Sampling Table Configurations for the Hierarchical Poisson-Dirichlet Process

Changyou Chen ${ }^{1,2}$, Lan $\mathrm{Du}^{1,2}$, and Wray Buntine ${ }^{2,1}$
${ }^{1}$ Research School of Computer Science, The Australian National University, Canberra, ACT, Australia
${ }^{2}$ National ICT, Canberra, ACT, Australia
\{Changyou.Chen, Lan.Du, Wray.Buntine\}@nicta.com.au

This is a more detailed description for sampling the HDP-LDA model in the paper (eq. $12-14$), containing errata of eq. 13 in the paper (missing a term containing b_{0} and b_{1}).

1. If $\forall j^{\prime}, t_{j^{\prime} k}^{\prime}=0$, there is only one possible seating: create a new table in restaurant $j>0$ and then create a new table at $j=0$, e.g., $u_{l}=0$:

$$
\begin{equation*}
P_{r}\left(z_{l}=k_{n e w}, u_{l}=0 \mid \boldsymbol{z}_{1: J}-z_{l}, \boldsymbol{u}_{1: J}-u_{l}\right) \propto \frac{b_{0} b_{1}}{b_{0}+\sum_{k} T t[k]} \frac{\gamma_{l}+M_{k l}}{\sum_{l^{\prime}}\left(\gamma_{l^{\prime}}+M_{k l^{\prime}}\right)} \tag{1}
\end{equation*}
$$

2. If $t_{j k}^{\prime} \neq 0, t_{0 k}^{\prime} \neq 0$, there are two possibilities: 1) create a new table at $j>0$, thus $u_{l}=1$ and $\left.t_{j k}^{\prime \prime} \neq t_{j k}^{\prime} ; 2\right)$ sit on an existing table, thus $u_{l}=2$ (meaning no table created) and $t_{j k}^{\prime \prime}=t_{j k}^{\prime}$:

$$
\begin{align*}
& P_{r}\left(z_{l}=k, u_{l}=u \mid \boldsymbol{z}_{1: J}-z_{l}, \boldsymbol{u}_{1: J}-u_{l}\right) \tag{2}\\
& \propto\left(\frac{b_{1}}{b_{0}}\right)^{t_{j k}^{\prime \prime} \neq t_{j k}^{\prime}} \frac{S_{t_{j k}^{\prime}, 0}^{n_{j k}^{\prime \prime}}}{S_{t_{j k}^{\prime}, 0}^{n_{j k}^{\prime}}} \frac{\left(t_{j k}^{\prime \prime}\right)^{\delta_{t_{j k}^{\prime \prime} \neq t_{j k}^{\prime}}}\left(n_{j k}^{\prime \prime}-t_{j k}^{\prime \prime}\right)^{\delta_{n_{j k}^{\prime \prime}-t_{j k}^{\prime \prime} \neq n_{j k}^{\prime}-t_{j k}^{\prime}}}}{\left(n_{j k}^{\prime \prime}\right)^{\delta_{n_{j k}^{\prime \prime} \neq n_{j k}^{\prime}}}} \frac{\gamma_{l}+M_{k l}}{\sum_{l^{\prime}}\left(\gamma_{l^{\prime}}+M_{k l^{\prime}}\right)}
\end{align*}
$$

3. If $t_{j k}^{\prime}=0, t_{0 k}^{\prime} \neq 0$, there is only one possibility, which is to create a new table at $j>0\left(u_{l}=1\right)$, but can not create a new table at $j=0$ because $t_{0 k}$ is at most 1 due to the property of the DP :

$$
\begin{align*}
& P_{r}\left(z_{l}=k, u_{l}=1 \mid \boldsymbol{z}_{1: J}-z_{l}, \boldsymbol{u}_{1: J}-u_{l}\right) \\
& \propto \frac{b_{1} T t[k]^{2}}{(T t[k]+1)\left(\sum_{k} T t[k]+b_{0}\right)} \frac{\gamma_{l}+M_{k l}}{\sum_{l^{\prime}}\left(\gamma_{l^{\prime}}+M_{k l^{\prime}}\right)} \tag{3}
\end{align*}
$$

where $T t[k]$ denotes the number of tables serving dish k (i.e., topic k), $M_{k l}$ indicates the total number of words l assigned to k in the document collection.

