Nonlinear Statistical Learning with Truncated Gaussian Graphical Models

Qinliang Su, Xuejun Liao, Changyou Chen, Lawrence Carin

Department of Electrical \& Computer Engineering, Duke University

Presented by: Qinliang Su

Jun. 20, 2016

Outline

(1) Background
(2) Truncated Gaussian Graphical Model
(3) Nonlinear Regression via TGGM

4 Extensions to Other Learning Tasks

5 Experiments

6 Conclusions

Background (1)

- Graphical models encode statistical dependencies

- Dilemma: training easiness vs. modeling ability
- Solution: add latent variables to enhance modeling ability while maintaining simple graph structure

○: latent variables
: Interested variables
Integrating out

RBM and SBN are two good examples

Background (2)

- An important subclass: Gaussian graphical models (GGMs)
- Many data can be well approximated by Gaussian
- Admit efficient training due to Gaussian properties
- Limitations of GGMs
(i) Can only model Gaussian relations
(ii) Latent variables cannot enhance its modeling ability

No matter how many latent variables are added, the interested variables are always Gaussian distributed.

Truncated Gaussian Graphical Model (TGGM) (1)

- Joint PDF

Truncating the latent variables in GGM to be nonnegative

$$
\begin{aligned}
p(\mathbf{y}, \mathbf{h} \mid \mathbf{x})= & \mathcal{N}_{T}\left(\mathbf{h} \mid \mathbf{W}_{0} \mathbf{x}+\mathbf{b}_{0}, \mathbf{P}_{0}^{-1}\right) \\
& \times \mathcal{N}\left(\mathbf{y} \mid \mathbf{W}_{1} \mathbf{h}+\mathbf{b}_{1}, \mathbf{P}_{1}^{-1}\right),
\end{aligned}
$$

where $\mathcal{N}_{T}\left(\mathbf{x} \mid \boldsymbol{\mu}, \mathbf{P}^{-1}\right) \triangleq \frac{\left.\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}, \mathbf{P}^{-1}\right) \mathbb{(x} \geq \mathbf{0}\right)}{\int_{0}^{\infty} \mathcal{N}\left(\mathbf{z} \mid \boldsymbol{\mu}, \mathbf{P}^{-1}\right) d \mathbf{z}}$.

- Marginal PDF

$$
p(\mathbf{y} \mid \mathbf{x})=\underbrace{\mathcal{N}\left(\mathbf{y} \mid \boldsymbol{\mu}_{\mathbf{y} \mid \mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{y} \mid \mathbf{x}}\right)}_{\text {Gaussian }} \underbrace{\frac{\int_{0}^{+\infty} \mathcal{N}\left(\mathbf{h} \mid \boldsymbol{\mu}_{\mathbf{h} \mid \mathbf{x}, \mathbf{y}}, \boldsymbol{\Sigma}_{\mathbf{h} \mid \mathbf{x}, \mathbf{y}}\right) d \mathbf{h}}{\int_{0}^{+\infty} \mathcal{N}\left(\mathbf{h} \mid \mathbf{W}_{0} \mathbf{x}+\mathbf{b}_{0}, \mathbf{P}_{0}^{-1}\right) d \mathbf{h}}}_{\text {Nonlinear modulation }}
$$

Due to the nonlinear modulation, the distribution is no longer Gaussian

Truncated Gaussian Graphical Model (TGGM) (2)

- Visualizing the Output of TGGM

$$
\mathbb{E}[\mathbf{y} \mid \mathbf{x}]=\mathbf{W}_{1} \mathbb{E}[\mathbf{h} \mid \mathbf{x}]+\mathbf{b}_{1}
$$

To understand the expression, if $\mathbf{P}_{0}=\mathbf{P}_{1}=\sigma^{2} \mathbf{I}$, we have

$$
\mathbb{E}[\mathbf{h}(k) \mid \mathbf{x}]=g\left(\mathbf{W}_{0}(k,:) \mathbf{x}+\mathbf{b}_{0}(k), \sigma\right),
$$

where

$$
g(\mu, \sigma) \triangleq \mu+\sigma \frac{\phi\left(\frac{\mu}{\sigma}\right)}{\Phi\left(\frac{\mu}{\sigma}\right)}
$$

$g(\cdot)$ looks very similar to the ReLU nonlinearity in neural networks

- Advantages of TGGMs
(i) Inherit most properties of GGMs
(ii) Nonlinear modeling ability

Nonlinear Regression via TGGM (1)

- Modeling via TGGM

Inspired by ReLU neural network, we model \mathbf{X} and \mathbf{Y} as

$$
\begin{aligned}
p(\mathbf{Y}, \mathbf{H} \mid \mathbf{X} ; \boldsymbol{\Theta}) & =\mathcal{N}_{T}\left(\mathbf{H} \mid \mathbf{W}_{0} \mathbf{X}+\mathbf{b}_{0}, \sigma_{0}^{2} \mathbf{I}\right) \mathcal{N}\left(\mathbf{Y} \mid \mathbf{W}_{1} \mathbf{H}+\mathbf{b}_{1}, \sigma_{1}^{2} \mathbf{I}\right) \\
& =\frac{1}{Z(\mathbf{X} ; \boldsymbol{\Theta})} e^{-E(\mathbf{Y}, \mathbf{H} \mid \mathbf{X} ; \boldsymbol{\Theta})}
\end{aligned}
$$

where $E(\cdot) \triangleq \sum_{i=1}^{N} \frac{\left\|\mathbf{h}_{i}-\mathbf{W}_{0} \mathbf{x}_{i}\right\|^{2}}{2 \sigma_{0}^{2}}+\sum_{i=1}^{N} \frac{\left\|\mathbf{y}_{i}-\mathbf{W}_{i} \mathbf{h}_{i}\right\|^{2}}{\sigma_{1}^{2}}$.

- Training via maximum-likelihood (ML)

$$
\nabla_{\boldsymbol{\Theta}} \mathcal{Q}=-\mathbb{E}\left[\left.\frac{\partial E}{\partial \boldsymbol{\Theta}} \right\rvert\, \mathbf{Y}, \mathbf{X}\right]+\mathbb{E}\left[\left.\frac{\partial E}{\partial \boldsymbol{\Theta}} \right\rvert\, \mathbf{X}\right]
$$

By exploiting the properties of truncated normal and TGGMs, we have
(i) $\mathbb{E}\left[\left.\frac{\partial E}{\partial \Theta} \right\rvert\, \mathbf{X}\right]$ can be computed in closed-form
(ii) $\mathbb{E}\left[\left.\frac{\partial E}{\partial \Theta} \right\rvert\, \mathbf{Y}, \mathbf{X}\right]$ can be estimated using mean-field VB

Nonlinear Regression via TGGM (2)

- Training via backpropagation (BP)

$$
\mathbb{E}[\mathbf{y} \mid \mathbf{x}]=\mathbf{W}_{1} \mathbb{E}[\mathbf{h} \mid \mathbf{x}]+\mathbf{b}_{1} \text { with } \mathbb{E}[\mathbf{h}(k) \mid \mathbf{x}]=g\left(\mathbf{W}_{0}(k,:) \mathbf{x}+\mathbf{b}_{0}(k), \sigma\right)
$$

- $\mathbb{E}[\mathbf{y} \mid \mathbf{x}]$ can be viewed as the output of a neural network with activation function $g(\cdot)$
- Thus, it can be approximately trained using BP
- ML versus BP

The updating equations of ML and BP are closely related, with only two differences
(i) When updating $\mathbf{W}_{1}, \mathrm{BP}$ uses $\mathbb{E}[\mathbf{H} \mid \mathbf{X}]$, while ML uses $\mathbb{E}[\mathbf{H} \mid \mathbf{X}, \mathbf{Y}]$
(ii) When updating \mathbf{W}_{0}, BP makes an incorrect Gaussian assumption

ML is more efficient in exploiting data and more accurate in training, leading to better performance

Extensions to Other Learning Tasks (1)

- Classification

We use probit model to transform the continuous Gaussian output to categorical output, i.e.,

$$
\begin{aligned}
p(c, \mathbf{y}, \mathbf{h} \mid \mathbf{x} ; \boldsymbol{\Theta})= & \mathcal{N}_{T}\left(\mathbf{h} \mid \mathbf{W}_{0} \mathbf{x}+\mathbf{b}_{0}, \sigma_{0}^{2} \mathbf{l}\right) \mathcal{N}\left(\mathbf{y} \mid \mathbf{W}_{1} \mathbf{h}+\mathbf{b}_{1}, \mathbf{I}\right) \\
& \times I\left(c=\arg \max _{k} y_{k}\right),
\end{aligned}
$$

where $c \in\{1,2, \cdots, n\}$ is denoted as the n possible classes; \boldsymbol{h} and \mathbf{y} are latent variables.

Extensions to Other Learning Tasks (2)

- Re-representation as TGGM

Define $\mathbf{z}=\mathbf{T}_{c} \mathbf{y}$, where \mathbf{T}_{c} being a class-dependent matrix. Then, the input-output relation can be rewritten as

$$
p(c, \mathbf{z}, \mathbf{h} \mid \mathbf{x})=\mathcal{N}_{T}\left(\mathbf{h} \mid \mathbf{W}_{0} \mathbf{x}+\mathbf{b}_{0}, \sigma_{0}^{2} \mathbf{I}\right) \mathcal{N}_{T}\left(\mathbf{z} \mid \mathbf{T}_{c}\left(\mathbf{W}_{1} \mathbf{h}+\mathbf{b}_{1}\right), \mathbf{T}_{c} \mathbf{T}_{c}^{T}\right)
$$

- Obviously, the above pdf can be represented by a TGGM
- Thus, it can be trained similarly to its regression counterpart
- Deep models
\mathbf{P}_{0} is not necessary to be restricted to $\sigma_{0}^{2} \mathbf{I}$. As an example, by setting

$$
\begin{aligned}
p(\mathbf{h} \mid \mathbf{x}) \propto & \exp \left\{-\frac{1}{2 \sigma_{0}^{2}}\left\|\mathbf{h}^{(1)}-\mathbf{W}_{0}^{(1)} \mathbf{x}-\mathbf{b}_{0}^{(1)}\right\|^{2}\right\} \\
& \times \exp \left\{-\frac{1}{2 \sigma_{0}^{2}}\left\|\mathbf{h}^{(2)}-\mathbf{W}_{0}^{(2)} \mathbf{h}^{(1)}-\mathbf{b}_{0}^{(2)}\right\|^{2}\right\} \mathbb{I}(\mathbf{h} \geq \mathbf{0})
\end{aligned}
$$

we obtain a TGGM with two hidden layers, which can be trained similarly as previous models.

Experiments (1)

- Regression

No. of hidden layer: 1;
No. of hidden nodes: 100 for the two largest and 50 for the rest;

Table: Averaged Test RMSE and Std. Errors

Dataset	N	d	ReLU-BP	ReLU-PBP	TGGM-BP	TGGM-ML
Boston Housing	506	13	3.228 ± 0.1951	3.014 ± 0.1800	2.927 ± 0.2910	$\mathbf{2 . 8 2 0} \pm \mathbf{0 . 2 5 6 5}$
Concrete Strength	1030	8	5.977 ± 0.0933	5.667 ± 0.0933	5.657 ± 0.2685	$\mathbf{5 . 3 9 5} \pm \mathbf{0 . 2 4 0 4}$
Energy Efficiency	768	8	1.098 ± 0.0738	1.804 ± 0.0481	$\mathbf{1 . 0 2 9} \pm \mathbf{0 . 1 2 0 6}$	1.244 ± 0.0979
Kin8nm	8192	8	0.091 ± 0.0015	0.098 ± 0.0007	0.088 ± 0.0025	$\mathbf{0 . 0 8 3} \pm \mathbf{0 . 0 0 3 4}$
Naval Propulsion	11934	16	0.001 ± 0.0001	0.006 ± 0.0000	$\mathbf{0 . 0 0 0 5 7} \pm \mathbf{0 . 0 0 0 1}$	0.003 ± 0.0002
Cycle Power Plant	9568	4	4.182 ± 0.0402	4.124 ± 0.0345	$3.949 \pm \mathbf{0 . 1 4 7 8}$	4.183 ± 0.0955
Protein Structure	45730	9	4.539 ± 0.0288	4.732 ± 0.0130	4.477 ± 0.0483	$\mathbf{4 . 4 3 1} \pm \mathbf{0 . 0 2 9 2}$
Wine Quality Red	1599	11	0.645 ± 0.0098	0.635 ± 0.0079	0.640 ± 0.0469	$\mathbf{0 . 6 2 5} \pm \mathbf{0 . 0 3 4 0}$
Yacht Hydrodynamic	308	6	1.182 ± 0.1645	1.015 ± 0.0542	0.957 ± 0.2319	$\mathbf{0 . 8 4 1} \pm \mathbf{0 . 2 0 2 8}$
Year Prediction MSD	515,345	90	$8.932 \pm$ N/A	$\mathbf{8 . 8 7 8} \pm \mathbf{N} / \mathbf{A}$	$8.918 \pm$ N/A	$9.002 \pm$ N/A

- TGGM-BP generally performs better than ReLU neural networks
- $g(\cdot)$ is more flexible than ReLU activation function for the extra σ^{2};
- The nonzero slop of $g(\cdot)$ as $\mu<0$ makes optimization easier
- TGGM-ML performs best on most data sets
- As analyzed previously, ML makes no incorrect assumptions and is more is efficient in exploiting data

Experiments (2)

- Classification

One and two hidden layers are considered
Table: Test Accuracy of Classification

Methods	MNIST	20 News	Blog
ReLU (100)	97.58%	72.8%	65.86%
ReLU (200)	97.89%	73.27%	67.02%
ReLU (100-100)	97.83%	69.94%	67.93%
ReLU (200-200)	98.04%	69.91%	65.07%
TGGM-BP (100)	97.52%	73.65%	67.50%
TGGM-BP (200)	97.56%	73.62%	67.52%
TGGM-BP (100-100)	97.76%	71.06%	66.82%
TGGM-BP (200-200)	98.12%	71.18%	67.73%
TGGM-ML (100)	97.75%	73.74%	69.83%
TGGM-ML (200)	97.97%	73.38%	69.75%
TGGM-ML (100-100)	98.05%	68.01%	69.89%
TGGM-ML(200-200)	98.31%	67.52%	66.64%

TGGM-ML performs best on all data sets

Conclusions

- We proposed a nonlinear statistical learning framework with truncated Gaussian graphical model
- Nonlinear regression and classification tasks are cast into this framework by constructing appropriate TGGMs
- TGGMs can be further extended to deep models
- We show that all TGGM models can be trained efficiently by exploiting the properties of TGGM
- In the future, we will consider to further relax the structure of TGGM, e.g. lateral connection between hidden nodes; also, we will consider to use the model for unsupervised learning

Q\&A

