
Learning Weight Uncertainty with Stochastic Gradient MCMC for
Shape Classification

Chunyuan Li, Andrew Stevens, Changyou Chen, Yunchen Pu, Zhe Gan, Lawrence Carin
Duke University

{cl319, ajs104, cc448, yp42, zg27, lcarin}@duke.edu

Abstract

Learning the representation of shape cues in 2D & 3D
objects for recognition is a fundamental task in computer
vision. Deep neural networks (DNNs) have shown promis-
ing performance on this task. Due to the large variability
of shapes, accurate recognition relies on good estimates of
model uncertainty, ignored in traditional training of DNNs,
typically learned via stochastic optimization. This paper
leverages recent advances in stochastic gradient Markov
Chain Monte Carlo (SG-MCMC) to learn weight uncer-
tainty in DNNs. It yields principled Bayesian interpreta-
tions for the commonly used Dropout/DropConnect tech-
niques and incorporates them into the SG-MCMC frame-
work. Extensive experiments on 2D & 3D shape datasets
and various DNN models demonstrate the superiority of
the proposed approach over stochastic optimization. Our
approach yields higher recognition accuracy when used in
conjunction with Dropout and Batch-Normalization.

1. Introduction

Shape is an important representation in visual object
recognition. Shape characterizes the boundary/surface of
objects, as opposed to other properties such as color, illu-
mination or texture. In computer vision, shapes exist pri-
marily as 2D binary image silhouettes and 3D models of ex-
ternal surfaces. Fig. 1 shows examples of shape data. The
availability of large public-domain databases of 2D image
and 3D models (e.g. ImageNet [61] and ShapeNet [11])
has generated demand for leveraging shape information to
find semantic categories of objects. The success of recog-
nition hinges on the geometric and topological representa-
tion of shape properties. Traditional recognition methods
use hand-crafted features to maintain representation invari-
ance under certain classes of transformations. This has lead
to excellent performance in specific domains, e.g., spectral
geometry and topological persistence methods for non-rigid
shapes [8, 45].

Figure 1. Variability in 2D shapes (top row) and 3D shapes (bottom
row). 3D shapes are visualized as projected 2D views. Object
articulation can be seen in the horse examples. Change of view
is shown in the dog examples for 2D data, and the two rightmost
human body shapes show modeling error in 3D data.

Shapes in the real-world, however, manifest rich within-
class variability. This variability is due to, for example, ob-
ject articulation, change of viewpoint in 2D, and modeling
error in 3D (see examples in Fig. 1). Shape variability in-
hibits “shallow” engineered representations from generaliz-
ing to a broad range of domains and tasks. Recently, deep
neural networks (DNNs) have gained popularity in com-
puter vision and pattern recognition [12, 63]. They can learn
“deep” representations from either raw data or traditional
features to achieve higher discriminative power.

DNNs are usually trained using stochastic optimization
methods such as stochastic gradient descent (SGD) [60]. A
regularizer imposed on the model parameters can be viewed
as the log of a prior on the distribution of the parameters,
with such a prior connected to a Bayesian perspective. From
this standpoint optimizing the cost function may be viewed
as a maximum a posteriori (MAP) estimate of model pa-
rameters. The MAP solution is a single point estimate, ig-
noring model uncertainty [6, 26]. Such a point estimation
often makes over-confident predictions on test data [34, 78],
especially when the data has significant variability.

A principled way to incorporate uncertainty during
learning is to use Bayesian inference [51, 55]. Unfortu-
nately, exact Bayesian learning of DNNs is generally in-
tractable. One approximate learning procedure is Markov
Chain Monte Carlo (MCMC), which can produce sample-
based approximations to the posterior [55]. An advantage
of MCMC is its asymptotic consistency with the true pos-

1

! " ! "

! : Input Object " : Output Label : Hidden Units

: Weight with8a fixed value : Weight with a distribution

Figure 2. Illustration of Bayesian DNNs with a 2-layer model.
All weights in Bayesian DNNs are represented as distributions us-
ing SG-MCMC (right figure); rather than having fixed values (left
figure), as provided by classical stochastic optimization methods.
The SG-MCMC learns correlated uncertainty jointly on all param-
eters, where (right) associated marginal distributions are depicted.

terior distribution. In fact, MCMC gained extensive atten-
tion a decade ago in computer vision [82], with broad ap-
plications ranging from image segmentation [71] and hu-
man pose estimation [40] to feature correspondence [19].
Despite appealing theoretical properties and excellent em-
pirical results, there is a gap between the limited scalabil-
ity of conventional MCMC, and an increasingly massive
amount of visual/geometric data. This paper seeks fill this
gap, based on recent MCMC developments, which have in-
teresting connections to optimization-based approaches.

Specifically, in this paper, we leverage recent advances
in stochastic gradient Markov Chain Monte Carlo (SG-
MCMC) algorithms [15, 20, 41, 42, 78] to train DNNs. One
merit of this family of algorithms is that they are highly
scalable. As with an iteration of SGD, SG-MCMC only re-
quires the evaluation of the gradient on a small mini-batch
of data. It has been shown that SG-MCMC methods con-
verge to the true posterior by using a slowly-decreasing se-
quence of step sizes [14, 69]. This means that instead of
training a single network, SG-MCMC trains an ensemble of
networks, where each network has its weights drawn from
a shared posterior distribution. A schematic comparison of
optimization and Bayesian learning of DNNs is shown in
Fig. 2.

The contributions of this paper are summarized as
follows: i) A unified Bayesian treatment is provided
for DNNs, whose weight uncertainty is learned via SG-
MCMC. ii) We provide insights on the interpretation of
Dropout [64] and DropConnect [74] from the perspec-
tive of SG-MCMC, which also allows the use of Batch-
Normalization [29]. iii) Applications to a wide range of
shape classification problems demonstrate the advantages
of SG-MCMC over optimization.

2. Related Work
A number of recent works [6, 26] demonstrate the util-

ity of Bayesian learning of DNNs, and advocate the incor-
poration of uncertainty estimates during model training to
improve robustness and performance. In the deep learning
literature, two regularization schemes have been developed,

Dropout [64] and DropConnect [74]. These schemes help
prevent overfitting of the DNN by adding noise to local hid-
den units and global weights, respectively. In fact, it is pos-
sible to view Dropout as an approximate Bayesian learn-
ing technique that incorporates uncertainty during learn-
ing [22, 33]. Complementary to that, we show later that
DropConnect can be viewed as a variant of SG-MCMC.

Deep learning has recently been employed in shape
recognition, from the perspective of two broad categories.
The first is the use of deep models with stochastic hidden
layers, including deep belief networks [9] or the autoen-
coder [80]; these methods discover latent representations
of shapes from their hand-crafted features, such as spectral
descriptors [2, 67]. The second category is the adoption of
deterministic layers, i.e., feedforward neural networks. A
discriminative non-linear mapping is learned in [21] to em-
bed traditional shape features. Moreover, the feedforward
CNN has been extended to learn representations from raw
shape data. Interestingly, due to the intrinsic complexity
of shape geometry, the convolution operator has been ap-
plied in a variety of spaces, including multi-view projec-
tions [3, 66, 75], 3D volumes [79], curvature space [31] and
meshed graphs [7]. However, none of these methods con-
sider uncertainty during training. We extend these models
with Bayesian learning, and show improved performance
across a broad range of applications.

3. Deep Neural Nets: A Bayesian Perspective
3.1. Predictive Models

Assume we are given data D = {d1, · · · ,dN}, where
dn , (xn, yn), with input object/feature xn ∈ RD and
output label yi ∈ Y , with Y being the output discrete la-
bel space. A model characterizes the relationship from x
to y with parameters θ. The parameters θ are assigned a
prior distribution p(θ). The corresponding data likelihood
is p(D|θ) =

∏N
i=1 p(di|θ). Following Bayes rule, the pos-

terior is p(θ|D) ∝ p(θ)p(D|θ).
For testing, given a test input x̃ (with missing label ỹ),

the uncertainty learned in training is transferred to predic-
tion, yielding the posterior predictive distribution in (1).

p(ỹ|x̃,D)= Ep(θ|D)[p(ỹ|x̃,θ)]=

∫
θ

p(ỹ|x̃,θ)p(θ|D) . (1)

The predicted distribution of ỹ may be viewed in terms of
model averaging across parameters, based on the learned
p(θ|D); this should be contrasted with learning a single
point estimate of θ based on D.

3.2. From Logistic Regression to DNNs

One simple Bayesian predictive model is logistic regres-
sion (LR). For binary classification, the likelihood is:

p(y|x,θ) , gθ(x) =
1

1 + exp (−(W>x+ c))
, (2)

where a Gaussian prior N (0, σ2) is usually placed for each
element of the model parameters θ , {W, c}; the vari-
ance σ2 imposes the amount of prior uncertainty in model
parameters.

In complex real-world modeling such as shape classifi-
cation, such a simple parametric model is often not expres-
sive enough for robust generalization. DNNs extend LR
by parameterizing the form of relationship from x to y, as
a composition of a set of nonlinear functions (e.g. the sig-
moid function used in LR). Specifically, an L-layer DNN
for multi-class classification puts a softmax function on the
output of a set of function compositions [51, 55]:

p(y|x,θ) = softmax
(
gθL
◦ · · · ◦ gθ0

(x)
)
, (3)

where ◦ denotes function composition, softmax(x) ,
ex/(

∑
i e
xi). Similarly, Gaussian priors are adopted on

model parameters θ = {θ0, . . . ,θL}. As a result, one may
consider the LR as a “zero-layer” neural network.

Various DNN models are defined by specifying gθ`
for

each layer. In the following, we describe two canonical
DNNs: Feedforward Neural Networks (FNNs) and Convo-
lutional Neural Networks (CNNs). These serve as major
building blocks to construct more advanced DNN models
(e.g. VGG networks [63]). By choosing prior distributions
for the network weights, all DNN models can be viewed as
in the family of Bayesian predictive models [72].

Feedforward Neural Networks The FNN can learn so-
phisticated functional representations from input/output ex-
amples [17, 26]. This can be further employed to discover
discriminative feature representations [21]. Specifically, it
sends the input data forward from the bottom layer to the
top layer with pointwise nonlinear functions between each
layer. In the `-th layer, gθ`

in (3) can be the sigmoid func-
tion, the hyperbolic tangent, and more recently, the Recti-
fied Linear Unit (ReLU) [23]. ReLU takes the form:

gθ`
(x) = max(0,W>

` x+ c`) , with θ` = (W`, c`) .

Convolutional Neural Networks The CNN is a special
class of FNNs, typically applied to data with spatial or tem-
poral covariates. The CNN employs the convolution opera-
tion at each layer of the feedforward network. CNNs are
commonly used for learning deep feature representations
from raw data [12, 35, 59, 63, 79]. The nonlinear func-
tion gθ`

in CNN is typically composed of convolution and
pooling operators [38]. The CNN can take advantage of the
properties of natural signals [37] such as images and shapes,
which exhibit high local correlations [7, 12] and rich shared
components [8, 81].

Given inputs in the form of multiple arrays
(xk`−1

)
K`−1

k`−1=1 from the (` − 1)-th layer, for the k`-th
filter bank W` in the `-th layer, the output is

gWk`
(xk`−1

) = Pool
(∑

k`−1
W>

k`
∗ xk`−1

)
,

where ∗ is the convolution operator, Pool is the pooling op-
erator (e.g., max-pooling [38]). The parameters for the `-th
layer are θ` , {Wk`}.

4. Scalable Learning with SG-MCMC
We describe a general framework for SG-MCMC al-

gorithms in this section, but recommend [78, 41] for more
intuitive explanations for the employed algorithms. SG-
MCMC are derived from a corresponding stochastic differ-
ential equation (SDE), represented in the general form of an
Itô diffusion:

dΨt = F (Ψt)dt+ δ(Ψt)dWt , (4)

where Ψt ∈ RK is the model state,Wt is Brownian motion,
and t is the (continuous) time index. The model state could
represent model parameters θ [78], or an augmented state
space (e.g., with momentum [15]), in which case we discard
the auxiliary variables to perform the desired marginaliza-
tion given samples from the diffusion [15, 20]. The function
F :RK→RK is the deterministic drift, and δ :RK→RK×K
is the diffusion matrix. It has been shown that with appro-
priate functions F and δ, the stationary marginal distribu-
tion ρ(θ), of an Itô diffusion (4) has a marginal distribution
equal to the posterior distribution [14, 50].

In the Bayesian setup in Section 3.1, this means ρ(θ) ∝
exp(−U(θ)), where U is the unnormalized negative log-
posterior:

U , −

(
N∑
i=1

log p(di|θ) + log p(θ)

)
. (5)

To deal with large-scale datasets, an unbiased stochastic
gradient is computed for each mini-batch of data during the
learning procedure, e.g.

Ũt , −

(
N

|St|
∑
i∈St

log p(di|θ) + log p(θ)

)
(6)

for the t-th minibatch. Here St ⊂ {1, 2, · · · , N} chooses
the mini-batch data points, and | · | is the cardinality of a set.

4.1. SG-MCMC Algorithms

DNNs often exhibit pathological curvature and saddle
points in their parameter spaces [18]. Efficient learning re-
quires a sampler to adapt random walks according to the
local geometry of the parameter space (highly related con-
cepts have been considered in optimization-based methods,
e.g. RMSprop [70] and Adam [32], as discussed further be-
low). A variant of SG-MCMC that incorporates geometry
information is the stochastic gradient Riemannian Langevin
dynamics (SGRLD). It specifies an Itô diffusion as:

F̃ = −G−1∇θŨ(θ)− Γ(θ), and δ =
√

2G−
1
2 . (7)

There are many choices for G, one of which is G ,
G(θ) = Iθ, the Fisher information metric [57], and Γi(θ) =∑
j

∂G−1
ij (θ))

∂θj
describes how the curvature of the manifold

defined by G(θ) changes for small changes in θ. For the
many models of interest, direct computation of the Fisher
information metric is impractical.

In SG-MCMC, one draws samples from (4), which usu-
ally does not have an analytic form. As a result, an ε-
discretization of the continuous SDE can be used to approx-
imate (4), where ε represents the step size. The approximate
samples θt are then collected via a Markov Chain with the
following updates, with I being the identity matrix:

θt ←θt−1 − εF̃ (θt−1) +
√
εδ(θt−1)ξ, ξ ∼ N (0, I) . (8)

In the testing stage, these samples are used to construct a
sample-based uncertainty estimation to the posterior predic-
tive distribution defined in (1):

p(ỹ|x̃,D)≈ 1

T

T∑
t=1

p(y|x,θt) . (9)

SGLD SGRLD reduces to the stochastic gradient
Langevin dynamics (SGLD) [78] when G = I (thus Γ(θ)
vanishes). This “vanilla” SGLD is the first attempt in line of
work of SG-MCMC. We can see that Robbins-Monro type
algorithms (e.g. SGD) [60] which stochastically optimize a
likelihood, can be combined with Langevin dynamics [56]
where Gaussian noise is injected during parameter updates.

In the SGLD algorithm, we define the stochastic gradient
evaluated at position θt with mini-batch St as:

g̃t , ∇θ log p(θt)+
N

|St|
∑
i∈St

∇θ log p(di|θt) (10)

Consequently, one SGLD update on model parameters con-
sists of 2 parts: (i) an SGD-like update, and (ii) Gaussian
noise injection, making the algorithm explore the parameter
space, rather than converging to a MAP solution. The pro-
cedure is summarized in Algorithm 1. We note that SGLD
updates all parameters with the same step size, resulting in
slow mixing when the components of θ have different cur-
vature, which is particularly true in the case of DNNs.

Preconditioned SGLD As alluded to above, directly in-
corporating Iθ is intractable in DNNs due to the infeasibil-
ity of representing the Fisher information matrix. Precon-
ditioned SGLD (pSGLD) [41] instead uses adaptive precon-
ditioners borrowed from stochastic optimization [70, 32] to
construct a feasible and effective G. It equalizes the gra-
dient with the following construction of G, so that the step
size is adaptive among different dimensions:

Algorithm 1: SGLD algorithm

Initialize:Random θ1;
for t = 1, 2, . . . , T do

%Estimate gradient from minibatch St
g̃t ← ∇θ log p(θt) + N

|St|
∑
i∈St ∇θ log p(di|θt);

%Parameter update

ξt ∼ N (0, εI);
θt+1← θt + ε

2
g̃t+ ξt;

end

Algorithm 2: Practical pSGLD algorithm
Input: Default settings for the tested models:

ε = 1×10−3, λ = 10−8, β1 = 0.99.
Initialize: v0 ← 0, random θ1;
for t = 1, 2, . . . , T do

%Estimate gradient from minibatch St
g̃t ← ∇θ log p(θt) + N

|St|
∑
i∈St ∇θ log p(di|θt);

%Preconditioning

vt ← β1vt−1 + (1− β1)g̃t � g̃t;
G−1t ← diag

(
1�

(
λ1 + v

1
2
t

))
;

%Parameter update

ξt ∼ N (0, εG−1
t);

θt+1← θt + ε
2

(
G−1
t g̃t

)
+ ξt;

end

vt ← β1vt−1 + (1− β1)g̃t � g̃t , (11)

G−1t ← diag
(
1�

(
λ1 + v

1/2
t

))
, (12)

where {vt} are intermediate variables, β1, λ are hyper pa-
rameters, � is an element-wise product, and � element-
wise division. By transforming the landscape of the pa-
rameter space to be more uniformly curved, it is possible
for the sampler to move much faster. The effect of Γ(θ)
is not needed in our case since θt contributes little in the
construction of vt (thus the derivative w.r.t.θt is small), we
thus exclude it from the practical procedure, shown in Al-
gorithm 2 [41]. pSGLD maintains faster mixing with trivial
overhead per iteration than SGLD.

4.2. From Stochastic Optimization to SG-MCMC

SG-MCMC methods are closely related to conventional
stochastic optimization. The main difference is the injec-
tion of Gaussian noise during parameter updates. With
the correct amount of noise, the algorithm becomes a pos-
terior sampling method, instead of a MAP optimization
method. For example, SGLD has been shown to be SGD
withN (0, εI) [78]; similarly pSGLD can be viewed as RM-
Sprop with N (0, εG−1) [41], and SGHMC is momentum
SGD with injecting Gaussian noise [15]. In fact, if we an-

neal the system temperature of the Itô diffusion to zero, in
the limit SG-MCMC becomes stochastic optimization [13].

Prediction using stochastic optimization methods often
involves finding an optimum point estimation of the param-
eters on the training dataset, e.g., by maximum likelihood or
MAP, then using this estimate for testing. This has the dis-
advantage that it does not account for any uncertainty in the
parameters—which will underestimate the variance of the
predictive distribution. Whereas in Bayesian learning, (9)
captures a better representation of the uncertainties in the
learning process, and helps prevent model overfitting [34].

4.3. SG-MCMC Interpretation of DropConnect

In deep learning, Dropout/DropConnect [27, 74] have
been proposed to improve model generalization by explic-
itly adding noise during DNN learning. Our SG-MCMC
model learning provides a principled Bayesian interpreta-
tion for DropConnect.

Regular (binary) DropConnect adds noise to global net-
work weights, by setting a randomly selected subset of
weights to zero within each layer:

z = g((ξ0 � θ)h), ξ0 ∼ Bernoulli(1− p) , (13)

where h and z are the input and output layers, and p is
the probability that the weight is dropped. Binary Dropout
instead randomly selects local hidden units:

z = ξ0 � g(θh), ξ0 ∼ Bernoulli(1− p) , (14)

It was shown in [64] that binary Dropout has a Gaus-
sian approximation ξ0 ∼ N (1, p

1−p), called Gaussian
Dropout [76] with identical regularization performance and
faster convergence. We note that the SGD update with
Gaussian DropConnect shares the same form as SGLD:

θt+1 = ξ0 � θt +
ε

2
∇θf = θt +

ε

2
∇θf + ξ′0 , (15)

where ξ′0 ∼ N (0, εV), V = p
ε(1−p)diag(θ2t) and ∇θf =

∇θ log p(θt) +N g̃; (15) shares a similar update rule as the
modified SGLD [73] with a different V.

As a result, the noise added on the weights in the Gaus-
sian DropConnect can be interpreted as injected noise from
the Brownian motion of Langevin dynamics. Similarly, bi-
nary DropConnect can be viewed as using the Spike-and-
Slab prior [30] on the weights without updating the prior
parameters during inference. We can see that SG-MCMC
algorithms are more adaptive than DropConnect, because
the noise variance relates to the step size and the local ge-
ometry of parameter space, instead of using manually fixed
values in DropConnect. Furthermore, since Dropout can be
interpreted as a structured DropConnect where the weights
are dropped block-wise [74], Dropout is subsumed in the
SG-MCMC interpretation of DropConnect. The integration
of binary Dropout with SG-MCMC can be viewed as learn-
ing weight uncertainty of mixtures of neural networks.

4.4. Accelerating with Batch-Normalization

Another method to regularize local hidden units is Batch-
Normalization [29]. When performing gradient-based
learning of a DNN, a large step size may result in explod-
ing or vanishing gradients. In the context of the proposed
Bayesian learning, the sampler could get trapped in poor
local minima or on saddle points. Batch-Normalization can
be readily applied in our SG-MCMC training to help ad-
dress these issues. (i) It normalizes activations through-
out the network, preventing small parameter changes from
being amplified into larger, suboptimal activation changes
in other layers. This further helps prevent the sampler in
our SG-MCMC algorithms from getting stuck in the sat-
urated regimes of nonlinearities. (ii) It allows us to use
much higher step size, and thus increases the effective sam-
ple size while preventing overfitting, in which case the need
for Dropout is eased.

5. Experiments
We implemented pSGLD and SGLD in Torch7 [16] us-

ing the GPU library cudnn [1], and present results in two
main parts: (i) The uncertainty captured on weights can
help the FNN to learn more discriminative representations
when traditional hand-crafted features are provided. (ii) We
also train CNN models and advanced variants on raw data
with our approach. We show that SG-MCMC can work
in conjunction with both Dropout and Batch-Normalization
to improve performance on a broad range of networks and
datasets. In practice, we find that it often helps convergence
to anneal the variance of the noise term, and which corre-
sponds to model averaging with the annealed distribution.

The default setting in all experiments is σ2 = 1. Fol-
lowing [34], a block decay strategy for step size is used;
it decreases by half after every L epochs. The hyperpa-
rameter setting and model specifications on each dataset are
clarified in Supplementary Material. No data augmentation
techniques [35] are applied to the datasets tested.

5.1. Feedforward Neural Networks

5.1.1 2D Digits and Animals

We first demonstrate application of the FNN on two 2D
shape datasets, MNIST [38] and Animal [4].

• MNIST contains 60000 shapes of 2D digits, and 10000
test samples. The task is to classify the images into num-
ber ranging from 0 to 9 according to shape information.

• The Animal dataset [4] contains 2000 shapes describing
20 kinds of animals, including butterfly, deer, etc. One
example for each class is displayed in Fig. 3. The dataset
has much more intra-class variability since the same kind
of animals may have various poses.

Figure 3. Example 2D shapes from Animal dataset.

Table 1. Test accuracy of FNN on MNIST.
Networks 400-400 800-800 1200-1200
Methods Test Error (%)
pSGLD + Dropout 1.36 1.26 1.15
SGLD + Dropout 1.45 1.25 1.18
RMSprop + Dropout 1.35 1.28 1.24
SGD + Dropout 1.51 1.33 1.36
pSGLD 1.45 1.32 1.24
SGLD 1.64 1.41 1.40
RMSprop 1.79 1.43 1.39
SGD 1.72 1.47 1.47
RMSspectral [10] 1.65 1.56 1.46
BPB, Gaussian [6] 1.82 1.99 2.04
BPB, Scale mixture [6] 1.32 1.34 1.32

A two-layer network (X-X) with ReLU is employed,
where X is the number of hidden units for each layer.
For MNIST, the test classification errors for network size
400-400, 800-800 and 1200-1200 are shown in Table 1.
The inputs to the FNN are vectorized images of dimension
D=784. 100 epochs are used, with L= 20. The thinning
interval is 100, and MCMC burn-in is 1 epoch.

We compare the SG-MCMC algorithms with representa-
tive stochastic optimization methods: SGD, RMSprop and
RMSspectral [10]. After tuning, the optimal step size for
pSGLD and RMSprop is set as ε= 10−3, while for SGLD
and SGD as ε = 5×10−1. The testing error for the SG-
MCMC methods are consistently lower than their corre-
sponding stochastic optimization counterparts. This indi-
cates that the weight uncertainty learned via SG-MCMC
can improve performance.

To demonstrate that the improvements are not due just
to model averaging, we collected “partially trained” models
along the learning trajectory of RMSprop using the same
collection scheme as pSGLD, and average over their testing
evaluations. The averaged prediction gives 1.30%, improv-
ing RMSprop by 0.09%, but is still inferior to pSGLD by
0.06% on the 1200-1200 network. This is unsurprising, be-
cause pure optimization methods are often stuck in local
modes, while the Brownian motion in SG-MCMC encour-
ages the learning trajectory to explore the full space.

We also compare with a recent variational Bayesian ap-
proach to learn weight uncertainty, BPB with Gaussian
and scale mixtures [6]. pSGLD provides better results on
larger networks, this probably because SG-MCMC learns
correlated uncertainty jointly on all parameters. Neverthe-
less, both approaches provide lower errors than optimiza-
tion methods. It indicates learning weight uncertainty is
helpful for DNNs.

The combination of Dropout with stochastic optimiza-
tion and SG-MCMC is compared on the 400-400 FNN us-
ing MNIST. The default Dropout probability p=0.5 is used.
Both of Dropout and SG-MCMC show their ability to reg-
ularize learning. By integrating SG-MCMC with Dropout,
we obtain lower error.

Figure 4. Dropout comparison.

To study the
role of p for both
approaches, we vary
p from 0 to 0.7 with
a step size of 0.05,
with 5 repetitions.
Overall, pSGLD
with Dropout pro-
vides lower errors
than RMSprop with
Dropout. Note that when p = 0, we recover pure SG-
MCMC or stochastic optimization algorithms. A much
lower error is provided by SG-MCMC, indicating the
importance of uncertainty in recognition.

For the Animal dataset, we use Bag-of-Contour-
Fragments (BCF) [77] as input features, which have shown
excellent discriminative power for 2D shape classification.
We follow [77] and use a random selection of half of the
shapes per class for training and the rest of shapes for test-
ing. We run 5 repetitions and the average classification
accuracy of our method is compared to other state-of-the-
art methods in Table 2. A 2-layer FNN of size 800-800
with ReLU was used. It yields higher average testing ac-
curacies than BCF with SVM [77], integration of contour
and skeleton (ICS) [4], and inner distance shape contexts
(IDSC) [49]. This shows that the FNN can learn a more
discriminative representation based on traditional features
for classification.

We also see that RMSprop for FNN gives a lower ac-
curacy than pSGLD. Training LR directly for shallow rep-
resentation (i.e., BCF feature) with pSGLD yields 78.3%,
which is significantly higher than 72.1% of RMSprop. This
indicates that incorporating uncertainty in either learning
representation or classification improves accuracy.

5.1.2 3D Non-rigid and Textured Shapes

Two standard 3D benchmarks from recent Eurographics
SHREC contests are used, including Textured Shape [5]
and non-rigid Human Body Shape datasets [58]. Exemplar
shapes are displayed in Fig. 5.
• Textured Shape dataset is made of 572 watertight mesh

models that have a geometric and texture deformation.
Two tasks are considered: assignment to 16 Geometry

classes or 13 Texture classes. Since the categories
are reasonably differentiable, a one layer FNN with 400
ReLU units is used.

Table 2. Animal dataset.
Methods Accuracy (%)
pSGLD 84.80± 0.35

RMSprop 84.30± 0.55

BCF + SVM [77] 83.40±1.30

ICS [4] 78.4
Distinctive Parts [46] 80.7
Bag of SIFT [47] 80.4
IDSC [49] 73.6
Class segment set [68] 69.7

Table 3. Body Shape and Textured Shape.
Datasets Body Geometry Texture

Methods Accuracy (%)
pSGLD 57.33 ± 3.06 38.46 51.49
RMSprop 56.31± 2.34 37.01 49.39
LR 51.23± 1.86 36.06 46.59
SVM 56.02± 2.94 37.09 51.62
KNN 46.90± 2.06 18.01 50.35

Table 4. 20 Newsgroups.
Methods Accuracy (%)
pSGLD 73.32
RMSprop 72.52
DPFM [25] 72.67
PFM [25] 72.11
OSM [65] 69.1
DocNADE [36] 68.4
RSM [28] 67.7
LDA [54] 65.7

Figure 5. Example 3D shapes with ISPM. The top two rows are ex-
amples from the Human Body Shape dataset, the bottom two rows
are examples from Textured Shape dataset. The shape in the top-
right corner is rendered with the 2nd eigenfunction of the Laplace-
Beltrami operator. It is used to construct the intrinsic partition,
which is isometry-invariant and robust to shape deformation [43].

• The Synthetic sub-dataset of Human Body Shape is used
for fine-grained shape classification. There are 15 differ-
ent human models, each with its unique body shape and
20 different poses, resulting in a dataset of 300 models.
2 poses are for training, the rest for testing. Accuracy is
averaged over 5 random train-test partitions. A 2-layer
FNN with 800-800 ReLU units is used.

We follow the standard bag-of-features paradigm [8],
where we extract local geometric descriptors, specifically
spectral graph wavelet signature (SGWS) [44], and aggre-
gate them with the intrinsic spatial pyramid representation
(ISPM) [43]. A color histogram is embedded into ISPM to
describe texture on surfaces. This pipeline has shown ex-
cellent performance in two contests [5, 58].

These features are used in FNN, support vector machine
(SVM), LR and K-nearest-neighbor (KNN) for classifica-
tion. The results are reported in Table 3. We emphasize that
the purpose of this experiment is to compare different learn-
ing algorithms on the same input features, not to achieve
state-of-the-art results. Consistent with the 2D shape re-
sults, learning deep representations with FNN shows im-
proved performance over shallow features. The uncertainty
captured by pSGLD also boosts the results.

5.1.3 General Bag-of-words setup

Besides the above visual/geometric words scenarios tested
on 2D/3D shapes [8, 43, 77], we further show our SG-
MCMC method can learn uncertainty-based discriminative
representation for a general bag-of-words setup. This is
demonstrated with a standard document classification cor-
pus, 20 Newsgroups. This dataset has 11315 training and
7531 test documents with a vocabulary size of 2000.

An 800-800 FNN is used. Inputs of the FNN are
term frequency-inverse document frequency features (tf-
idf). Classification of tf-idf using the SVM yields 69.60%.
We compare our model against state-of-the-art methods in
Table 4, including a very recent Bayesian deep model, deep
Poisson factor modeling (DPFM) [25]. We adapt the FNN
as a Bayesian model to capture uncertainty in recognition
using Gaussian prior with σ2 = 10 on network weights,
which is the same goal as DFPM. However, our Bayesian
FNN is more desirable, because it yields higher accuracy
in only 1 minute, while DFPM needs more than 1 hour. It
also significantly outperforms four other methods, includ-
ing supervised Latent Dirichlet allocation (LDA) [54], Doc-
NADE [36], Replicated Softmax Model (RSM) [28] and
Overreplicated Softmax Model (OSM) [65].

5.2. Convolutional Neural Networks

5.2.1 2D Digits and Caltech 101 Silhouettes

We also studied incorporating weight uncertainty in learn-
ing CNN-based representations. For 2D raw shapes, besides
MNIST, we also consider the Caltech 101 Silhouettes

dataset [52], containing 6364 training and 2307 test images.
On MNIST, we built 2 networks: one is “LeNet” [38],

composed of a 2-layer CNN followed by a 2-layer FNN; the
other is “4-CNN”, it is similar to LeNet except that a 4-layer
CNN is used with max-pooling after the 1st, 2nd, and 4th

convolutional layers. The results are shown in Table 5. pS-
GLD significantly outperforms RMSprop on both networks,
indicating that learning weight uncertainty in CNN mod-
els can boost results. Combined with Dropout, the perfor-
mance of both SG-MCMC and optimization approaches are
improved. pSGLD with Dropout reaches a testing error of
0.37%, which is lower than several state-of-the-art methods,
including deeply supervised nets (0.39%) [39], stochastic
pooling (0.47%) [81], Network in Network (0.47%) [48]
and Maxout Network (0.45%) [24].

Table 5. Test error of CNN on MNIST, Caltech, ModelNet and Cifar10.
Dataset MNIST Caltech ModelNet Cifar10

Networks LeNet 4-CNN 5-CNN 5-CNN-BN Vol-CNN View-CNN VGG-B VGG-B-BN
Methods Test Error (%)
RMSprop 0.65 0.62 27.52 24.40 17.06 16.13 21.04 13.52
pSGLD 0.45 0.49 26.96 25.53 16.21 15.12 20.28 14.80
RMSprop + Dropout 0.56 0.45 27.43 24.66 14.87 14.52 16.38 10.39
pSGLD + Dropout 0.40 0.37 24.57 23.97 14.51 14.62 16.11 9.47

For Caltech, we employed 5-CNN a smaller version of
the VGG networks. It is tested with and without Batch Nor-
malization (BN). The results are shown in Table 5. Due
to the large variability of shapes in this dataset, a large
variance σ2 = 100 in the prior is used. Dropout consis-
tently provides considerable improvement for pSGLD, but
not RMSprop. Using BN also improves performance.

5.2.2 3D ModelNet
We next evaluate the CNN on a large-scale 3D model
dataset, Princeton ModelNet [79]. We use the 40-class
setup, containing 12311 training and 2468 testing sam-
ples. We follow typical settings to constitute our experi-
ments [66, 79]. Two CNN-based approaches are designed
for 3D model classification. (i) The first is based on vol-
ume representation of 3D shapes; it performs 3D volumet-
ric convolutions [79]. We use a 30× 30× 30 bounding
box to represent each shape, and construct “Vol-CNN” net-
work: 3-layer volumetric CNN followed by 1-layer FNN
with ReLU. This is the same network as [79] except for the
nonlinearities. (ii) The second approach is to project the
3D model into multiple 2D depth-view-images, and per-
form 2D convolutions on each view [66]. We employed
12 depth-views of size 224×224 to represent a 3D shape,
and adopted the “View-CNN” based on the CNN-M net-
work from [12]: a 5-layer CNN followed by a 2-layer FNN
with ReLU. BN is applied for both networks, and the re-
sults are shown in Table 5. In both setups, we see improved
performance using pSGLD over RMSprop. When applying
Dropout (p = 0.5) to View-CNN, RMSprop is better than
pSGLD. Since Dropout determines the portion of parame-
ters updated in our sequential update interpretation, further
study on choosing p could alleviate the problem.

We also outperform several state-of-the-art re-
sults on this dataset, including the ShapeNets method
(23.00%) [79], VoxNet (17.00%) [53] and deep panoramic
views (22.37%) [62]. The only method with lower error
than ours is Multi-View CNN (9.9%) [66]; note that their
model is pre-trained with ImageNet [61], we did not
perform any pretraining.

5.2.3 Very Deep Neural Networks

To show that the proposed method is applicable to “very
deep” models and natural images, we conducted experi-
ments on the Cifar10 [35] dataset. It contains 10 classes of

50000 RGB images of vehicles and animals, with an addi-
tional 10000 for testing. We follow [63] and use a 13-layer
CNN “VGG-B” with a 1-layer FNN. We test 8 algorithms
by integrating RMSprop and pSGLD with Dropout and BN.
300 epochs are used to collect the final results in Table 5.
Step sizes for pSGLD and RMSprop with both Dropout and
BN are 2×10−3, all the others are 10−3.

Epoch
5 10 15 20 25 30

Te
st

 E
rro

r (
%

)

10

20

30

40

50

60

70

80

90
RMSprop
pSGLD
RMSprop+D
pSGLD+D

RMSprop+BN
pSGLD+BN
RMSprop+D+BN
pSGLD+D+BN

Figure 6. Learning curves on
Cifar10. “D” indicates Dropout.

We plot the learn-
ing curves of the first
30 epochs in Fig 6.
The performance
between different
learning algorithms
on this image dataset
are consistent with
those on shapes.
We see that pSGLD
reaches lower errors
than RMSprop; this
is also true when they
are used with Dropout. BN can improve the performance
in general, and it allows us to increase the step sizes and
speed up learning. Interestingly, the use of either pSGLD
or Dropout slows down learning initially. This is likely due
to the higher uncertainty imposed during learning, resulting
in more exploration of the parameter space. Increased
uncertainty, however, prevents overfitting and eventually
results in improved performance.

6. Conclusions
We provide a Bayesian framework for DNNs, where

the distributions on weights are learned via SG-MCMC.
The SG-MCMC is a natural extension of SGD-based op-
timization methods widely employed in deep learning; we
leverage ideas from the SGD literature to improve our pro-
posed SG-MCMC procedure. One may interpret DropCon-
nect as a stochastic sampling algorithm. It further allows us
to integrate Dropout and Batch-Normalization into the SG-
MCMC framework, to improve the posterior sampling of
DNNs. We have considered a broad range of applications to
shape classification and have demonstrated the advantages
of the proposed method over its optimization counterpart.
The proposed method yields state-of-the-art performance
on several tested models and datasets.

Acknowledgements This research was supported in part
by ARO, DARPA, DOE, NGA, ONR and NSF.

References
[1] NVIDIA cuDNN – GPU accelerated deep learning. 5
[2] M. Aubry, U. Schlickewei, and D. Cremers. The wave kernel

signature: A quantum mechanical approach to shape analy-
sis. In ICCV Workshops, 2011. 2

[3] S. Bai, X. Bai, W. Liu, and F. Roli. Neural shape codes for
3D model retrieval. PRL. 2

[4] X. Bai, W. Liu, and Z. Tu. Integrating contour and skeleton
for shape classification. In ICCV Workshops, 2009. 5, 6, 7

[5] S. Biasotti, A. Cerri, M. Abdelrahman, M. Aono, A. B.
Hamza, M. El-Melegy, A. Farag, V. Garro, A. Giachetti,
D. Giorgi, et al. SHREC14 track: Retrieval and classifica-
tion on textured 3D models. In Eurographics Workshop on
3DOR, 2014. 6, 7

[6] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra.
Weight uncertainty in neural networks. In ICML, 2015. 1, 2,
6

[7] D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein, U. Castel-
lani, and P. Vandergheynst. Learning class-specific descrip-
tors for deformable shapes using localized spectral convolu-
tional networks. In CGF, 2015. 2, 3

[8] A. M. Bronstein, M. M. Bronstein, L. J. Guibas, and M. Ovs-
janikov. Shape google: Geometric words and expressions for
invariant shape retrieval. ACM TOG, 2011. 1, 3, 7

[9] S. Bu, Z. Liu, J. Han, J. Wu, and R. Ji. Learning high-level
feature by deep belief networks for 3D model retrieval and
recognition. TMM, 2014. 2

[10] D. Carlson, E. Collins, Y. P. Hsieh, L. Carin, and V. Cevher.
Preconditioned spectral descent for deep learning. In NIPS,
2015. 6

[11] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
et al. ShapeNet: An information-rich 3D model repository.
arXiv preprint arXiv:1512.03012, 2015. 1

[12] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.
Return of the devil in the details: Delving deep into convo-
lutional nets. In BMVC, 2014. 1, 3, 8

[13] C. Chen, D. Carlson, Z. Gan, C. Li, and L. Carin. Bridg-
ing the gap between stochastic gradient mcmc and stochastic
optimization. In AISTATS, 2016. 5

[14] C. Chen, N. Ding, and L. Carin. On the convergence of
stochastic gradient MCMC algorithms with high-order inte-
grators. In NIPS, 2015. 2, 3

[15] T. Chen, E. B. Fox, and C. Guestrin. Stochastic gradient
Hamiltonian Monte Carlo. In ICML, 2014. 2, 3, 5

[16] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A
matlab-like environment for machine learning. In BigLearn,
NIPS Workshop, 2011. 5

[17] B. C. Csáji. Approximation with artificial neural networks.
Faculty of Sciences, Etvs Lornd University, Hungary. 3

[18] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli,
and Y. Bengio. Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization. In
NIPS, 2014. 3

[19] F. Dellaert, S. M. Seitz, S. Thrun, and C. Thorpe. Feature
correspondence: A Markov chain Monte Carlo approach. In
NIPS, 2000. 2

[20] N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel, and
H. Neven. Bayesian sampling using stochastic gradient ther-
mostats. In NIPS, 2014. 2, 3

[21] Y. Fang, J. Xie, G. Dai, M. Wang, F. Zhu, T. Xu, and
E. Wong. 3D deep shape descriptor. In CVPR, 2015. 2,
3

[22] Y. Gal and Z. Ghahramani. Dropout as a Bayesian approx-
imation: Representing model uncertainty in deep learning.
arXiv:1506.02142, 2015. 2

[23] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier
neural networks. In AISTATS, 2011. 3

[24] I. Goodfellow, D. Warde-farley, M. Mirza, A. Courville, and
Y. Bengio. Maxout networks. In ICML, 2013. 8

[25] R. Henao, Z. Gan, J. Lu, and L. Carin. Deep Poisson factor
modeling. In NIPS, 2015. 7

[26] J. M. Hernández-Lobato and R. P. Adams. Probabilistic
backpropagation for scalable learning of Bayesian neural
networks. In ICML, 2015. 1, 2, 3

[27] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Improving neural networks by preventing
co-adaptation of feature detectors. arXiv:1207.0580, 2012.
5

[28] G. E. Hinton and R. R. Salakhutdinov. Replicated softmax:
an undirected topic model. In NIPS, 2009. 7

[29] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015. 2, 5

[30] H. Ishwaran and J. S. Rao. Spike and slab variable selec-
tion: frequentist and Bayesian strategies. Annals of Statis-
tics, 2005. 5

[31] Q. Ke and Y. Li. Is rotation a nuisance in shape recognition?
In CVPR, 2014. 2

[32] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. ICLR, 2015. 3, 4

[33] D. P. Kingma, T. Salimans, and M. Welling. Variational
dropout and the local reparameterization trick. NIPS, 2015.
2

[34] A. Korattikara, V. Rathod, K. Murphy, and M. Welling.
Bayesian dark knowledge. NIPS, 2015. 1, 5

[35] A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images, 2009. 3, 5, 8

[36] H. Larochelle and S. Lauly. A neural autoregressive topic
model. In NIPS, 2012. 7

[37] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
2015. 3

[38] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 1998. 3, 5, 7

[39] C. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-
supervised nets. AISTATS, 2015. 8

[40] M. W. Lee and I. Cohen. Human upper body pose estimation
in static images. In ECCV. 2

[41] C. Li, C. Chen, D. Carlson, and L. Carin. Preconditioned
stochastic gradient Langevin dynamics for deep neural net-
works. In AAAI, 2016. 2, 3, 4, 5

[42] C. Li, C. Chen, K. Fan, and L. Carin. High-order stochastic
gradient thermostats for Bayesian learning of deep models.
In AAAI, 2016. 2

[43] C. Li and A. B. Hamza. Intrinsic spatial pyramid matching
for deformable 3D shape retrieval. IJMIR, 2013. 7

[44] C. Li and A. B. Hamza. A multiresolution descriptor for
deformable 3D shape retrieval. The Visual Computer, 2013.
7

[45] C. Li, M. Ovsjanikov, and F. Chazal. Persistence-based
structural recognition. In CVPR, 2014. 1

[46] C. Li, X. You, A. Ben Hamza, W. Zeng, and L. Zhou. Dis-
tinctive parts for shape classification. In ICWAPR, 2011. 7

[47] K.-L. Lim and H. K. Galoogahi. Shape classification using
local and global features. In PSIVT, 2010. 7

[48] M. Lin, Q. Chen, and S. Yan. Network in network. ICLR,
2014. 8

[49] H. Ling and D. W. Jacobs. Shape classification using the
inner-distance. TPAMI, 2007. 6, 7

[50] Y. A. Ma, T. Chen, and E. B. Fox. A complete recipe for
stochastic gradient MCMC. NIPS, 2015. 3

[51] D. J. C. MacKay. A practical Bayesian framework for back-
propagation networks. Neural computation, 1992. 1, 3

[52] B. M. Marlin, K. Swersky, B. Chen, and N. D. Freitas. Induc-
tive principles for restricted Boltzmann machine learning. In
AISTATS, 2010. 7

[53] D. Maturana and S. Scherer. Voxnet: A 3D convolutional
neural network for real-time object recognition. IROS, 2015.
8

[54] J. D. Mcauliffe and D. M. Blei. Supervised topic models. In
NIPS, 2008. 7

[55] R. M. Neal. Bayesian learning for neural networks. PhD
thesis, University of Toronto, 1995. 1, 3

[56] R. M. Neal. MCMC using Hamiltonian dynamics. Hand-
book of MCMC, 2011. 4

[57] S. Patterson and Y. W. Teh. Stochastic gradient Riemannian
Langevin dynamics on the probability simplex. In NIPS,
2013. 4

[58] D. Pickup, X. Sun, P. L. Rosin, R. Martin, Z. Cheng, Z. Lian,
M. Aono, A. B. Hamza, A. Bronstein, M. Bronstein, et al.
SHREC14 track: Shape retrieval of non-rigid 3D human
models. Eurographics Workshop on 3DOR, 2014. 7

[59] Y. Pu, X. Yuan, A. Stevens, C. Li, and L. Carin. A deep
generative deconvolutional image model. In AISTATS, 2016.
3

[60] H. Robbins and S. Monro. A stochastic approximation
method. The annals of mathematical statistics, 1951. 1, 4

[61] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet large scale visual
recognition challenge. IJCV, 2015. 1, 8

[62] B. Shi, S. Bai, Z. Zhou, and X. Bai. DeepPano: Deep
panoramic representation for 3D shape recognition. SPL. 8

[63] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.
1, 3, 8

[64] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. JMLR, 2014. 2, 5

[65] N. Srivastava, R. R. Salakhutdinov, and G. E. Hinton. Mod-
eling documents with deep Boltzmann machines. UAI, 2013.
7

[66] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-
view convolutional neural networks for 3D shape recogni-
tion. In ICCV, 2015. 2, 8

[67] J. Sun, M. Ovsjanikov, and L. Guibas. A concise and prov-
ably informative multi-scale signature based on heat diffu-
sion. In CGF, 2009. 2

[68] K. B. Sun and B. J. Super. Classification of contour shapes
using class segment sets. In CVPR, 2005. 7

[69] Y. W. Teh, A. H. Thiéry, and S. J. Vollmer. Consistency
and fluctuations for stochastic gradient Langevin dynamics.
2015. 2

[70] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop. Coursera:
Neural Networks for Machine Learning, 2012. 3, 4

[71] Z. Tu and S.-C. Zhu. Image segmentation by data-driven
Markov chain Monte Carlo. TPAMI, 2002. 2

[72] A. Vehtari, J. Ojanen, et al. A survey of Bayesian predic-
tive methods for model assessment, selection and compari-
son. Statistics Surveys, 2012. 3

[73] S. J. Vollmer, K. C. Zygalakis, and Y. W. Teh. (Non-
)asymptotic properties of stochastic gradient Langevin dy-
namics. Technical Report arXiv:1501.00438, 2015. 5

[74] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Reg-
ularization of neural networks using DropConnect. In ICML,
2013. 2, 5

[75] F. Wang, L. Kang, and Y. Li. Sketch-based 3D shape retrieval
using convolutional neural networks. In CVPR, 2015. 2

[76] S. Wang and C. Manning. Fast Dropout training. In ICML,
2013. 5

[77] X. Wang, B. Feng, X. Bai, W. Liu, and L. J. Latecki. Bag
of contour fragments for robust shape classification. Pattern
Recognition, 2014. 6, 7

[78] M. Welling and Y. W. Teh. Bayesian learning via stochastic
gradient Langevin dynamics. In ICML, 2011. 1, 2, 3, 4

[79] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3D ShapeNets: A deep representation for volumetric
shapes. In CVPR, 2015. 2, 3, 8

[80] J. Xie, Y. Fang, F. Zhu, and E. Wong. Deep shape: Deep
learned shape descriptor for 3D shape matching and retrieval.
In CVPR, 2015. 2

[81] M. Zeiler and R. Fergus. Stochastic pooling for regulariza-
tion of deep convolutional neural networks. ICLR, 2013. 3,
8

[82] S. Zhu, F. Dellaert, and Z. Tu. Markov chain Monte Carlo
for computer vision. A tutorial at ICCV, 2005. 2

