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• Propose two constructions of Dependent Normalized Random Measures re-
lated to [RaoTeh09, LinFisher12]:
– Mixed Normalized Random Measures
– Thinned Normalized Random Measures
•Analyze their distributional properties
•Analyze their distributional properties and posterior structures
• Provide alternatives to dependent DP and IBP
•Application to time series dynamic topic modeling

Contribution

Completely Random Measure (CRM): Let S = R+ × Θ, a CRM µ̃ is defined
as a linear functional of the Poisson random measure N(·) (the intensity of the
Poisson process ν(·) is the Lévy intensity of µ̃)

µ̃(B) =

∫
R+×B

tN(dt, dθ),∀B ∈ B(Θ).
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Poisson processes:
N(A) =

∑
(w,θ)∈A δ(w,θ)

→
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Completely random measures:

µ̃(A) =
∑

(w,θ)∈Awδθ

Normalized Random Measure (NRM): An NRM is obtained by normalizing
the CRM µ̃ as: µ = µ̃

µ̃(Θ)
. A normalized generalized Gamma process (NGG) is

an NRM with Lévy measure being e−bt

t1+aH(dθ), b > 0, 0 < a < 1.

Normalized Random Measures

• µ1, · · · , µR : R independent NRMs, each for a Region r.
• µt1, · · · , µtT : the constructed dependent NRMs, each for a Time ti.

G̃R1

µt1

· · ·

· · ·G̃11

µ1

G̃RT

µtT
· · ·

· · ·G̃1T· · ·

µR· · ·

Graphical Construction of dNRMs

•Construction by weighting:

µ̃r(dθ) =

∫
R+×R̃r

wN (dw, dθ, da), for each region r

µ̃t(dθ) =

#R∑
r=1

qrtµ̃r(dθ) for each time t

µt(dθ) =
1

Zt
µ̃t(dθ) , where Zt = µ̃t(Θ) for each time t

dNRM-1: Mixed Normalized Random Measures

•Construction by thinning:

µ̃r(dθ) =

∫
R+×R̃r

wN (dw, dθ, da), for each region r

zrtk ∼ Bernoulli(qrt), for each atom k

µ̂t(dθ) =

∞∑
k=1

zrtkwrkδθrk, for each time t

µt(dθ) =
1

Zt
µ̂(dθ), where Zt = µ̃t(Θ) for each time t

dNRM-2: Thinned Normalized Random Measures

µt’s in both MNRM and TNRM are marginally Normalized Random Mea-
sures, with Lévy intensities having the following forms:

Distributional Properties

νt(w, θ) =

R∑
r=1

νr(w/qrt, θ)/qrt

MNRM

νt(w, θ) =

R∑
r=1

qrtνr(w, θ)

TNRM

ICML2 Person2 NIPS2
Models ESS (Ave/Med/Min) | Time ESS (Ave/Med/Min) | Time ESS (Ave/Med/Min) | Time

HMNGG 57.4/52.5/7.3 | 66s 119.4/102.0/3.1 | 1.0h 111.1/73.8/3.3 | 1.5h
HMNGGs 125.4/112.5/15.0 | 69s 212.9/212.0/5.9 | 1.1h 205.2/203.0/5.5 | 1.9h
HTNGG 50.3/46.9/3.0 | 71s 144.8/170.6/4.2 | 1.3h 119.1/130.0/2.8 | 2.3h
HTNGGs 94.9/90.9/4.0 | 76s 153.2/113.5/2.7 | 1.1h 176.1/151.0/3.3 | 1.9h

Marginal VS Slice Sampler with Effective Sample Sizes

Datasets ICML Person
Models train perplexity test perplexity train perplexity test perplexity

HDP 580± 6 1017± 8 4541± 33 5962± 43
HNGG 575± 5 1057± 8 4565± 60 5999± 54
TNGG 681± 23 1071± 6 5815± 122 7981± 36
MNGG 569± 6 1056± 9 4560± 63 6013± 66
HSNGG 550± 5 1007± 8 4324± 77 5733± 66
HTNGG 572± 7 945± 7 4196± 29 5527± 47
HMNGG 535± 6 1001± 10 4083± 36 5488± 44
HMNGP 561± 10 995± 14 4118± 45 5519± 41

Topic Modeling: Perplexities

•MNRM has a nice marginal posterior.
•Conditioned on some auxiliary variables ut’sa, the posterior of MNRM is a

generalization of a CRP via the following prediction rules:

p(stl = k, gtl = r|others}) ∝
qrt(n

\tl
·rk−σ)

1+
∑
t′ qrt′ut′

F
\tl
rk (xtl), if k already exists,

σ

(∑
r′

Mr′

(1+
∑
t′ qr′t′ut′)

1−σ

)∫
Θ F (xtl|θ)H(θ)dθ ,

where F \tlrk (xtl) is the conditional density of the observations.
• This allows a marginal sampler as well as a slice sampled to be developed.

asee the paper for details.

Conditional Posterior of MNRM

• Posterior structure of TNRM is complex, i.e., it is equivalent to a NRM mix-
ture of 2T independent NRMs, so the complexity increases exponentially
fast with #times T.
•Marginal sampler for TNRM is infeasible, thus a slice sampler is needed

relying on the following conditional posterior of TNRM (built on Poisson
process partition calculus [James05]):

Theorem 1 Given observations, some auxiliary variables ut for each νt, the points in
νr without observations are distributed as a CRM with Lévy measure

ν′r(dw, dθ) =
∏
t

(
1− qrt + qrte

−utw) νr(dw, dθ) .

Remark Posterior inference for dependent DPs via thinning can not be per-
formed via the standard Chinese restaurant processes prediction rules.

Conditional Posterior Lévy Measure of TNRM
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Topic Evolution on NIPS with HMNRM
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