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A Solutions for the sub-SDEs

We provide analytic solutions for the split sub-SDEs
in Section 4.1. For stepsize h, the solutions are given
in (6).

A :


θt = θt−1 + G1(θ) ph
pt = pt−1

Ξt = Ξt−1 +
(
Q− 1

β I
)
h

, (6)

B :

 θt = θt−1

pt = exp (−Ξh) pt−1

Ξt = Ξt−1

,

O :



θt = θt−1

pt = pt−1 +
(
−G1(θ)∇θU(θ) + 1

β∇θG1(θ)

+G1(θ)(Ξ−G2(θ))∇θG2(θ))h

+ ( 2
βG2(θ))

1
2 � ζt

Ξt = Ξt−1

B Proof of Lemma 1

For a general stochastic differential equation of the
form

d x = F (x)dt+
√

2D1/2(x)d w , (7)

where x ∈ RN , F : RN → RN , D : RM → RN×P

are measurable functions with P , and w is standard
P -dimensional Brownian motion. (1) is a special case
of the general form (7) with

x = (θ,p,Ξ) (8)

F (x) =


G1(θ) p

−G1(θ)∇θU(θ)−Ξ p + 1
β∇θ G1(θ)

+ G1(θ)(Ξ−G2(θ))∇θ G2(θ)
Q− 1

β I


D(x) =

 0 0 0
0 1

β G2(θ) 0

0 0 0


We write the joint distribution of x as

ρ(x) =
1

Z
exp {−H(x)} , 1

Z
exp {−U(θ)− E(θ,p,Ξ)} .

A reformulation of the main theorem in Ding et al.
(2014) gives the following lemma, which is used to
prove Lemma 1 in the main text.

Lemma 4. The stochastic process of ~θ generated by
the stochastic differential equation (7) has the target
distribution pθ(θ) = 1

Z exp{−U(θ)} as its stationary
distribution, if ρ(x) satisfies the following marginaliza-
tion condition:

exp{−U(θ)} ∝
∫

exp{−U(θ)− E(θ,p,Ξ)}d p dΞ ,

(9)

and if the following condition is also satisfied:

∇ · (ρF ) = ∇∇> : (ρD) , (10)

where ∇ , (∂/∂θ, ∂/∂ p, ∂/Ξ), “·” represents the vec-
tor inner product operator, “:” represents a matrix
double dot product, i.e., X : Y , tr(X>Y).

Proof of Lemma 1. We first have reformulated (1) us-
ing the general SDE form of (7), resulting in (8).
Lemma 1 states the joint distribution of (θ,p,Ξ) is

ρ(x) =
1

Z
exp

(
−1

2
p> p−U(θ)

− 1

2
tr
{

(Ξ−G2(θ))
>

(Ξ−G2(θ))
})

, (11)

with H(x) = 1
2 p> p +U(θ) +

1
2 tr
{

(Ξ−G2(θ))
>

(Ξ−G2(θ))
}

. The marginaliza-

tion condition (9) is trivially satisfied, we are left to
verify condition (10). Substituting ρ(x) and F into
(10), we have the left-hand side
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LHS =
∑
i

∂

∂ xi
(ρFi)

=
∑
i

∂ρ

∂ xi
Fi +

∂Fi
∂ xi

ρ

=
∑
i

(
∂Fi
∂ xi

− ∂H

∂ xi
Fi

)
ρ

=

(∑
i

∇θi(G1)i: p−
∑
i

diag(Ξ)

−
∑
i

β

∇θiU −
∑
j

(Ξij − (G2)ij)∇θi(G2)ij

 (G1 p)i

− βpT
(
−G1∇θU −Ξ p +

1

β
∇θ G1 + G1(Ξ−G2)∇θ G2

)
−β
∑
i

(Ξii − (G2)ii)

(
Qii−

1

β

))
ρ

=
1

β
tr
{
G2(p pT −I)

}
ρ .

It is easy to see for the right-hand side

RHS =
∑
i

∑
j

1

β
(G2)ij

∂2

∂ xi ∂ xj
ρ

=
1

β

∑
i

∑
j

(G2)ij
∂

∂ pj

(
− ∂H
∂ pi

ρ

)
=

1

β

∑
i

(G2)ii
(
p2
i −1

)
ρ

≡ LHS .

According to Lemma 4, the joint distribution (11) is
the equilibrium distribution of (1).

C Proof of Theorem 2

We start by proving the bias result of Theorem 2.

Proof of the bias. For our 2nd-order integrator, ac-
cording to the definition, we have:

E[ψ(Xt)] = P̃ lhψ(Xt−1) = ehL̃tψ(Xt−1) +O(h3)

=
(
I + hL̃t

)
ψ(Xt−1) +

h2

2
L̃2

tψ(Xt−1) +O(h3) ,

(12)

where Lt is the generator of the SDE for the t-th it-
eration, i.e., using stochastic gradient instead of the
full gradient, I is the identity map. Compared to the
prove of Chen et al. (2015), we need to consider the
approximation error for ∇θG1(θ). As a result, (12)
needs to be rewritten as:

E[ψ(Xt)] (13)

=
(
I + h(L̃t + Bt)

)
ψ(Xt−1) +

h2

2
L̃2

tψ(Xt−1) +O(h3) ,

where Bt is from (3). Sum over t = 1, · · · , L in (13),
take expectation on both sides, and use the relation
L̃t + Bt = Lβt +∆Vt to expand the first order term.
We obtain

L∑
t=1

E[ψ(Xt)] = ψ(X0) +

L−1∑
t=1

E[ψ(Xt)]

+ h

L∑
t=1

E[Lβtψ(Xt−1)] + h

L∑
t=1

E[∆Vtψ(Xt−1)]

+
h2

2

L∑
t=1

E[L̃2

tψ(Xt−1)] +O(Lh3).

We divide both sides by Lh, use the Poisson equation
(4), and reorganize terms. We have:

E[
1

L

∑
t

(
φ(Xt)− φ̄βt

)
] =

1

L

L∑
t=1

E[Lβtψ(Xt−1)]

=
1

Lh
(E[ψ(Xt)]− ψ(X0))− 1

L

∑
t

E[∆Vtψ(Xt−1)]

− h

2L

L∑
t=1

E[L̃2

tψ(Xt−1)] +O(h2) (14)

Now we try to bound L̃2

t . Based on ideas from Mat-
tingly et al. (2010), we apply the following procedure.
First replace ψ with L̃tψ from (13) to (14), and apply
the same logic for L̃tψ as for ψ in the above deriva-
tions, but this time expand in (13) up to the order
of O(h2), instead of the previous order O(h3). After
simplification, we obtain:

∑
t

E[L̃2

tψ(Xt−1)] = O

(
1

h
+ Lh

)
(15)

Substituting (15) into (14), after simplification, we
have: E

(
1
L

∑
t

(
φ(Xt)− φ̄βt

))

=
1

Lh
(E[ψ(Xt)]− ψ(X0))︸ ︷︷ ︸

C1

− 1

L

∑
t

E[∆Vtψ(Xt−1)]

−O
(
h

Lh
+ h2

)
+ C3h

2 ,

for some C3 ≥ 0. According to the assumption, the
term C1 is bounded. As a result, collecting low order
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terms, the bias can be expressed as:∣∣∣Eφ̂− φ̄∣∣∣
=

∣∣∣∣∣E
(

1

L

∑
t

(
φ(Xt)− φ̄βt

))
+

1

L

∑
t

φ̄βt − φ̄

∣∣∣∣∣
≤

∣∣∣∣∣E
(

1

L

∑
t

φ̄βt − φ̄

)∣∣∣∣∣+

∣∣∣∣∣E
(

1

L

∑
t

(
φ(Xt)− φ̄βt

))∣∣∣∣∣
≤Cφ(θ∗)

(
1

L

L∑
t=1

∫
θ 6=θ∗

e−βtÛ(θ)dθ

)

+

∣∣∣∣C1

Lh
−
∑
t E∆Vtψ(Xt−1)

L
+ C3h

2

∣∣∣∣
≤Cφ(θ∗)

(
1

L

L∑
t=1

∫
θ 6=θ∗

e−βtÛ(θ)dθ

)
+

∣∣∣∣C1

Lh

∣∣∣∣
+

∣∣∣∣∑t E∆Vtψ(Xt−1)

L

∣∣∣∣+
∣∣C3h

2
∣∣

≤Cφ(θ∗)

(
1

L

L∑
t=1

∫
θ 6=θ∗

e−βtÛ(θ)dθ

)

+D

(
1

Lh
+

∑
t ‖E∆Vt‖
L

+ h2

)
,

where the last equation follows from the finiteness as-
sumption of ψ, ‖ · ‖ denotes the operator norm and
is bounded in the space of ψ due to the assumptions.
This completes the proof.

We will now prove the MSE result .

Proof of the MSE bound. Similar to the proof of The-
orem 2, for our 2nd–order integrator we have:

E (ψβt(Xt)) = (I + h(Lβt + ∆Vt))ψβt−1
(Xt−1)

+
h2

2
L̃2
tψβt−1

(Xt−1) +O(h3) .

Sum over t from 1 to L+ 1 and simplify, we have:

L∑
t=1

E (ψβt(Xt)) =

L∑
t=1

ψβt−1
(Xt−1)

+ h

L∑
t=1

Lβtψβt−1
(Xt−1) + h

L∑
t=1

∆Vtψβt−1
(Xt−1)

+
h2

2

L∑
t=1

L̃2
tψβt−1

(Xt−1) +O(Lh3) .

Substitute the Poisson equation (4) into the above
equation, divide both sides by Lh and rearrange re-

lated terms, we have

1

L

L∑
t=1

(
φ(Xt)− φ̄βt

)
=

1

Lh
(EψβL(XLh)− ψβ0

(X0))

− 1

Lh

L∑
t=1

(
Eψβt−1(Xt−1)− ψβt−1(Xt−1)

)
− 1

L

L∑
t=1

∆Vtψβt−1
(Xt−1)− h

2L

L∑
t=1

L̃2
tψβt−1

(Xt−1) +O(h2)

Taking the square of both sides, it is then easy to see
there exists some positive constant C, such that

(
1

L

L∑
t=1

(
φ(Xt)− φ̄βt

))2

(16)

≤C

 (EψβL(XLh)− ψβ0
(X0))

2

L2h2︸ ︷︷ ︸
A1

+
1

L2h2

L∑
t=1

(
Eψβt−1(Xt−1)− ψβt−1(Xt−1)

)2
︸ ︷︷ ︸

A2

+
1

L2

L∑
t=1

∆V 2
t ψβt−1(Xt−1)

+
h2

2L2

(
L∑
t=1

L̃2
tψβt−1

(Xt−1)

)2

︸ ︷︷ ︸
A3

+h4



A1 is easily bounded by the assumption that ‖ψ‖ ≤
V r0 <∞. A2 is bounded because it can be shown that
E (ψβt(Xt)) − ψβt(Xt) ≤ C1

√
h + O(h) for C1 ≥ 0.

Intuitively this is true because the only difference be-
tween E (ψβt(Xt)) and ψβt(Xt) lies in the additional
Gaussian noise with variance h. A formal proof is
given in Chen et al. (2015). Furthermore, A3 is
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bounded by the following arguments:

A3 =
h2

2L2

(
L∑
t=1

E
[
L̃2
tψβt−1

(Xt−1)
])2

︸ ︷︷ ︸
B1

+
h2

2L2
E

(
L∑
t=1

(
L̃2
tψβt−1(Xt−1)− EL̃2

tψβt−1(Xt−1)
))2

︸ ︷︷ ︸
B2

. B1 +

(
h2

Lh

L∑
t=1

L̃2
tψβt−1

(Xt−1)

)2

+

(
h2

Lh

L∑
t=1

(
EL̃2

tψβt−1
(Xt−1)

))2

≤ O
(

1

2L2
+ L2h2

)
+

1

Lh

(
h2

L

L∑
t=1

(L̃2
tψ(Xt−1))2

)

+O

(
1

L2h2
+ h4

)
= O

(
1

Lh
+ L4

)

Collecting low order terms we have:

E

(
1

L

L∑
t=1

(
φ(Xt)− φ̄βt

))2

=O

(
1
L

∑
t E ‖∆Vt‖

2

L
+

1

Lh
+ h4

)
. (17)

Finally, we have:

E
(
φ̂− φ̄

)2

< E

(
1

L

∑
t

(
φ(Xt)− φ̄βt

))2

+ E

(
1

L

L∑
t=1

(
φ(Xt)− φ̄βt

))2

≤Cφ(θ∗)2

(
1

L

L∑
t=1

∫
θ 6=θ∗

e−βtÛ(θ)dθ

)2

+O

(
1
L

∑
t E ‖∆Vt‖

2

L
+

1

Lh
+ h4

)

≤Cφ(θ∗)2

(
1

L

L∑
t=1

∫
θ 6=θ∗

e−βtÛ(θ)dθ

)2

+D

(
1
L

∑
t E ‖∆Vt‖

2

L
+

1

Lh
+ h4

)
.

D Proof of Corollary 3

Proof. The refinement stage corresponds to β → ∞.
We can prove that in this case, the integration terms
in the bias and MSE in Theorem 2 converge to 0.

To show this, define a sequence of functions {gm} as:

gm , − 1

L

L+m−1∑
l=m

e−βlÛ(θ) . (18)

it is easy to see the sequence {gm} satisfies gm1
< gm2

for m1 < m2, and limm→∞ gm = 0. According to the
monotone convergence theorem, we have

lim
m→∞

∫
gm , lim

m→∞

∫
− 1

L

L+m−1∑
l=m

e−βlÛ(θ)dθ

=

∫
lim
m→∞

gm = 0 .

As a result, the integration terms in the bounds for the
bias and MSE vanish, leaving only the terms stated in
Corollary 3. This completes the proof.

E Reformulation of the Santa
Algorithm

In this section we give a version of the Santa algorithm
that matches better than our actual implementation,
shown in Algorithm 3–7.

Algorithm 3: Santa

Input: ηt (learning rate), σ, λ, burnin,
β = {β1, β2, · · · } → ∞, {ζt ∈ Rp} ∼ N (0, Ip).

Initialize θ0, u0 =
√
η ×N (0, I), α0 =

√
ηC, v0 = 0 ;

for t = 1, 2, . . . do

Evaluate f̃ t = ∇θŨt(θt−1) on the t-th minibatch ;

vt = σ vt−1 + 1−σ
m2 f̃ t � f̃ t ;

gt = 1�
√
λ+
√

vt ;
if t < burnin then

/* exploration */

(θt,ut,αt) = Exploration S(θt−1,ut−1,αt−1)
or

(θt,ut,αt) = Exploration E(θt−1,ut−1,αt−1)
else

/* refinement */

(θt,ut,αt) = Refinement S(θt−1,ut−1,αt−1)
or

(θt,ut,αt) = Refinement E(θt−1,ut−1,αt−1)
end

end
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Algorithm 4: Exploration S (θt−1,ut−1,αt−1)

θt = θt−1 + gt�ut−1 /2;
αt = αt−1 + (ut−1�ut−1−η/βt) /2;
ut = exp (−αt/2)� ut−1;

ut = ut−gt�f̃ tη +
√

2 gt−1 η
3/2/βt � ζt;

ut = exp (−αt/2)� ut;
αt = αt + (ut�ut−η/βt) /2;
θt = θt + gt�ut /2;
Return (θt,ut,αt)

Algorithm 5: Refinement S (θt−1,ut−1,αt−1)

αt = αt−1;
θt = θt−1 + gt�ut−1 /2;
ut = exp (−αt/2)� ut−1;

ut = ut−gt�f̃ tη;
ut = exp (−αt/2)� ut;
θt = θt + gt�ut /2;
Return (θt,ut,αt)

F Relationship of refinement Santa to
Adam

In the Adam algorithm (see Algorithm 1 of Kingma
and Ba (2015)), the key steps are:

f̃ t , ∇θŨ(θt−1)

vt = σ vt−1 +(1− σ)f̃ t � f̃ t

gt = 1�
√
λ+
√

vt

ũt = (1− b1)� ũt−1 + b1�f̃ t

θt = θt + η(gt�gt)� ũt
Here, we maintain the square root form of gt, so
the square is equivalent to the preconditioner used in
Adam. As well, in Adam, the vector b1 is set to the
same constant between 0 and 1 for all entries. An
equivalent formulation of this is:

f̃ t , ∇θŨ(θt−1)

vt = σ vt−1 +(1− σ)f̃ t � f̃ t

gt = 1�
√
λ+
√

vt

ut = (1− b1)� ut−1 − η(gt�b1�f̃ t)

θt = θt − gt�ut
The only differences between these steps and the Eu-
ler integrator we present in our Algorithm 1 are that
our b1 has a separate constant for each entry, and the
second term in u does not include the b1 in our for-
mulation. If we modify our algorithm to multiply the
gradient by b1, then our algorithm, under the same as-
sumptions as Adam, will have a similar regret bound
of O(

√
T ) for a convex problem.

Algorithm 6: Exploration E (θt−1,ut−1,αt−1)

αt = αt−1 + (ut−1�ut−1−η/βt);
ut = (1−αt)�ut−1−η gt�f̃ t+

√
2 gt−1 η

3/2/βt�ζt;
θt = θt + gt�ut;
Return (θt,ut,αt)

Algorithm 7: Refinement E (θt−1,ut−1,αt−1)

αt = αt−1;

ut = (1−αt)� ut−1−η gt�f̃ t;
θt = θt + gt�ut;
Return (θt,ut,αt)

Because the focus of this paper is not on the regret
bound, we only briefly discuss the changes in the the-
ory. We note that Lemma 10.4 from Kingma and Ba
(2015) will hold with element-wise b1.

Lemma 5. Let γi ,
b21,i√
σ

. For b1,i, σ ∈ [0, 1) that

satisfy
β2
1√
β2
< 1 and bounded f̃t, ||f̃t||2 ≤ G, ||f̃t||∞ ≤

G∞, the following inequality holds

T∑
t=1

u2
i√
tg2
i

≤ 2

1− γi
||f̃1:T,i||2

which contains an element-dependent γi compared to
Adam.

Theorem 10.5 of Kingma and Ba (2015) will hold with
the same modifications and assumptions for a b with
distinct entries; the proof in Kingma and Ba (2015)
is already element-wise, so it suffices to replace their

global parameter γ with distinct γi ,
b21,i√
σ

. This will

give a regret of O(
√
T ), the same as Adam.

G Additional Results
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Figure 4: MNIST using FNN with size of 800.
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Learning curves of different algorithms on MNIST us-
ing FNN with size of 800 are plotted in Figure 4.
Learning curves of different algorithms on four poly-
phonic music datasets using RNN are shown in Fig-
ure 6.

We additionally test Santa on the ImageNet dataset.
We use the GoogleNet architecture, which is a 22
layer deep model. We use the default setting de-
fined in the Caffe package8. We were not able to
make other stochastic optimization algorithms except
SGD with momentum and the proposed Santa work
on this dataset. Figure 5 shows the comparison on
this dataset. We did not tune the parameter setting,
note the default setting is favourable by SGD with
momentum. Nevertheless, Santa still significantly out-
performs SGD with momentum in term of convergence
speed.
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Figure 5: Santa vs. SGD with momentum on Ima-
geNet. We used ImageNet11 for training.

8https : //github.com/cchangyou/Santa/tree/master/caffe/models/bvlc googlenet

https://github.com/cchangyou/Santa/tree/master/caffe/models/bvlc_googlenet
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Figure 6: Learning curves of different algorithms on four polyphonic music datasets using RNN.
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