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A When f̃ is from the Prior

If f̃ is a prior term, and N (w; m,V) is our current
multivariate normal posterior approximation. Then
according to Bayes Formula, we get the updated pos-
terior q̃ (w):

s (w) = Z−1f̃ (w)N (w; m,V)

As f (w) can be very complicated, getting the exact
result of s (w) can be hard or even impossible. So
we choose to approximate it with another multivariate
Gaussian Distribution. As the multivariate Gaussian
distribution has two parameter mnew and Vnew, we
only need to compute the mean and covariance matrix
of the new posterior distribution s (w).
According to (Minka, 2001), we get

mnew = m + V∇wlogZ (14)

Vnew = V −V
(
∇w∇TwlogZ − 2∇VlogZ

)
V

Therefore, if we can compute the normalizer Z, we
can update the multivariate Gaussian distribution
analytically.
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The distribution St (x;µ,Σ, v) is the multivariate
Student Distribution. We approximate it using a

multivariate Gaussian Distribution with the same
mean and covariance in the fourth equation. The
third equation takes advantage of the fact that∫
Gam (λ;α, β)N
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λ

)
dλ = St

(
x;µ,

β

α
Σ, 2α

)
The last equation is the application of the formula that∫
N (x;µf ,Σf )N (x;µg,Σ)dx = N (µf ;µg,Σf + Σg)

The above multivariate Gaussian formula can also be
extended to handle the 1-d Gaussian case. Inserting
the above result into (14), we can update the mean
and variance of any Gaussian distributed variables in
the model.

B When f̃ is from the Likelihood

When f̃ is from the likelihood, for a Gaussian varia-
tional distribution, we need to compute the normal-
izer:

Z =

∫
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)
q (Θ) dΘ

Assume znL = f (xn,W,P,Q) has an approximate
Gaussian distribution with mean mznL

and variance
vector vznL

. Then the normalizer Z can be computed
as
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Here, we still do not know the value of mean mznL and
variance vector vznL . This can be resolved by using
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the feed forward network structure. We propagate the
distributions forward through the neural network and
if necessary we approximate the distribution with a
Gaussian distribution.

We assume the output zn(`−1) of layer ` − 1 is a di-
agonal Gaussian distribution with mean mzn(l−1)

and
variance vector vzn(l−1)

. What needs to be explained
is that the independence of neurons does not interfere
with the dependence of parameters. In each layer of
our model, the information goes through three stages,
multiplying QT

` , multiplying B` and then multiply-

ing P`. After the first stage, z
(1)
n` = QT

` zn(l−1). As
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where for the expectation, we use Mento Carolo
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Based on this, it is convenient to calculate the deriva-

tive with respect to m
(1)
zn` and K. Note that we need

to compute the derivative of Z with respect to m
(1)
`

and Σ
(1)
` in order to get the updated mean and co-

variance matrix. The reparameterization trick pro-
vides a efficient way to do this. Specifically, because

Σ
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` = KKT , we get the derivative with respect to
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where M` and Σ
(1)
` are Vl× (Vl−1 + 1) matrices whose

entries are given by mij` and λij`, respectively. And ◦
denotes the Hadamard elementwise product.

The last state is similar to the first stage as P` and Q`

have the same kind of distribution. Let an` = P` z
(2)
n` .
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can get the mean and variance vector of an` as
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After multiplying the parameter matrices, the infor-
mation of an` go thorough the neurons in layer `. Let
bn` = ReLU (an`), we can compute the mean and vari-
ance of the i-th entry in bn` as:
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i = Φ (αi) v

′

i
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i v
′
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φ (−αi)
Φ (αi)

and Φ are φ the CDF and the density function of a
standard Gaussian Distribution.When αi is very large
and negative the previous definition of γi is not nu-
merically stable. Instead, when αi ≤ −30, we use the
approximation γi = −α − α−1 + 2αi

−3. The output
of the l-th layer zl is obtained by concatenating bl
with constance 1 for the bias. We can therefore ap-
proximate the distribution of zl to be Gaussian with
marginal mean and variance

mzn`
=
[
mbn` ; 1

]
vzn`

=
[
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]
Therefore we get the approximating distribution of
zn`. Performing sequential update along the neural
network we can get the final distribution parameter
mznL

and vznL
.
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C Extra Experimental Results

C.1 Extra results for nonlinear regression

We shown an extra toy regression experiment, which
follows the setup in (Louizos and Welling, 2016) to ran-
domly generate 20 data points x in the region [−4, 4].
The output yn for each data point xn is modeled as
yn = x3n+εn, where εn ∼ N (0, 9). We fit an FNN with
one layer and 100 hidden units to this data. The num-
ber of epoch is set to 70. In our method, 100 samples
is taken to approximate the expectation in (13). An
extra toy regression experiment is shown in Figure 5.

For real datasets, we plot all the learning curves for the
nonlinear regression task on the 10 datasets in Figure 6
and 7, in terms of RMSE and log-likelihood, respec-
tively.

C.2 Bayesian DNN for classification

Extending the original PBP framework (Hernández-
Lobato and Adams, 2015), we provide some prelim-
inary results to use PBP MV for classification. The
extension of PBP MV for classification is described in
Section 4.2. We train a three layer DNN with 150
neurons in each layer on the MNIST dataset. When
training, we use the PBP to update the weights with
MVG priors in the lower layers of the DNN, and use
Adam to optimize the weight for the top layer (soft-
max layer). The algorithm is run for 10 epochs. We
obtain a final error rate of 2.15%, which is better than
purely training an DNN with stochastic optimization
algorithms (Su et al., 2016), but worse than the state-
of-the-art Bayesian DNN model (VMG) (Louizos and
Welling, 2016). Note the comparison with VMG is not
quite fair because VMG uses minnibatches to update
parameters in each iteration, whereas in PBP MV the
minibatch size is actually equal to one. This brings the
need for extending PBP MV with minibatch-updating,
an interesting future work to pursue.

(a) PBP

(b) PBP MV

Figure 5: The toy regression experiment for PBP and
our model. The observation are shown as black dots.
The blue line represents the true data generating func-
tion and the mean predictions are shown as green line.
The light gray shaded area is the ±3 standard deriva-
tion confidence interval.
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Figure 6: Learning curves in terms of RMSE vs running time on 10 datasets. From top-down and left to
right, the datasets are: boston housing, concrete, energy, kin8nm, Naval, CCPP, winequality, yacht, protein and
YearPrediction.
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Figure 7: Learning curves in terms of log-likelihood vs running time on 10 datasets. From top-down and left to
right, the datasets are: boston housing, concrete, energy, kin8nm, Naval, CCPP, winequality, yacht, protein and
YearPrediction.
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