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Introduction

Problem of interest: How to develop deep generative models for
documents that are represented in bag-of-words form?

Directed Graphical Models:
Latent Dirichlet Allocation (LDA) (Blei et al., 2003)
Focused Topic Model (FTM) (Williamson et al., 2010)
Poisson Factor Analysis (PFA) (Zhou et al., 2012)

Going “Deep”?
Hierarchical tree-structured topic models
nested Chinese Restaurant Process (nCRP) (Blei et al., 2004)
Hierarchical Dirichlet Process (HDP) (Teh et al., 2006)
nested Hierarchical Dirichlet Process (nHDP) (Paisley et al., 2015)

How about we want to model general topic correlations?
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Introduction

Undirected Graphical Models:
Replicated Softmax Model (RSM) (Salakhutdinov and Hinton,
2009b)
One generalization of the Restricted Boltzmann Machine (RBM)
(Hinton, 2002)

Going Deep?
Deep Belief Networks (DBN) (Hinton et al., 2006; Hinton and
Salakhutdinov, 2011)
Deep Boltzmann Machines (DBM) (Salakhutdinov and Hinton,
2009a; Srivastava et al., 2013)

Topics are not defined “properly”.
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Introduction

Main idea:
Poisson Factor Analysis (PFA) + Deep Sigmoid Belief Network
(SBN) or Restricted Boltzmann Machine (RBM).
PFA is employed to interact with data at the bottom layer.
Deep SBN or RBM serve as a flexible prior for revealing topic
structure.
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Scalable Deep Poisson Factor Analysis for Topic Modeling

In the experiments we consider both the deep SBN and
deep RBM for representation of the latent binary units,
which are connected to topic usage in a given document.

Discussion An important benefit of SBNs over RBMs
is that in the former sparsity or shrinkage priors can be
readily imposed on the global parameters W(1), and fully
Bayesian inference can be implemented as shown in Gan
et al. (2015). The RBM relies on an approximation tech-
nique known as contrastive divergence (Hinton, 2002), for
which prior specification for the model parameters is lim-
ited.

2.3. Deep Architecture for Topic Modeling

Specifying a prior distribution onh(2)
n as in (3) might be too

restrictive in some cases. Alternatively, we can use another
SBN prior for h(2)

n , in fact, we can add multiple layers as
in Gan et al. (2015) to obtain a deep architecture,

p(h(1)
n , . . . ,h(L)

n ) = p(h(L)
n )

∏L
`=2 p(h

(`−1)
n |h(`)

n ), (6)

where L is the number of layers, p(h(L)
n ) is the prior for the

top layer defined as in (3), p(h(`−1)
n |h(`)

n ) is defined in (4),
and the weights W(`) ∈ RK`×K`+1 and biases c(`) ∈ RK`

are omitted from the conditional distributions to keep no-
tation uncluttered. A similar deep architecture may be de-
signed for the RBM (Salakhutdinov & Hinton, 2009b).

Instead of employing the beta-Bernoulli specification for
h(1)
n as in the NB-FTM, which assumes independent topic

usage probabilities, we propose using (6) instead as the
prior for h(1)

n , thus

p(xn,hn) = p(xn|h(1)
n )p(h(1)

n , . . . ,h(L)
n ) , (7)

where hn , {h(1)
n , . . . ,h(L)

n }, and p(xn|h(1)
n ) as in (2).

The prior p(h(1)
n |h(2)

n . . . ,h(L)
n ) can be seen as a flexible

prior distribution over binary vectors that encodes high-
order interactions across elements of h(1)

n . The graphi-
cal model for our model, Deep Poisson Factor Analysis
(DPFA) is shown in Figure 1.

3. Scalable Posterior Inference
We focus on learning our model with fully Bayesian al-
gorithms, however, emerging large-scale corpora prohibit
standard MCMC inference algorithms to be applied di-
rectly. For example, in the experiments, we consider the
RCV1-v2 and the Wikipedia corpora, which contain about
800K and 10M documents, respectively. Therefore, fast
algorithms for big Bayesian learning are essential. While
parallel algorithms based on distributed architectures such
as the parameter server (Ho et al., 2013; Li et al., 2014)
are popular choices, in the work presented here, we focus
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Figure 1. Graphical model for the Deep Poisson Factor Analysis
with three layers of hidden binary hierarchies. The directed binary
hierarchy may be replaced by a deep Boltzmann machine.

on another direction for scaling up inference by stochas-
tic algorithms, where mini-batches instead of the whole
dataset are utilized in each iteration of the algorithms.
Specifically, we develop two stochastic Bayesian inference
algorithms based on Bayesian conditional density filter-
ing (Guhaniyogi et al., 2014) and stochastic gradient ther-
mostats (Ding et al., 2014), both of which have theoretical
guarantees in the sense of asymptotical convergence to the
true posterior distribution.

3.1. Bayesian conditional density filtering

Bayesian conditional density filtering (BCDF) is a re-
cently proposed stochastic algorithm for Bayesian online
learning (Guhaniyogi et al., 2014), that extends Markov
chain Monte Carlo (MCMC) sampling to streaming data.
Sampling in BCDF proceeds by drawing from the condi-
tional posterior distributions of model parameters, obtained
by propagating surrogate conditional sufficient statistics
(SCSS). In practice, we repeatedly update the SCSS using
the current mini-batch and draw S samples from the condi-
tional densities using, for example, a Gibbs sampler. This
eliminates the need to load the entire dataset into mem-
ory, and provides computationally cheaper Gibbs updates.
More importantly, it can be proved that BCDF leads to an
approximation of the conditional distributions that produce
samples from the correct target posterior asymptotically,
once the entire dataset is seen (Guhaniyogi et al., 2014).

In the learning phase, we are interested in learning the
global parameters Ψg = ({φk}, {rk}, γ0, {W(`), c(`)}).
Denote local variables as Ψl = (Θ,H(`)), and let Sg rep-
resent the SCSS for Ψg , the BCDF algorithm can be sum-
marized in Algorithm 1. Specifically, we need to obtain the
conditional densities, which can be readily derived granted
the full local conjugacy of the proposed model. Using dot
notation to represent marginal sums, e.g., x·nk ,

∑
p xpnk,

we can write the key conditional densities for (2) as (Zhou
& Carin, 2015)

Figure: Graphical model for the Deep Poisson Factor Analysis with three layers of hidden binary hierarchies. The directed
binary hierarchy may be replaced by a deep Boltzmann machine.
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Model Formulation

Poisson Factor Analysis: (Zhou et al., 2012)
We represent a discrete matrix X ∈ ZP×N

+ containing counts from
N documents and P words as

X = Pois(Φ(Θ ◦ H(1))) . (1)

Each column of Φ, φk , encodes the relative importance of each
word in topic k .
Each column of Θ, θn, contains relative topic intensities specific to
document n.
Each column of H(1), h(1)

n , defines a sparse set of topics
associated with each document.
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Model Formulation

Poisson Factor Analysis: (Zhou et al., 2012)
We construct PFAs by placing Dirichlet priors on φk and gamma
priors on θn.

xpn =
∑K

k=1 xpnk , xpnk ∼ Pois(φpkθknh(1)
kn ) , (2)

with priors specified as φk ∼ Dir(aφ, . . . ,aφ),
θkn ∼ Gamma(rk ,pn/(1− pn)), rk ∼ Gamma(γ0,1/c0), and
γ0 ∼ Gamma(e0,1/f0).

Previously, a beta-Bernoulli process prior is defined on h(1)
n ,

assuming topic independence (Zhou and Carin, 2015).

The novelty in our models comes from the prior for h(1)
n .
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Model Formulation

Structured Priors on the Latent Binary matrix:

Assume h(1)
n ∈ {0,1}K1 , we define another hidden set of units

h(2)
n ∈ {0,1}K2 placed at a layer “above” h(1)

n .
Modeling with the RBM: (Undirected)

− E(h(1)
n ,h(2)

n ) = (h(1)
n )>c(1) + (h(1)

n )>W(1)h(2)
n + (h(2)

n )>c(2) . (3)

Modeling with the SBN (Neal, 1992): (Directed)

p(h(2)
k2n = 1) = σ(c(2)

k2
) , (4)

p(h(1)
k1n = 1|h(2)

n ) = σ
(
(w (1)

k1
)>h(1)

n + c(1)
k1

)
. (5)
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Model Formulation

Going Deep?
Add multiple layers of SBNs or RBMs.
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Scalable Deep Poisson Factor Analysis for Topic Modeling
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Figure 1. Graphical model for the Deep Poisson Factor Analysis
with three layers of hidden binary hierarchies. The directed binary
hierarchy may be replaced by a deep Boltzmann machine.

on another direction for scaling up inference by stochas-
tic algorithms, where mini-batches instead of the whole
dataset are utilized in each iteration of the algorithms.
Specifically, we develop two stochastic Bayesian inference
algorithms based on Bayesian conditional density filter-
ing (Guhaniyogi et al., 2014) and stochastic gradient ther-
mostats (Ding et al., 2014), both of which have theoretical
guarantees in the sense of asymptotical convergence to the
true posterior distribution.

3.1. Bayesian conditional density filtering

Bayesian conditional density filtering (BCDF) is a re-
cently proposed stochastic algorithm for Bayesian online
learning (Guhaniyogi et al., 2014), that extends Markov
chain Monte Carlo (MCMC) sampling to streaming data.
Sampling in BCDF proceeds by drawing from the condi-
tional posterior distributions of model parameters, obtained
by propagating surrogate conditional sufficient statistics
(SCSS). In practice, we repeatedly update the SCSS using
the current mini-batch and draw S samples from the condi-
tional densities using, for example, a Gibbs sampler. This
eliminates the need to load the entire dataset into mem-
ory, and provides computationally cheaper Gibbs updates.
More importantly, it can be proved that BCDF leads to an
approximation of the conditional distributions that produce
samples from the correct target posterior asymptotically,
once the entire dataset is seen (Guhaniyogi et al., 2014).

In the learning phase, we are interested in learning the
global parameters Ψg = ({φk}, {rk}, γ0, {W(`), c(`)}).
Denote local variables as Ψl = (Θ,H(`)), and let Sg rep-
resent the SCSS for Ψg , the BCDF algorithm can be sum-
marized in Algorithm 1. Specifically, we need to obtain the
conditional densities, which can be readily derived granted
the full local conjugacy of the proposed model. Using dot
notation to represent marginal sums, e.g., x·nk ,

∑
p xpnk,

we can write the key conditional densities for (2) as (Zhou
& Carin, 2015)

Figure: Graphical model for the Deep Poisson Factor Analysis with three layers of hidden binary hierarchies. The directed
binary hierarchy may be replaced by a deep Boltzmann machine.
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Scalable Posterior Inference

Challenge: Designing scalable Bayesian inference algorithms.
Solutions: Scaling up inference by stochastic algorithms.

Applying Bayesian conditional density filtering algorithm
(Guhaniyogi et al., 2014).
Extending recently proposed work on stochastic gradient
thermostats (Ding et al., 2014).
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Scalable Posterior Inference

Bayesian conditional density filtering (BCDF):
Repeatedly updating the surrogate conditional sufficient statistics
(SCSS) using the current mini-batch.
Drawing samples from the conditional posterior distributions of
model parameters, based on SCSS.
“stochastic Gibbs-style” updates.

Input: text documents, i.e., a count matrix X.
Initialize Ψ

(0)
g randomly and set S(0)

g all to zero.
for t = 1 to∞ do

Get one mini-batch X(t).
Initialize Ψ

(t)
g = Ψ

(t−1)
g , and S(t)

g = S(t−1)
g .

Initialize Ψ
(t)
l randomly.

for s = 1 to S do
Gibbs sampling for DPFA on X(t).
Collect samples Ψ1:S

g ,Ψ1:S
l and S1:S

g .
end for
Set Ψ(t)

g = mean(Ψ1:S
g ), and S(t)

g = mean(S1:S
g ).

end for

Ψg : global parameters
Ψl : local hidden variables
Sg : SCSS for Ψg
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Scalable Posterior Inference

Stochastic Gradient Nóse-Hoover Thermostats (SGNHT):
Extending Hamiltonian Monte Carlo using stochastic gradient.
Introducing thermostat to maintain system temperature.
Adaptively absorbing stochastic gradient noise.
The motion of the particles in the system are defined by the
stochastic differential equations (SDE)

dΨg = vdt , dv = f̃ (Ψg)dt − ξvdt +
√

DdW ,

dξ =
(

1
M vT v − 1

)
dt , (6)

where Ψg ∈ RM are model parameters, v ∈ RM are the
momentum variables, f̃ (Ψg) , −∇Ψg Ũ(Ψg), and Ũ(Ψg) is the
negative log-posterior.
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Scalable Posterior Inference

Extension:
Extending the SGNHT by introducing multiple thermostat
variables (ξ1, · · · , ξM) into the system such that each ξi controls
one degree of the particle momentum.
The proposed SGNHT is defined by the following SDEs

dΨg = vdt , dv = f̃ (Ψg)dt − Ξvdt +
√

DdW ,

dΞ = (q− I) dt , (7)

where Ξ = diag(ξ1, ξ2, · · · , ξM), q = diag(v2
1 , · · · , v2

M)

Theorem

The equilibrium distribution of the SDE system in (7) is

p(Ψg ,v ,Ξ) ∝ exp
(
−1

2
v>v − U(Ψg)−

1
2

tr
{
(Ξ− D)> (Ξ− D)

})
.
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Scalable Posterior Inference

Stochastic Gradient Nóse-Hoover Thermostats (SGNHT):

Input: text documents, i.e., a count matrix X.
Random Initialization.
for t = 1 to∞ do

Ψ
(t+1)
g = Ψ

(t)
g + v (t)h.

v (t+1) = f̃ (Ψ(t+1)
g )h − Ξ(t)v (t)h +

√
2DhN (0, I).

Ξ(t+1) = Ξ(t) + (q(t+1) − I)h, where q =
diag(v2

1 , . . . , v
2
M).

end for

Discussion:
BCDF: ease of implementation, but prefers the conditional
densities for all the parameters.
SGNHT: more general and robust, fast convergence.
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Scalable Posterior Inference
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Experiments

Datasets:
20 Newsgroups: 20K documents with a vocabulary size of 2K.
RCV1-v2: 800K documents with a vocabulary size of 10K.
Wikipedia: 10M documents with a vocabulary size of 8K.
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Experiments

Quantitative Evaluation:

Table: 20 Newsgroups.

MODEL METHOD DIM PERP.
DPFA-SBN-t GIBBS 128-64-32 827
DPFA-SBN GIBBS 128-64-32 846
DPFA-SBN SGNHT 128-64-32 846
DPFA-RBM SGNHT 128-64-32 896
DPFA-SBN BCDF 128-64-32 905
DPFA-SBN GIBBS 128-64 851
DPFA-SBN SGNHT 128-64 850
DPFA-RBM SGNHT 128-64 893
DPFA-SBN BCDF 128-64 896
LDA GIBBS 128 893
NB-FTM GIBBS 128 887
RSM CD5 128 877
NHDP SVB (10,10,5)� 889

Table: RCV1-v2 & Wikipedia.

MODEL METHOD DIM RCV WIKI
DPFA-SBN SGNHT 1024-512-256 964 770
DPFA-SBN SGNHT 512-256-128 1073 799
DPFA-SBN SGNHT 128-64-32 1143 876
DPFA-RBM SGNHT 128-64-32 920 942
DPFA-SBN BCDF 128-64-32 1149 986
LDA BCDF 128 1179 1059
NB-FTM BCDF 128 1155 991
RSM CD5 128 1171 1001
NHDP SVB (10,5,5)� 1041 932
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Experiments

Quantitative Evaluation:
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Figure: Perplexities. (Left) 20 News. (Middle) RCV1-v2. (Right) Wikipedia.
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Experiments

Topics we learned on 20 Newsgroups:

T1 T3 T8 T9 T10 T14 T15 T19 T21 T24
year people group world evidence game israel software files team
hit real groups country claim games israeli modem file players
runs simply reading countries people win jews port ftp player
good world newsgroup germany argument cup arab mac program play
season things pro nazi agree hockey jewish serial format teams
T25 T26 T29 T40 T41 T43 T50 T54 T55 T64
god fire people wrong image boston problem card windows turkish
existence fbi life doesn program toronto work video dos armenian
exist koresh death jim application montreal problems memory file armenians
human children kill agree widget chicago system mhz win turks
atheism batf killing quote color pittsburgh fine bit ms armenia
T65 T69 T78 T81 T91 T94 T112 T118 T120 T126
truth window drive makes question code children people men sex
true server disk power answer mit father make women sexual
point display scsi make means comp child person man cramer
fact manager hard doesn true unix mother things hand gay
body client drives part people source son feel world homosexual
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Experiments

Visualization:
Sports, Computers, and Poltics/Law.
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Figure: Graphs induced by the correlation structure learned by DPFA-SBN for
the 20 Newsgroups.

Presented by David Carlson (Duke) Scalable DPFA July 9th, 2015 19 / 23



Summary

Model: Deep Poisson Factor Analysis
PFA is employed to interact with data at the bottom layer.
Deep SBN or RBM serve as a flexible prior for revealing topic
structure.

Scalable Inference:
Bayesian conditional density filtering.
Stochastic gradient thermostats.

https://github.com/zhegan27/dpfa_icml2015
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Questions?
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