Changyou Chen^{1,2}

¹ANU College of Engineering and Computer Science The Australian National University ²National ICT, Australia

Joint work with Vinayak Rao, Wray Buntine & Yee Whye Teh June 17, 2013

Outline

2 Preliminary

3 Dependent Normalized Random Measures

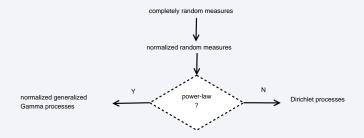
4 Experiments

Changyou Chen Dependent Normalized Random Measures

Introduction

From Dirichlet processes to normalized random measures

- Why normalized random measures (NRM)?
 - More general and flexible
 - More convenient in dependency construction
 - Theoretically tractable



Motivation

- Dependent normalize random measures (dNRM) are useful in real applications to model dependent probability vectors:
 - Topic modeling: topic distributions of docs are dNRM.
 - Image annotation: annotation distributions and image feature distributions are dNRM.

- Hierarchical Dirichlet processes (HDP):
 - Flexible, good performances.
 - Limitation: lack of some theoretical properties such as *marginal DPs.*

To name a few:

- Dependent DPs: [GriffinS06], [CaronDD07], [AX10], [LGF10, LinFisher12], [CDB12].
- Spatial DPs: [MacEachernKG01], [GelfandKM05], [RaoT09].

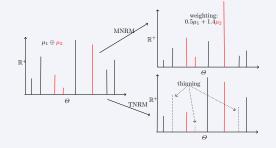
Limitations:

- Most limited to DP.
- Some are lacked of theoretical properties, *e.g.*, marginal DP.
- Some have theoretical flaws in model posteriors.
- See the paper for detailed analysis.

Introduction

Contribution

- Propose two constructions of Dependent Normalized Random Measures
 - Mixed Normalized Random Measures (MNRM)
 - Thinned Normalized Random Measures (TNRM)
- Analyze their distributional properties
- Analyze their posterior structures
- Application in time series dynamic topic modeling



Outline

3 Dependent Normalized Random Measures

4 Experiments

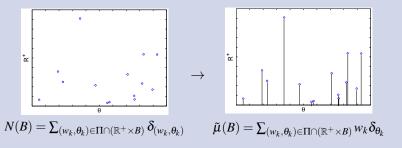
Preliminary

Completely random measures (CRM)

Definition (CRMs constructed from Poisson processes)

- $N(dw, d\theta)$: a Poisson random measure on $\mathbb{R}^+ \times \Theta$
- ν(dw,dθ): intensity of the Poisson process, also the Lévy measure of the CRM

$$\tilde{\mu}(B) = \int_{\mathbb{R}^+ \times B} tN(\mathrm{d}t, \mathrm{d}\theta), \forall B \in \mathscr{B}(\Theta).$$



Normalized random measures

Definition (Normalized Random Measure (NRM))

An NRM is obtained by normalizing a CRM $\tilde{\mu}$ as:

$$\mu = rac{ ilde{\mu}}{ ilde{\mu}(\Theta)} = \sum_k rac{w_k}{\sum_{k'} w_{k'}} \delta_{ heta_k^*} \; .$$

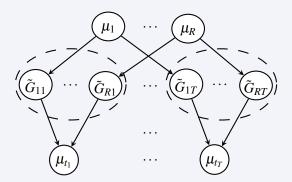
- NRM is flexible in that it is the generalization of a number of well known stochastic processes, by varying its Lévy measures ν(dw, dθ).
 - Dirichlet processes: $v(dw, d\theta) = \alpha w^{-1} e^{-w} dw H(d\theta)$.

4 Experiments

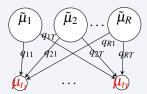
Changyou Chen Dependent Normalized Random Measures

An Overview Construction

- μ₁,..., μ_R: *R* independent NRMs, each generated from a *Region r*.
- *G̃*_{1t_i}, · · · , *G̃*_{Rt_i}: intermediate results by applying weighting/thinning on μ_i's.
- μ_{t_i} : dependent NRM at time t_i .



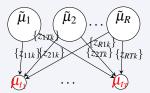
dNRM-1: Mixed Normalized Random Measures



• Construction by weighting: $\tilde{\mu}_r \rightarrow q_{rt}\tilde{\mu}_r$

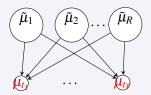
$$\begin{split} \tilde{\mu}_{r}(\mathrm{d}\theta) &= \int_{\mathbb{R}^{+}} w N_{r}(\mathrm{d}w,\mathrm{d}\theta), & \text{for each region } r \\ \hat{\mu}_{t}(\mathrm{d}\theta) &= \sum_{k=1}^{\infty} q_{rt} w_{rk} \delta_{\theta_{rk}}, & \text{for each time } t \\ \mu_{t}(\mathrm{d}\theta) &= \frac{1}{Z_{t}} \hat{\mu}(\mathrm{d}\theta), \text{ where } Z_{t} &= \tilde{\mu}_{t}(\Theta) & \text{for each time } t \end{split}$$

dNRM-2: Thinned Normalized Random Measures



$$\begin{split} \tilde{\mu}_{r}(\mathrm{d}\theta) &= \int_{\mathbb{R}^{+}} w N_{r}(\mathrm{d}w,\mathrm{d}\theta), & \text{for each region } r \\ z_{rtk} &\sim \mathsf{Bernoulli}(q_{rt}), & \text{for each atom } k \\ \tilde{\mu}_{t}(\mathrm{d}\theta) &= \sum_{k=1}^{\infty} z_{rtk} w_{rk} \delta_{\theta_{rk}}, & \text{for each time } t \\ \mu_{t}(\mathrm{d}\theta) &= \frac{1}{Z_{t}} \hat{\mu}(\mathrm{d}\theta), \text{, where } Z_{t} = \tilde{\mu}_{t}(\Theta) & \text{for each time } t \end{split}$$

Distributional Properties



• These constructions preserve the marginal NRM property.

Theorem (Marginal NRMs)

 μ_t 's in both MNRM and TNRM are marginally Normalized Random Measures^a.

^{*a*}By marginalizing out the independent μ_i 's.

 One difference: if μ_i's are DP distributed, μ_i's in TNRM would follow DP distributions, but μ_i's in MNRM would not.

Conditional Posterior of MNRM

 With appropriate auxiliary variables¹, the posterior of MNRM is simple:

Theorem (Generalized CRP for MNRM)

Conditional on some auxiliary variables, the marginal posterior of μ_t 's can be seen as generalizations of the Chinese restaurant process (CRP).

• Feasible marginal and slice samplers available for MNRM.

¹see the paper for details.

15

Conditional Posterior Lévy Measure of TNRM

- Marginal posterior of TNRM is complex.
- No simple result as the MNRM.

Theorem (Generalized CRP for TNRM)

Conditional on some auxiliary variables, the marginal posterior of the μ_t is a mixture of 2^T generalized Chinese restaurant processes (CRP), where T is #times.

- Marginal sampler is infeasible.
- Thus only slice sampler is practical for posterior inference.

Outline

2 Preliminary

3 Dependent Normalized Random Measures

17

Datasets and settings

- Use a particular class of the NRM: normalized generalized Gamma process (NGG), inducing *power-law*.
- The dNRMs (MNGG, TNGG) are use to model topic distributions for each time.
- Academic, news datasets.

dataset	vocab	docs	words	epochs
ICML	2k	765	44k	2007–2011
TPAMI	3k	1108	91k	2006–2011
NIPS	14k	2483	3.28M	1987-2003
Person	60k	8616	1.55M	08/9608/97

Table: Data statistics

Mixing behaviors of slice and marginal samplers

Evaluated in terms of:

- Effective Sample Size (ESS)² (the larger, the better)
- Running times

19

		ICML	Person	NIPS	
		ESS Time	ESS Time	ESS Time	
Mixed	Marginal	57.4 66s	119.4 1.0h	111.1 1.5h	
	Slice	125.4 69s	212.9 1.1h	205.2 1.9h	
Thinned	Marginal	50.3 71s	144.8 1.3h	119.1 2.3h	
	Slice	94.9 76s	153.2 1.1h	176.1 1.9h	

- The slice sampler mixes better than the marginal sampler.
- The running times are comparable.

²used to evaluate the mixing behavior of the MCMC

Training and testing perplexity

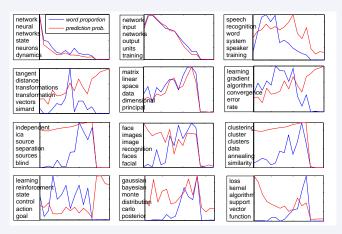
Datasets	ICML		Person		NIPS	
Models	train	test	train	test	train	test
HDP	580 ± 6	1017 ± 8	4541 ± 33	5962 ± 43	1813 ± 27	1956 ± 18
SNΓP[RaoT09]	550 ± 5	1007 ± 8	4324 ± 77	5733 ± 66	1406 ± 5	1679 ± 8
Thinned	572 ± 7	945 ± 7	4196 ± 29	5527 ± 47	1377 ± 5	1635 ± 3
Mixed	535±6	1001 ± 10	4083 ± 36	5488 ± 44	1366 ± 8	1618±5
MNGP	561 ± 10	995 ± 14	4118 ± 45	5519 ± 41	1370 ± 3	1634 ± 4

- The proposed models outperform related works, *e.g.*, HDP, SNΓP³.
- Small datasets: Thinned > Mixed.
- Large datasets: Mixed > Thinned.
- Power-law distributions more flexible than non power-law counterparts (MNGP), but not obvious when modeling topic distributions.

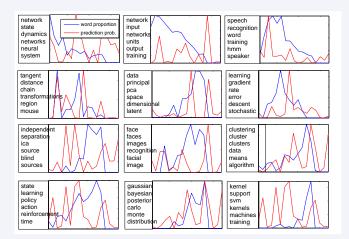
³Please refer to the paper for more comparisons.

Topic Evolutions on NIPS with MNRM

- word proportion: proportions of words allocated on a topic along *time*.
- prediction prob.: topic proportions evolving over time.



Topic Evolutions on NIPS with TNRM



 Mixed NRM produces smoother topic evolutions over time than Thinned NRM.

Conclusion

- Propose alternative ways to construction dNRMs, e.g., by weighting and thinning.
- They are flexible, have nice theoretical properties.
- Posterior inference via slice sampler preferable.
- Many other application potentials, *e.g.*, modeling sparse distributional vectors, generalized IBPs.

References I

1.1.1

Lin, D., Grimson, E., Fisher, J.: Construction of Dependent Dirichlet Processes based on Poisson Processes. Annual Conference on Neural Information Processing Systems (2010)
Ahmed, A., Xing, E.: Timeline: A Dynamic Hierarchical Dirichlet Process Model for Recovering Birth/Death and Evolution of Topics in Text Stream. Uncertainty in Artificial Intelligence (2010)
Chen, C., Ding, N., Buntine, W.: Dependent hierarchical normalized random measures for dynamic topic modeling. International Conference on Machine Learning (2012)
Lin, D., Fisher, J.: Coupling Nonparametric Mixtures via Latent Dirichlet Processes. Annual Conference on Neural Information Processing Systems (2012)
Rao, V., Teh, Y. W.: Spatial normalized Gamma processes. Annual Conference on Neural Information Processing Systems (2009)

References II

Srebro, N., Roweis, S.: Time-varying topic models using dependent Dirichlet processes. Technical Report (2005)

Griffin, J. E., Steel, M. F. J.: Order-based dependent Dirichlet processes. Journal of American Statistical Association (2006)

Caron, F., Davy, M., Doucet, A: Generalized Polya urn for time-varying Dirichlet process mixtures. Uncertainty in Artificial Intelligence (2007)

Gelfand, A. E., Kottas, A., MacEachern, S. N.: Bayesian nonparametric spatial modeling with Dirichlet process mixing. Journal of American Statistical Association (2005)

MacEachern, S. N., Kottas, A., Gelfand, A. E.: Spatial nonparametric Bayesian models. Proceeding of the 2001 Joint Statistical Meetings (2001)

Thanks for your attention!!!

