q(log(M∗r )| log(Mr)) =
1√

2πσM
exp

{
(log(M∗r )− log(Mr))

2

2σ2
M

}

Q(log(u∗t )| log(ut)) =
1√

2πσu
exp

{
(log(u∗t )− log(ut))

2

2σ2
u

}
.

Q(log(q∗rt)| log(qrt)) =
1√

2πσq
exp

{
(log(q∗rt)− log(qrt))

2

2σ2
q

}
.

Now the acceptance rates are easily seen to be

Am =

(
M∗r
Mr

)aM
e−bM (M∗r−Mr) p(X|M∗r , {Mj}j 6=r, {ut}, {qrt}, {J∗})

p(X|{Mr}, {ut}, {qrt}, {J})
,

Au =

(
u∗t
ut

)au
e−bu(u∗t−ut) p(X|u

∗
t , {ui}i 6=t, {Mr}, {qrt}, {J∗})

p(X|{ut}, {Mr}, {qrt}, {J})
,

Aq =

(
q∗rt
qrt

)aq (1− q∗rt
1− qrt

)bq−1
p(X|{q∗rt}, {ut}, {Mr}, {J∗})
p(X|{qrt}, {ut}, {Mr}, {J})

,

where p(X|{Mr}, {ut}, {J}) is the evaluation of (35) with the current set of parameters
{{Mr}, {ut}, {qrt}, {wrk}}.

C.2.5. Prediction in the Slice Sampler

Note that prediction from the slice sampler for TNRM in Section C.2.2 is not straightforward. To make it be
able to do prediction, we need to introduce an extra slice variable vt(Lt+1) for the unseen data, an extra jump
indicator variable st(Lt+1), and an extra region indicator variable gt(Lt+1). These auxiliary variables are also
sampled during the inference, sampling for vt(Lt+1) is the same as the other slice variables as in (41), while
sampling for (st(Lt+1), gt(Lt+1)) is now modified as:

p(stl = k, gtl = r|C − {stl, gtl}) ∝ 1(wrk > vtl)1(zrtk = 1) (45)

because its observation xt(Lt+1) is unknown. Sampling for the other variables is the same as the previous version
except that we need to using Lt + 1 observations instead of Lt.
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D. Hierarchical Normalized Generalized Gamma Processes

We propose hierarchical normalized generalized Gamma processes (HNGG), a direct generalization of HDP (Teh
et al., 2006), and develop a marginal sampler for it.

First, as in Section A.3, we denote an NGG with Lévy measure σM
Γ(1−σ)w

−1−σe−wdwH(θ)dθ as

µ ∼ NGG(σ,M,H) .

An HNGG mixture is then defined as

µ0 ∼ NGG(σ,M0, H)

µj ∼ NGG(σ,M, µ0) j = 1, · · · , J
ψji ∼ µj , xji ∼ F (·|ψji) i = 1, · · · , Nj .

D.1. Marginal Sampler for the HNGG

When marginalized out an NRM, it can be interpreted as a generalized Chinese process conditioned on an
auxiliary variable (called latent relative mass in (Chen et al., 2012a)). Following the Chinese restaurant process
metaphor, we denote njk as the #customer eating dish θk in restaurant µj (θk’s are distinct values among all
ψji’s), tjk as the #tables serving dish θk in restaurant µj , K as the #dishes currently activated. We develop
an analogue of the direct assignment sampler for the HDP (Teh et al., 2006), where we introduce auxiliary
variable β served as the predicted distribution of µ0 so that µ0 and µj ’s can be decoupled. We further introduce
auxiliary variables Uj for µj(j = 0, 1, · · · , J), denote the whole set of variables to be sampled as C, based on the
conditional posterior of an NGG in Lemma 5, the sampling for the HNGG now goes as follows:

• Sampling dish index sji for customer xji: this follows a similar way as the HDP

p(sji = k|C − sji) ∝

{(
n
/ji
j·k + σ (M(1 + Uj)

σβk − 1)
)
F
\tl
rk (xji) if k already exists

σM(1 + Uj)
σβk

∫
Θ
F (xji|θ)H(θ)dθ if k is new ,

(46)

where F
\tl
rk (xtl) =

∫
F (xtl|θrk)

∏
t′l′ 6=tl,s

t′l′=k,gt′l′=r
F (xt′l′ |θrk)H(θrk)dθrk∫ ∏

t′l′ 6=tl,s
t′l′=k,gt′l′=r

F (xt′l′ |θrk)H(θrk)dθrk
is the conditional density.

• Sampling the auxiliary variable Uj: also based on (Corollary 2 Chen et al., 2012a), the posterior of Uj
is

p(Uj |C − Uj) ∝
U
Nj−1
j

(1 + Uj)
Nj−Kjσ e

−M(1+Uj)
σ

,

where Kj is the #dishes in restaurant µj . This posterior is proved to be log-concave after a change of
variable as Vj = log(Uj), thus can be efficiently sampled using the adaptive rejection sampler (Gilks &
Wild, 1992) or the slice sampler (Neal, 2003).

• Sampling #tables tjk in restaurant µt: this follows by simulating a generalized Chinese restaurant
process (Chen et al., 2012b). Conditioned on all other statistics, in restaurant µj , the probability of creating
a new table for dish θk is proportional to (njik − σ), while the probability of creating a new table is
proportional to σM(1+Uj)

σ. At the end of this generating process, we get tjk which is equal to the #tables
created.

• Sampling mass parameters M and M0: Using Gamma priors for M and M0, the posterior are simply
a Gammas as

M |C −M ∼ Gamma

∑
j

Kj + aM ,
∑
j

(1 + Uj)
σ + bM − J

 ,

M0|C −M0 ∼ Gamma (K + a0, (1 + U0)σ + b0 − 1) ,

where (aM , bM ) and (a0, b0) are hyperparameters for the Gamma prior of M amd M0, respectively.
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• Update β: β can be updated using the prediction probabilities for an NGG as

β ∝ (t·1 − σ, · · · , t·K − σ, σM0(1 + U0)σ) ,

such that β is a probability vector.

E. Comments on the correctness of the samplers from (Lin et al., 2010) and (Lin
& Fisher, 2012)

As stated in Proposition 8 (Proposition 3 in the main text), given observations in different times, the atoms
without observations form a CRM that is usually not in the same class of the original CRM. This has the
consequence that marginalization using the Lévy measure of the original CRM is incorrect. There have been two
models, e.g., (Lin et al., 2010) and (Lin & Fisher, 2012) ignoring this fact and end up with incorrect marginal
samplers. We will detail their problems in the following (we will use their notation and equation counter as in
the corresponding papers).

E.1. (Lin et al., 2010)’s sampler

In (Lin et al., 2010), the authors construct a DP-valued Markov chain with a transition operator as follows:
given Dt, a DP-distributed RPM at time t, the RPM at time t+ 1 is constructed by thinning Dt, perturbing its
atoms, and mixing it with a new ‘innovation’ DP Dν . For simplicity, consider only the last transformation, so
that

Dt+1 = c1Dt + c2Dν (47)

For Dt+1 to be DP distributed, it must be a convex combination of the other two, with weights drawn from
a Dirichlet distribution whose parameters are determined by the concentration parameters of the 2 DPs, as is
stated in their theorem:

Theorem 1 (Theorem 3 in (Lin et al., 2010)) Let D1, · · · , Dm be independent Dirichlet processes on Ω
with Dk ∼ DP(µk), and (c1, · · · , cm) ∼ Dir(µ1(Ω), · · · , µm(Ω)) be independent of D − 1, · · · , Dm, then

c1D1 + · · ·+ cmDm ∼ DP(µ1, · · · ,+µm) .

Now, given n observations {xti} from Dt, the posterior is still a DP. In equation 19 of their paper, (Lin et al., 2010)
apply the previous theorem, and claim that the posterior distribution of Dt+1 given {xti} is still DP distributed.
This is not true: the concentration parameter of the posterior DP Dt is α + n, and no longer matches the
distribution of the mixing parameters. By assuming the posterior of Dt+1 is DP distributed, the authors are
implicitly using a mixture parameter that has a Dir(µ1(Ω) + n, µ2(Ω)) distribution, different from the model
specification (which is Dir(µ1(Ω), µ2(Ω))).

The result of this is that as n increases, the mixing coefficient tends to 0 (and thus Dt+1 tends to Dt). We have
a Markov chain whose innovation depends on the number of observations at earlier times, different from the
model where the transition probability doesn’t depend on the number of observations.

We can see this directly by looking at the cluster assignment rule for observations at time t+ 1 (eq (20) in their
paper). This also says that the probability that, say, the first observation at time t + 1 is assigned to a new
cluster decreases to 0 as the number of observations at previous times increases (since the denominator tends
to infinity). This cannot be the marginal cluster assignment rule for the proposed model, since this probability
should remain O(1) independent of the past.

E.2. (Lin & Fisher, 2012)’s sampler

The marginal sampler in (Lin & Fisher, 2012) has the same problem. The consequence of these is that inference
for these models appears to be much more straightforward than it actually is.

Specifically, from Proposition 8 (Proposition 3 in the main text), the conditional Lévy measure of the base CRMs
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(Hs’s in their notation for the DP case) is

ν′r(dw,dθ) =
∏
t

(
1− qrt + qrte

−utw
)
νr(dw,dθ) .

This Lévy measure is not in the form of a DP (after marginalizing out ut’s) even if vr(dw,dθ) is. As a consequence,
conditioned on observations from other times, the sampling probabilities for the observations in the current time
is not CRP (Chinese restaurant process) distributed, and thus the prediction rules of the CRP can not be used
to resample the current data However, in Lin and Fisher’s paper, they actually used the CRP prediction rules
to do the resampling, e.g. Eq.(10) in their paper. This mis-usage makes their sampling method not consistent
with their model and thus is not correct.
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