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Abstract

This paper presents theory for Normalized Random Measures (NRMs),
Normalized Generalized Gammas (NGGs), a particular kind of NRM, and
Dependent Hierarchical NRMs which allow networks of dependent NRMs to
be analysed. These have been used, for instance, for time-dependent topic
modelling. In this paper, we first introduce some mathematical background
of completely random measures (CRMs) and their construction from Poisson
processes, and then introduce NRMs and NGGs. Slice sampling is also intro-
duced for posterior inference. The dependency operators in Poisson processes
and for the corresponding CRMs and NRMs is then introduced and Posterior
inference for the NGG presented. Finally, we give dependency and composi-
tion results when applying these operators to NRMs so they can be used in a
network with hierarchical and dependent relations.

Keywords

completely random measures; normalized randomized measures; normalized
Generalized gamma process; dependent hierarchical normalized randomized
measures; hierarchical models;
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4 Normalized Random Measures

1 Introduction

This paper presents theory for Normalized Random Measures (NRMs), Normalized
Generalized Gammas (NGGs), a particular kind of NRM, and Dependent Hierar-
chical NRMs which allow networks of dependent NRMs to be analysed. These have
been used, for instance, for time-dependent topic modelling [CDB12].

Dependency models are getting more and more popular in machine learning re-
cently due to the fact of correlated data we are facing at, e.g., real data is always
correlated with each other rather than independent. The pioneer work on this topic
goes to MachEachern [Mac99, Mac00], where he treated the jumps and atoms to be
stochastic between dependent models. While there are many ways of constructing
dependent nonparametric models, e.g., from a stick-breaking construction [GS09],
or from a hierarchical construction [TJBB06], in this paper, following the idea
of [LGF10], we construct dependency normalized random measures from the under-
lying Poisson processes of the corresponding completely random measures [Kin67].
This construction is intuitive and allow flexibly controlling of the dependencies. A
related construction in the statistical literature is made by Lijoi et al. [A. 12] that
deals with modeling two groups of data.

In this paper, we first introduce in Section 2 some mathematical background of
completely random measures (CRMs) and their construction from Poisson processes,
and then introduce NRMs and NGGs. Slice sampling is also introduced to do
the posterior sampling of NRMs using techniques from [GW11]. The dependency
operators in Poisson processes and for the corresponding CRMs and NRMs is then
introduced in Section 3 following the work of [Kin93, LGF10]. Posterior inference
for the NGG are then developed in Section 4 based on the results of [JLP09]. Then
we give the dependency and composition results when applying these operators to
NRMs in Section 5. Proofs are given in the Appendix, Section A.

2 Background

In this section we briefly introduce background of Poisson processes, the correspond-
ing completely random measures, dependency operations on these random measures,
and normalized random measures.

Section 2.1 explains how to construct completely random measures from Poisson
processes. Section 3.1 introduces operations on Poisson processes to construct de-
pendent Poisson processes. Section 3.2 adapts these operations to the corresponding
completely random measures (CRMs). Constructing normalized random measures
(NRMs) from CRMs is discussed in Section 2.2 along with details of the Normalized
Generalized Gamma (NGG), a particular kind of NRM for which the details have
been worked out. A slice sampler for sampling an NRM is described in Section 2.3.

We first give an illustration of the basic construction for an NRM. for a target
domain X. The Poisson process is used to create a countable (and usually) infinite
set of points in a product space of R+ with the target domain X, as shown in the left
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of Figure 1. The distribution is then a discrete one on these points. The distribution
can be pictured by dropping lines from each point (t, x) down to (0, x), and then
normalizing all these lines so their sum is one. The resulting picture shows the set
of weighted impulses that make up the constructed NRM on the target domain.

X

R
+

Counting process:

N(·) =
∑

k δ(Jk,xk)(·)

→

X

R
+

Completely random measure:

µ̃(·) =
∑

k Jkδxk(·)

Figure 1: Constructing a completely random measure from a counting process N(·)
with points at (Jk, xk).

2.1 Constructing Completely Random Measures from Pois-
son processes

In contrast to the general class of completely random measure (CRM) [Kin67], which
admits a unique decomposition as the summation over there parts: a deterministic
measure, a purely atomic measure with fixed atom locations and a discrete measure
with random jumps and atoms, in this paper, we restrict it to the class of pure jump
processes [FK72], which has the following form

µ̃ =
∞∑
k=1

Jkδxk , (1)

where J1, J2, · · · > 0 are called the jumps of the process, and x1, x2, · · · are a sequence
of independent random variables drawn from a base measurable space (X,B(X))1.

It is shown that these kinds of CRMs can be constructed from Poisson processes
with specific mean measures ν(·). We will start from some definitions.

Poisson Distributions: A random variable X taking values in N = {0, 1, · · · ,∞}
is said to have the Poisson distribution with mean c in (0,∞) if

p(X = k|c) =
e−cck

k!
, k ∈ N, (2)

1B(X) means the σ-algebra of X, we sometimes omit this and use X to denote the measurable
space.
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then X <∞ almost surely and E[X] = Var[X] = c.

Poisson Processes: Let (S,S) be a measure space where S is the σ-algebra of S.
Let ν(·) be a measure on it. A Poisson process on S is defined to be a random
subset Π ∈ S such that if N(A) is the number of points of Π in the measurable
subset A ⊆ S, then

a) N(A) is a random variable having the Poisson distribution with mean ν(A),
and

b) whenever A1, · · · , An are in S and disjoint, the random variables
N(A1), · · · , N(An) are independent.

The integer-value random measure N(·) is called a Poisson random measure and the
Poisson process is denoted as Π ∼ PoissonP(ν), where ν is called the mean measure
of the Poisson process.

Completely Random Measure: In this paper, we define a random measure on
(X,B(X)) to be a linear functional of the Poisson random measure N(·), whose mean
measure ν(dt, dx) defined on a product space S = R+ × X:

µ̃(B) =

∫
R+×B

tN(dt, dx), ∀B ∈ B(X). (3)

The mean measure ν(dt, dx) is called the Lévy measure of µ̃.

The general treatment of constructing random measures from Poisson random mea-
sures can be found in [Jam05]. Note that the random measure µ̃ in construction
(3) has the same form as Equation (1) because N(·) is composed of a countable
number of points. It can be proven to be a completely random measure [Kin67] on
X, meaning that for arbitrary disjoint subsets {Ai ∈ X} of the measurable space,
the random variables {µ̃(Ai)} are independent.

For the completely random measure defined above to always be finite, it is nec-
essary that

∫
R+×X t ν(dt, dx) be finite, and therefore for every z > 0, ν([z,∞)×X) =∫∞

z

∫
X ν(dt, dx) is finite [Kin93]. It follows that there will always be a finite number

of points with jumps Jk > z for that z > 0. Therefore in the bounded product space
[z,∞)×X the measure ν(dt, dx) is finite. So it is meaningful to sample those points
(Jk, xk) with Jk > z by first getting the count of points K sampled from a Poisson
with (finite) mean ν([z,∞)×X), and then to sample the K points according to the
distribution of ν(dt,dx)

ν([z,∞)×X)
.

Without loss of generality, we assume the Lévy measure of Equation (3) can be
decomposed as ν(dt, dx) = Mρη(dt|x)H(dx), where η denotes the hyper-parameters
if any, H(dx) is a probability measure on X so H(X) = 1, and M is called the mass
of the Lévy measure. Note the total measure of ρη(dt|x) is not standardized in any
way so in principle some mass could also appear in ρη(dt|x). The mass is used as a
concentration parameter for the random measure.
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A realization of µ̃ on X can be constructed by sampling from the underlying
Poisson process in a number of ways, either in rounds for decreasing bounds z using
the logic just given, or by explicitly sampling the jumps in order. The later goes as
follows [FK72]:

Lemma 1 (Sampling a CRM) Sample a CRM µ̃ with Lévy measure ν(dt, dx) =
Mρη(dt|x)H(dx) as follows.

• Draw i.i.d. samples xi from the base measure H(dx).

• Draw the corresponding weights Ji for these i.i.d. samples in decreasing order,
which goes as:

– Draw the largest jump J1 from the cumulative distribution function

P (J1 ≤ j1) = exp
{
−M

∫∞
j1
ρν(dt|xi)

}
.

– Draw the second largest jump J2 from the cumulative distribution function

P (J2 ≤ j2) = exp
{
−M

∫ j1
j2
ρν(dt|x2)

}
.

– · · ·

• The random measure µ̃ then can now be realized as µ̃ =
∑

i Jiδxi.

As a random variable is uniquely determined by its Laplace transformation, the
random measure µ̃ is uniquely characterized by its Laplace functional through the
Lévy-Khintchine representation of a Lévy process [Ç10]. That is, for any measurable
function f : X→ R+, we have

E
[
exp

{
−
∫
X
f(x)µ̃(dx)

}]
= exp

{
−
∫
R+×X

[1− exp {−tf(x)}] ν(dt, dx)

}
,(4)

Now instead of dealing with µ̃ itself, we deal with ν(dt, dx), which is called the
Lévy measure of µ̃, whose role in generating the measure via a Poisson process was
explained above.

In the case where the measure on the jumps is not dependent on the data x, so
ρη(dt|x) = ρη(dt), then µ̃ is called homogeneous, which is the case considered in this
paper. When f does not depend on x, (4) simplifies to

E [exp {−f µ̃(B)}] = exp

{
−M p(B)

∫
R+

[1− exp {−tf}] ρη(dt)
}
. (5)

Note the term inside the exponential plays an important role in subsequent theory,
so it is given a name.

Laplace exponent: The Laplace exponent, denoted as ψη(f) for a CRM with pa-
rameters η is given by

ψη(f) =

∫
R+×X

[1− exp {−tf}] ν(dt, dx)

= M

∫
R+

[1− exp {−tf}] ρη(dt) (homogeneous case) . (6)
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Note that to guarantee the positiveness of jumps in the random measure, ρ(dt)
in the Lévy measure should satisfy

∫∞
0
ρη(dt) = +∞ [ELP03], which leads to the

following equations:

ψη(0) = 0, ψη(+∞) = +∞. (7)

That ψη(f) is finite for finite positive f implies (or is a consequence of)
∫∞

0
tρη(dt)

being finite.

Remark There are thus four different ways to define or interpret a CRM:

1. via the linear functional of Equation (3),

2. through the Lévy-Khintchine representation of Equation (4) using the Laplace
exponent,

3. sampling in order of decreasing jumps using Lemma 1, and

4. sampling in blocks of decreasing jump values as discussed before Lemma 1.

2.2 Normalized random measures

Normalized Random Measures (NRM) Based on (3), a normalized random
measure on (X,B(X)) is defined as2

µ =
µ̃

µ̃(X)
. (8)

The original idea of constructing random probabilities by normalizing com-
pletely random measures on R, namely increasing additive processes, can be found
in [ELP03], where it is termed normalized random measures with independent in-
crement (NRMI) and the existence of such random measures is proved. This idea
can be easily generalized from R to any parameter space X, e.g., X being the Dirich-
let distribution space in topic modeling. Also note that the idea of normalized
random measures can be taken as doing a transformation Tr(·) on completely ran-
dom measures, that is µ = Tr(µ̃). In the normalized random measure case, Tr(·)
is a transformation such that Tr(µ̃(X)) = 1. A concise survey of other kinds of
transformations can be found in [LP10].

Taking different Lévy measures ν(dt, dx) of (4), we can obtain different NRMs.
We use NRM(η,M,H(·)) to denote the normalized random measure, where M is
the total mass, which usually needs to be sampled in the model, and H(·) is the
base probability measure, η is the set of other hyper-parameters to the measure on
the jumps, depending on the specific NRMs. In this paper, we are interested in a
class of NRMs called normalized generalized Gamma processes:

2In this paper, we use µ to denote a normalized random measure, while use µ̃ to denote its
unnormalized counterpart.
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Normalized Generalized Gamma Processes: Generalized Gamma processes
are random measures proposed by Brix [Bri99] for constructing shot noise Cox pro-
cesses. They have the Lévy measures as

ν(dt, dx) =
e−bt

t1+a
H(dx), b > 0, 0 < a < 1. (9)

By normalizing the generalized Gamma process as in (8), we obtain the normalized
generalized Gamma process (NGG).

Sometimes we also need the Gamma distribution. Because there are several param-
eterisations of this in use, we define it here.

Gamma distribution: The Gamma distribution has two parameters, shape a and
scale b, and is denoted Ga(a, b) with density function

p(x|Ga(a, b)) =
1

Γ(a)ba
xa−1e−bx .

For ease of representation and sampling, we convert the NGG into a different form
using the following lemma.

Lemma 2 Let a normalised random measure be defined using Lévy density
ν(dx, dt). Then scaling t by λ > 0 yields an equivalent NRM up to a factor. That is,
the normalised measure obtained using ν(dx, dt/λ) is equivalent to the normalised
measure obtained using λ ν(dx, dt).

By this lemma, without loss of generality, we can instead represent the NGG by
eliminating the parameter b above.

Normalized Generalized Gamma: The NGG with shape parameter a, to-
tal mass (or concentration) parameter M and base distribution H(·), denoted
NGG(a,M,H(·)), has Lévy density M ρa(dt)H(dx) where

ρa(t) =
a

Γ(1− a)

e−t

t1+a
.

Note that similar to the two parameter Poisson-Dirichlet process [PY97], the
normalized generalized Gamma process with a 6= 0 can also produce power-law
phenomenon, making it different from the Dirichlet process and suitable to model
real data.

Proposition 1 ([LMP07]) Let Kn be the number of components induced by the
NGG with parameter a and mass M or the Dirichlet process with total mass M .
Then for the NGG, Kn/n

a → Sa,M almost surely, where Sa,M is a strictly positive
random variable parameterized by a and M . For the DP, Kn/ log(n)→M .
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Figure 2: Power-law phenomena in NGG. The first plot shows the #data versus
#clusters compared with DP, the second plot shows the size s of each cluster versus
total number of clusters with size s.

Figure 2 demonstrates the power law phenomena in the NGG compared to the
Dirichlet process (DP). We sample it using the generalized Blackwell-MacQueen
sampling scheme [JLP09]. Each data to be sampled can choose an existing cluster
or create a new cluster, resulting in K clusters with N data points in total.

Many familiar stochastic processes are special/limiting cases of normalized gen-
eralized Gamma processes, e.g., Dirichlet processes arise when a → 0. Normalized
inverse-Gaussian processes (N-IG) arise when a = 1

2
and b = 1

2
. If b → 0, we get

the σ-stable process, and if a→ 0 and b depends on x, we get the extended Gamma
process.

Remark For the NGG, key formula used subsequently are as follows:

ψa(v) = M ((1 + v)a − 1)∫ ∞
L

ρa(dt) = |Q(−a, L)|∫ ∞
L

e−vtρa(dt) = (1 + v)a|Q(−a, L(1 + v))|∫ L

0

(
1− e−vt

)
ρa(t)dt = ((1 + v)a − 1) + (1 + v)a|Q(−a, L(1 + v))| − |Q(−a, L)|

where Q(x, y) = Γ(x, y)/Γ(x) is the regularized upper incomplete Gamma function.
Some mathematical libraries provide it for a negative first argument, or it can be
evaluated using

Q(−a, z) = Q(1− a, z)− 1

Γ(1− a)
z−ae−z,

using an upper incomplete Gamma function defined only for positive arguments.
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Finally, because probabilities for a NRM necessarily have the divisor
µ̃(X ) =

∑∞
k=1 Jk, and thus likelihoods of the NRM should involve powers of

µ̃(X ), a trick widely used to eliminate these terms is to do data augmentation via
the Gamma identity.

Latent relative mass: Consider the case where N data are observed. By intro-
ducing the auxiliary variable, called latent relative mass, UN = ΓN/µ̃(X ) where
ΓN ∼ Gamma(N, 1), then it follows that

1

µ̃(X )N
p(ΓN)dΓN =

UN−1
N

Γ(N)
e−UN µ̃(X )dUN

Thus the N -th power of the normaliser can be replaced by an exponential term in
the jumps which factorizes, at the expense of introducing the new latent variable UN .
To the best of our knowledge, the idea of this latent variable originals from [Jam05]
and is future explicitly studied in [JLP06, JLP09, GW11], etc..

2.3 Slice sampling normalized random measure mixtures

Slice sampling an NRM has been discussed in several papers, here we follow the
method in [GW11], to briefly introduce the ideas behind it. It deals with the nor-
malized random measure mixture of the type

θsi ∼ µ where µ =
∞∑
k=1

ωkδθk ,

Xi ∼ g0(·|θsi) (10)

where ωk = Jk/
∑∞

l=1 Jl, J1, J2, · · · are the jumps of the corresponding CRM defined
in (3), θk’s are the components of the mixture model drawn i.i.d. from a parameter
space H(·), si denotes the component that Xi belongs to, and g0(·|θk) is the density
function to generate data on component k.

Given the observations ~X, we introduce a slice latent variable ui for each xi so
that we only consider those components whose jump sizes Jk’s are larger than the
corresponding ui’s. Moreover, only jumps with size greater than L are considered,
and this is maintained my setting L ≤ mini ui. Sampling of the NRM can then
be done by only considering jumps greater than L. The count of such jumps, K
has a Poisson distribution, K ∼ Poisson(M

∫∞
L
ρη(dt)), while each jump has density

ρη(Jk)∫∞
L ρη(s)dt

.

Furthermore, the auxiliary variable UN (latent relative mass) is introduced to
decouple each individual jump Jk and their infinite sum of the jumps

∑∞
l=1 Jl ap-

peared in the denominators of ωk’s. For clarification, we list the notation and its
description in Table 1. Based on [GW11], we have the following posterior Lemma.
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Table 1: List of notation.

Notation Description

K #components with jump sizes larger than a threshold L

θk, k = 1, · · · ,K components in the mixture model

M total mass of the random measure

Jk, k = 1, · · · ,K jump sizes of the random measure with all Jk > L

Xi, i = 1, · · · , N observed data

nk, k = 1, · · · ,K #data attached to each component

N total number of data points

si, i = 1, · · · , N Variables indicating which component yi belongs to

ui, i = 1, · · · , N slice variable uniformly distributed in (0, Jsi ] for yi
L L = min{~u}
UN an auxiliary variable introduced to make the sampling feasible,

the latent relative mass

g0(·|θk) density function to generate data on component θk
h(θk) density of H(θk)

pM (M) prior for M

ν(dt,dx) Lévy measure of the random measure with decomposition
ν(dt,dx) = Mρη(dt)H(dx) considered in this paper

Lemma 3 The posterior of the infinite mixture model (10) with the above auxiliary
variables is proportional to

p(~θ, J1, · · · , JK , K, ~u,~s, UN , ~X|L,NRM(η,M,H(·))) ∝

UN−1
N exp

{
−UN

K∑
k=1

Jk

}
exp

{
−M

∫ L

0

(
1− e−UN t

)
ρη(t)dt

}

MK exp

{
−M

∫ ∞
L

ρη(t)dt

} K∏
k=1

ρη(Jk)h(θk)
N∏
i=1

1(Jsi > ui)g0(xi|θsi), (11)

where 1(a) is a indicator function returning 1 if a is true and 0 otherwise, h(·) is
the density of H(·), L ≤ min{~u}.

The expressions for the NGG needed to work with this lemma were given in the
remark at the end of Section 2.2. Thus the integral term in Equation (11) can be
turned into an expression involving incomplete Gamma functions.

2.3.1 Sampling:

First, we denote the parameter set as C =
{
~θ, J1, · · · , JK , K, ~u, L,~s, UN ,M

}
, then

the sampling goes as
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• Sampling ~s: From (11) we get

p(si = k|C\{si}) ∝ 1(Jk > ui)g0(yi|θk) (12)

• Sampling UN : Similarly

p(UN |C\{UN}) ∝ UN−1
N exp

{
−UN

K∑
k=1

Jk

}

exp

{
−M

∫ L

0

[1− exp {−UN t}] ρη(dt)
}
, (13)

which can be sampled using rejection sampling from a proposal distribution

Ga
(
n,
∑K

k=1 Jk

)
.

• Sampling θ: The posterior of θk with prior density h(θk) is

p(θk|C\{θk}) ∝ h(θ)
∏
i|si=k

g0(yi|θk). (14)

• Sampling K, {J1, · · · , JK}: Sampling for Jk can be done separately for those
associated with data points (fixed points) and for those that are not. Based
on [JLP09], when integrating out ~u in (11), the posterior of the jump Jk with
data attached (nk > 0) is proportional to

Jnkk exp {−UNJk} ρη(Jk), (15)

While for those without data attached (nk = 0), based on [GW11], conditional
on UN , the number of these jumps follows a Poisson distribution with mean

M

∫ ∞
L

exp{−UN t}ρη(dt),

while their lengths t have densities proportional to

exp{−UN t}ρη(dt)1(t > L).

• Sampling ~u: ~u are uniformly distributed in the interval (0, Jsi ] for each i.
After sampling the ~u, L is set to L = min{~u}.

• Sampling M : The posterior of M with prior pM(M) is

p(M |C\{M}) ∝ pM(M)MK exp

{
−M

[∫ ∞
L

ρη(dt) +

∫ L

0

[1− exp {−UN t}] ρη(dt)
]}

.(16)

pM(M) is usually taken to be Gamma distributed, so the posterior of M can
be sampled conveniently.
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3 Operations

This section introduces the dependency operations used. These are developed for
Poisson processes, CRMs and NRMs.

3.1 Operations on Poisson processes

We review three operations that transform Poisson processes in order to construct
dependent completely random measures. For details, refer to [Kin93, LGF10].

Superposition of Poisson processes Given a set of Poisson processes
Π1,Π2, · · · ,Πn, the superposition of these Poisson processes is defined as the
union of the points in these Poisson processes:

Π :=
n⋃
i=1

Πi. (17)

Lemma 4 (Superposition Theorem) Let Π1, · · · ,Πn be n independent Poisson
processes on S with Πk ∼ PoissonP(νk), then the superposition of these n Poisson
processes is still a Poisson process with Π ∼ PoissonP(

∑
i νi).

Subsampling of Poisson processes Subsampling of a Poisson process with sam-
pling rate q(θ) is defined to be selecting the points of the Poisson process via inde-
pendent Bernoulli trials with acceptance rate q(θ).

Lemma 5 (Subsampling Theorem) Let Π ∼ PoissonP(ν) be a Poisson process
on the space S and q : S→ [0, 1] be a measurable function. If we independently draw
zθ ∈ {0, 1} for each θ ∈ Π with P (zθ = 1) = q(θ), and let Πk = {θ ∈ Π : zθ = k} for
k = 0, 1, then Π0,Π1 are independent Poisson processes on S with S1−q(Π) := Π0 ∼
PoissonP((1− q)ν) and Sq(Π) := Π1 ∼ PoissonP(qν).

Point transition of Poisson processes Point transition of a Poisson process Π
on space (S,S), denoted as T (Π), is defined as moving each point of the Poisson
process independently to other locations following a probabilistic transition kernel
T , which is defined to be a function T : S × S → [0, 1] 3 such that for each θ ∈ S,
T (θ, ·) is a probability measure on E that describes the distribution of where the
point θ moves, and for each A ∈ S, T (·, A) is integrable. Thus, T (Π) := {θ′ : θ′ ∼
T (θ, ·)|θ ∈ Π}. With a little abuse of notation, we use T (θ) to denote a sample
from T (θ, ·) in this paper. Thus T (θ) is a stochastic function.

3In the following we will use T (·) to denote the point transition operation, while use T (·, ·) to
denote the corresponding transition kernel.
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Lemma 6 (Transition Theorem) Let Π ∼ PoissonP(ν) be a Poisson process on
space (S,S), T a probability transition kernel, then

T (Π) ∼ PoissonP(T ν). (18)

where T ν can be considered as a transformation of measures over S defined as
(T ν)(A) :=

∫
S T (θ, A)ν(dθ) for A ∈ S.

3.2 Operations on random measures

3.2.1 Operations on CRMs

The dependency operations defined on Poisson processes in Section 3.1 can be nat-
urally generalized to the completely random measures given the construction in (3).
Formally, we have

Superposition of CRMs Given n independent CRMs µ̃1, · · · , µ̃n on X, the su-
perposition (⊕̃) is defined as:

µ̃1⊕̃µ̃2⊕̃ · · · ⊕̃µ̃n := µ1 + µ2 + · · ·+ µn .

Subsampling of CRMs Given a CRM µ̃ =
∑∞

k=1 Jkδθk on X, and a measurable
function q : X→ [0, 1]. If we independently draw z(θ) ∈ {0, 1} for each θ ∈ X with
p(z(θ) = 1) = q(θ), the subsampling of µ̃, is defined as

S̃q(µ̃) :=
∑
k

z(θk)Jkδθk , (19)

Point transition of CRMs Given a CRM µ̃ =
∑∞

k=1 Jkδθk on X, the point tran-
sition of µ̃, is to draw atoms θ′k from a transformed base measure to yield a new
random measure as

T̃ (µ̃) :=
∞∑
k=1

Jkδθ′k .

3.2.2 Operations on NRMs

The operations on NRMs can be naturally generalized from those on CRMs:

Superposition of NRMs Given n independent NRMs µ1, · · · , µn on X, the su-
perposition (⊕) is:

µ1 ⊕ µ2 ⊕ · · · ⊕ µn := c1µ1 + c2µ2 + · · ·+ cnµn .

where the weights cm = µ̃m(X)∑
j µ̃j(X)

and µ̃m is the unnormalized random measures

corresponding to µm.
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Subsampling of NRMs Given a NRM µ =
∑∞

k=1 rkδθk on X, and a measurable
function q : X→ [0, 1]. If we independently draw z(θ) ∈ {0, 1} for each θ ∈ X with
p(z(θ) = 1) = q(θ), the subsampling of µ, is defined as

Sq(µ) :=
∑

k:z(θk)=1

rk∑
j z(θj)rj

δθk , (20)

Point transition of NRMs Given a NRM µ =
∑∞

k=1 rkδθk on X, the point tran-
sition of µ, is to draw atoms θ′k from a transformed base measure to yield a new
NRM as

T (µ) :=
∞∑
k=1

rkδθ′k .

The definitions are constructed so the following simple lemma holds.

Lemma 7 Superposition, subsampling or point transition of NRMs is equivalent to
superposition, subsampling or point transition of their underlying CRMs.

Thus one does not need to distinguish between whether these operations are on
CRMs or NRMs.

4 Posteriors for the NGG

This section develops posteriors for the single NGG, for a standard version

p
(
~X|NGG(a,M,H(·)

)
and a version conditioned on the latent relative mass UN ,

p
(
~X|UN ,NGG(a,M,H(·)

)
. The second version is done because, as shown, the first

version requires computing a complex recursive function.

4.1 Simple Posterior

James et al. [JLP09] develop posterior analysis as follows. This theorem simplifies
their results and specialises them to the NGG.

Theorem 2 (Posterior Analysis for the NGG) Consider the
NGG(a,M,H(·)). For a data vector ~X of length N there are K distinct val-
ues X∗1 , ..., X

∗
K with counts n1, ..., nK respectively (where each nk > 0). The

posterior marginal is given by

p
(
~X,K|NGG(a,M,H(·)

)
=

eMTN,Ka,M

aN−K+1

K∏
k=1

(1− a)nk−1h(X∗k) . (21)

where

TN,Ka,M =
aN−1

Γ(N)

∫ ∞
M

(
1−

(
M

t

)1/a
)N−1

tK−1e−tdt (22)



Chen & Buntine & Ding 17

is defined for N ∈ N+, K ∈ R and M ∈ R+ so M > 0. Moreover, the predictive
posterior is given by:

p(XN+1 ∈ dx| ~X,NGG (a,M,H(·)) = ω0H(dx) +
K∑
k=1

ωkδX∗k (dx)

where the weights sum to 1 (
∑K

k=0 ωk = 1) are derived as

ω0 ∝ a
TN+1,K+1
a,M

TN+1,K
a,M

ωk ∝ (nk − a) (23)

Note, TN,Ka,M is a strictly decreasing function of N and M , but an increasing func-

tion of K and a. Moreover, an alternative definition of TN,Ka,M derived using the
transformation t = M(1 + u)a is

TN,Ka,M =
aNMK

Γ(N)eM

∫
R+

uN−1

(1 + u)N−Ka
eM−M(1+u)adu ,

and various scaled versions of this integral are presented in the literature. Intro-
ducing a Γ(b/a, 1) prior on M and then marginalising out M makes the term in
eM−M(1+u)a disappear since the integral over M can be carried inside the integral
over u.

Corollary 1 Let ~µ ∼ NGG (a,M,H(·)) and suppose M ∼ Γ(b/a, 1) then it follows
that ~µ ∼ PDP(a, b,H(·))

For computation, the issue here will be computing the terms TN,Ka,M . Therefore
we present some results for this. These use Γ(x, y), the upper incomplete Gamma
function, defined for y > 0 and all real x.

Lemma 8 (Evaluating TN,Ka,M ) Have TN,Ka,M defined as in Theorem 2. Then the fol-
lowing formula hold:

T 1,K
a,M = Γ(K,M) , (24)

TN,Ka,M ≤ aN−1

Γ(N)
T 1,K
a,M , (25)

TN,Ka,M =
aN−1

Γ(N)

N−1∑
n=0

(−1)n
(
N − 1

n

)
Γ
(
K − n

a
,M
)
Mn/a , (26)

TN−1,K−1
a,M = TN,Ka,M +

(
N − 1

a
− (K − 1)

)
TN,K−1
a,M ∀N ≥ 2 . (27)

A variant of Equation (26) only applies for K ∈ N+,

TN,Ka,M =
aN−1

Γ(N)

N−1∑
n=0

(−1)n
(
N − 1

n

)(
1− n

a

)
K−1

Γ
(

1− n

a
,M
)
Mn/a . (28)
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Other recursions involve factors of 1/a and can be used when a = 1/R for some
R ∈ N+, R > 1. Note the function TN,Ka,M is well defined for non-integral K. Then

TN,Ka,M =
a

N − 1

(
TN−1,K
a,M −M1/aT

N−1,K−1/a
a,M

)
∀N ≥ 2 ,(29)

TN,Ka,M = (K − 1)TN,K−1
a,M +M1/a T

N−1,K−1−1/a
a,M ∀N ≥ 2 . (30)

Note the upper incomplete Gamma function becomes infinitesimal quickly for large
y and negative x because Γ(x, y) → yx−1e−y as y → ∞, and for positive y and
x ≤ 1, Γ(x, y) ≤ yx−1e−y. As y → 0 and x < 0, Γ(x, y) → −yx/x. Moreover, for
x < −1 a good approximation is given by Γ(x, y) ≈ yxe−y/(y− x+ 1). This implies
the series summation of Equation (26) will be unstable for large N since to a first
approximation it is a binomial expansion of (1 − 1)N . Experiments show this can
happen for N > 20, so the summation is not practically useful but good for checking
small values.

The recursion of Equation (27) recurses down on K. The inverted version, recurs-
ing up with TN,Ka,M on the left-hand side is unstable because it involves the subtraction

of two terms, TN−1,K−1
a,M and

(
N−1
a
− (K − 1)

)
TN,K−1
a,M . Thus errors magnify and it

is not practically useful for N > 20. However, the inverted version shows that TN,Ka,M

is related to a generalised Stirling number of the second kind.
Computing TN,Ka,M would go as follows. Fix an upper bound on K to be used,

denote in as Kmax. Values of TN,Ka,M need to be initialised for K = Kmax&N ≥ Kmax

and for K < Kmax&N = K. This can be done using either numerical integration or
a saddle point approximation using Equation (22). The saddle point approximation
requires an initial maximisation step, which can be done using Newton-Raphson
convergence, and typically has 6-decimal place accuracy for N > 50. Thereafter the
recursion of Equation (27) can be applied to recurse down on K.

Remark The Poisson-Dirichlet Process and Dirichlet Process are well known for
their ease of use in a hierarchical context [TJBB06, CDB11, BH12]. The NGG has
the same general form, which comes from it being a species sampling model.

The major issue with this posterior theory is that one needs to precompute the terms
TN,Ka,M . While the Poisson-Dirichlet Process has a similar style, it has a generalised
Stirling number dependent only on the discount a [BH12]. The difference is that
for the PDP we can tabulate these terms for a given discount parameter a and still
vary the concentration parameter (b above, but corresponding to M) easily. For the
NGG, any tables of TN,Ka,M would need to be recomputed with every change in mass
parameter M . This might represent a significant computational burden.

4.2 Conditional Posterior

James et al. [JLP09] also develop conditional posterior analysis as follows. This
theorem simplifies their results and specialises them to the NGG.
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Theorem 3 (Conditional Posterior Analysis for the NGG) Consider the
NGGa,M and the situation of Theorem 2. The conditional posterior marginal,
conditioned on the auxiliary variable UN , is given by

p
(
~X,K|UN = u,NGG (a,M,H(·)) , N

)
=

(Ma (1 + u)a)
K∑N

k=1 S
N
k,a (Ma (1 + u)a)

k

K∏
k=1

(1−a)nk−1h(X∗k) .

(31)
Moreover, the predictive posterior is given by:

p
(
XN+1 ∈ dx| ~X,UN = u,NGG (a,M,H(·)) , N

)
= ω0H(dx) +

K∑
k=1

ωkδX∗k (dx)

where the weights sum to 1 (
∑K

k=0 ωk = 1) are derived as

ω0 ∝ Ma (1 + u)a

ωk ∝ nk − a . (32)

The posterior for UN is given by:

p
(
UN = u| ~X,NGG (a,M,H(·)) , N

)
=

aMK

TN,Ka,M

uN−1

(1 + u)N−Ka
e−M(1+u)a . (33)

A posterior distribution is also presented by James et al. as their major result of
Theorem 1 [JLP09]. We adapt it here to the NGG.

Theorem 4 In the context of Theorem 3 the conditional posterior of the normalised
random measure µ̃ given data ~X of length N and latent relative mass UN = u is
given by

~µ =
T

T + J+

~µ′ +
J+

T + J+

K∑
k=1

pkδX∗k

where

~µ′ ∼ NGG

(
a,

M

1 + u
,H(·)

)
,

T ∼ fT (t) where Lévy measure of fT (t) =
Ma

Γ(1− a)
t−a−1e−(1+u)t ,

J+ ∼ Γ(N −Ka, 1 + u) ,

~p ∼ DirichletK (~n− a) .

Here, ~µ′, J+ and ~p are jointly independent and T , J+ and ~p are jointly independent.

Note in particular the densities given for ~µ′ and T are not independent from each
other. While an explicit density is not given for T , its expected value is easily
computed via the Laplace transform as Ma(1 + u)a−1.
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A joint form of the conditional posteriors presented in Theorem 3 can be de-
veloped, and can be derived from the general sampling form in Lemma 3. by
marginalising out jumps Jk and then taking the limit as L → 0. This matches
the conditionals of Theorem 3 so is seen to be correct.

Corollary 2 (Collapsed Sampling Posterior) In the context of Theorem 3, as-
sume there are K jumps with attached data (Jk such that nk > 0). The resultant
posterior is as follows:

p
(
~X,UN = u,K |N,NGG (a,M,H(·))

)
=

uN−1

(1 + u)N−Ka
(Ma)K eM−M(1+u)a

K∏
k=1

(1− a)nk−1h(X∗k) . (34)

Moreover, the posterior for jumps Jk with data count nk given ~X,UN = u,K,N is
Jk ∼ Ga(nk − a, 1 + u).

Remark With the use of the latent relative mass UN , the NGG lends itself to
hierarchical reasoning without a need to compute the recursive series TN,Ka,M . This
can be done with either the jumps integrated out, or the jumps retained.

5 Dependencies and Properties of Operations

This section presents a number of results to do with the operations applied to the
NRMs. First dependencies such as covariances are presented. Then some further
properties are developed for when the operations are used in a network.

5.1 Dependencies between NRMs via Operations

Properties of the NRMs here are given in terms of the Laplace exponent and its
derivatives. In the Dirichlet process case, we have ψ(v) = M log(1 + v), while in
the normalized generalized Gamma process case, we have ψa(v) = M ((1 + v)a − 1).
Because the dependencies involve the total masses significantly, we use a modified
version of the Laplace exponent in all these results. Define ψ̃η(v) = 1

M
ψη(v), which

has the mass removed.
Different from the Dirichlet process, the total masses M are no longer indepen-

dent from their normalized jumps in general normalized random measures. However,
we can still derive the correlations between different NRMs. The following Theorems
summarize these results.

Lemma 9 (Mean and Variance of an NRM) Given a normalized random
measure µ on X with the underlying Lévy measure ν(dt, dx) = Mρη(dt)P (dx), for
∀B ∈ B(X). The mean of this NRM is given by

E[µ(B)] = P (B) . (35)
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The variance of this NRM is given by

Var(µ(B)) = P (B)(P (B)− 1)M∫ ∞
0

vψ̃′′η(v) exp
{
−Mψ̃η(v)

}
dv . (36)

Remark For DP, the corresponding variances are:

VarDP (µ(B)) =
P (B)(1− P (B))

M + 1
.

For NGG, it is

VarNGG(µ(B)) = P (B)(1− P (B))
1− a
a

eMM
1
a |Γ(−1

a
,M)|.

For large M the upper incomplete Gamma function used here has the property that
eMM1+ 1

a |Γ(− 1
a
,M)| → 1 and so we get for large M

VarNGG(µ(B))→ P (B)(1− P (B))
1− a
Ma

.

Theorem 5 (Dependency via superposition) Suppose µi, i = 1, · · · , n are n
independent normalized random measures on X with the underlying Lévy measures
νi(dt, dx) = Miρη(dt)P (dx), let µ = µ1 ⊕ · · · ⊕ µn, B ∈ B(X), then the covariance
between µk(k < n) and µ is

Cov (µk(B), µ(B)) =

P (B)Mk

∫ ∞
0

γ(Mk, P (B), v) exp

{
−(
∑
j 6=k

Mj)ψ̃η(v)

}
dv

+P (B)2

(
2Mk∑
jMj

− 1

)
. (37)

where

γ(Mk, P (B), v) = (38)∫ v

0

(
P (B)Mkψ̃

′
η(v1)2 − ψ̃′′η(v1)

)
exp

{
−Mkψ̃η(v1)

}
dv1

Theorem 6 (Dependency via subsampling) Let µ̃ be a completely random
measure on X with Lévy measure ν(dt, dx) = Mρη(dt)P (dx), µ = µ̃

µ̃(X)
. The co-

variance between µ and its subsampling version Sq(µ), denoted as µq, with sampling
rate q(·) on B ∈ B(X) is

Cov (µq(B), µ(B)) =

P (B)Mq

∫ ∞
0

γ(Mq, P (B), v) exp
{
−(M −Mq)ψ̃η(v)

}
dv

+ P (B)2

(
2Mq −M

M

)
, (39)

where Mq := (qµ̃)(X) =
∫
X q(x)µ̃(x)dx.
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Theorem 7 (Dependency via point transition) Let µ̃ be a random measure on
X with Lévy measure ν(dt, dx) = Mρη(dt)P (dx), µ = µ̃

µ̃(X)
. Let B ∈ B(X), A =

T (B) := {x : x ∼ T (y, ·), y ∈ B} be the set of points obtained after the point
transition on B, thus P (A) =

∫
B
P (T (x))dx. Suppose A and B are disjoint (which

is usually the case when the transition operator T is appropriately defined), the
covariance between µ and its point transition version T (µ) on B ∈ B(X) is

Cov (µ(B), (Tµ)(B)) = P (A)P (B) (40)(
M2

∫ ∞
0

∫ v1

0

ψ̃′η(v2)2 exp
{
−Mψ̃η(v2)

}
dv2dv1 − 1

)
5.2 Properties of the three dependency operations

We first prove the following two Lemmas about superposition and subsampling of
CRMs.

A straightforward extension of [Theorem 1 JLP09] leads to the following Lemma
about the posterior of CRMs under superposition.

Lemma 10 (Posterior of CRMs under superposition) Let µ̃1, µ̃2, · · · , µ̃n be
n independent CRMs defined on space X, with Lévy measures νi(dt, dx) for i =
1, · · · , n. Let

µ̃ = ⊕ni=1µ̃i. (41)

Then given observed data X = {Xi} (we use X∗k to denote the distinct values among
X) and a latent relative mass Un, the posterior of µ̃ is given by (we use x|(y) to
denote the variable x conditioned on y)

µ̃|(Un, X) = µ̃|(Un) +
K∑
k=1

JkδX∗k , (42)

where

1. µ̃|(Un) is a CRM with Lévy measure

ν(dt, dx) = e−ut

(
n∑
i=1

νi(dt, dx)

)
,

2. X∗k (k = 1, · · · , K) are the fixed points of discontinuity and Jk’s are the cor-
responding jumps with densities proportional to

tnke−ut

(
n∑
i=1

νi(dt, dx)

)
,

where nk is the number of data attached at jump Jk.
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3. µ̃|(Un) and Jk’s are independent.

We can prove the following formula of the Lévy measure under different depen-
dency operations.

Lemma 11 (Lévy measure under dependency operations) Let µ̃ =∑∞
k=1 JkδX∗k be a CRM with Lévy measure ν(dt, dx).

• Let Sq(µ̃) be its subsampling version with acceptance rate q(·), then Sq(µ̃) has
the Lévy measure of q(dx)ν(dt, dx).

• Let T (µ̃) be its point transition version, where ν(dt, dx) = Mρη(dt)H(dx).
Then its Lévy measure is Mρη(dt)T (H)(dx) where T (H) is the transformed
base measure.

• Let µ̃1⊕µ̃2 be the superposition, then its Lévy measure is ν1(dt, dx)+ν2(dt, dx).

Now we give some properties about compositions of of the dependency operations
which follow simply.

Lemma 12 (Composition of dependency operators) Given CRMs µ̃, µ̃′ and
µ̃′′, the following hold:

• Two subsampling operations are commutative. So with acceptance rates q(·)
and q′(·), then Sq

′
(Sq(µ̃)) = Sq(Sq

′
(µ̃)). Both are equal to Sq

′q(µ̃)).

• A constant subsampling operation commutes with a point transition operation.
Thus Sq(T (µ̃)) = T (Sq(µ̃)) where the acceptance rate q is indepenent of the
data space.

• Subsampling and point transition operations distribute over superposition.
Thus for acceptance rate q(·) and point transition T (·),

Sq(µ̃⊕ µ̃′) = Sq(µ̃)⊕ Sq(µ̃′) , T (µ̃⊕ µ̃′) = T (µ̃)⊕ T (µ̃′) .

• Superposition is commutative and associative. Thus µ̃ ⊕ µ̃′ = µ̃′ ⊕ µ̃ and
(µ̃⊕ µ̃′)⊕ µ̃′′ = µ̃⊕ (µ̃′ ⊕ µ̃′′).

Thus when subsampling operations are all constant, a composition of subsampling,
point transition and superposition operations admits a normal form where all the
subsampling operations are applied first, then the transition operations and lastly
the superposition operations.

Lemma 13 (Normal form for compositions) Assume subsampling operations
all have a constant acceptance rate. A normal form for a composition of subsampling,
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point transition and superposition operations is obtained by applying the following
rules until no further can apply.

Sq(Sq
′
(µ̃)) → Sqq

′
(µ̃)) ,

Sq(T (µ̃)) → T (Sq(µ̃)) ,

Sq(µ̃⊕ µ̃′) → Sq(µ̃)⊕ Sq(µ̃′) ,
T (µ̃⊕ µ̃′) → T (µ̃)⊕ T (µ̃′) .

The remaining top level set of superpositions are then flattened out by removing any
precedence ordering.

Note that Lemmas 10, 11, 12 and 13 all apply to NRMs as well due to Lemma 7.
Now it is ready to state the main theorem about the relation between the CRM and
the corresponding NRM under the three dependency operations.

Theorem 8 (Equivalence Theorem) Assume the subsampling rates q(·) are in-
dependent (constant)4 for each point of the corresponding Poisson process, the fol-
lowing dependent random measures (43) and (44) are equivalent:

• Manipulate the normalized random measures:

µ′m ∼ T (Sq(µ′m−1))⊕ µm, for m > 1. (43)

• Manipulate the completely random measures:

µ̃′m ∼ T̃ (S̃q(µ̃′m−1))⊕ µ̃m, for m > 1.

µ′m =
µ̃′m

µ̃′m(X)
, (44)

Furthermore, both resulting NRMs µ′m’s correspond to:

µ′m =
m∑
j=1

(qm−jµ̃j) (X)∑m
j′=1 (qm−j′µ̃j′) (X)

Tm−j(µj), for m > 1

where qm−jµ̃ is the random measure with Lévy measure qm−j(dx)ν(dt, dx), and
ν(dt, dx) is the Lévy measure of µ̃. Tm−j(µ) denotes point transition on µ for
(m− j) times .

Finally, in the posterior sampling for subsampling operation, we can prove the
following posterior of the Bernoulli variables.

4This assumption is to deal with the case when considering point transition, meaning we can
drop this assumption if no point transition operation is considered.
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Theorem 9 (Posterior acceptance rates for subsampling) Let µ̃′ =
∑

k Jkθk
be a completely random measure on X, µ̃ = Sq(µ̃′) :=

∑
k zkJkδk be its subsampling

version, where zk’s are independent Bernoulli random variables with acceptance rate
q. Further define µ = µ̃

µ̃(X)
. Given n =

∑
k nk observed data in µ, the posterior of

zk is:

p(zk = 1|µ̃, n) =

{
1 if nk > 0,

q/J
q/J+(1−q)/J−k if nk = 0.

(45)

where J = (
∑

k′ zk′Jk′)
n, J−k =

(∑
k′ 6=k zk′Jk′

)n
.

Based on the above result, we give the posterior formula of the acceptance indi-
cator zmk used in our paper dependent hierarchical normalized random measures for
dynamic topic modeling [CDB12]. Note this is only an approximated posterior and
is lacked of theoretical guarantee. Exact posterior will be given in our future work.

Corollary 3 (Posterior acceptance rates in sampling J ′mk in Section 4 [CDB12])
Using the terminology as in Section 4 [CDB12], the posterior p(zmk = 1|µ̃m, {ñ′mk})
is computed as:

• If ñ′mk > 0, then p(zmk = 1|µ̃m, {ñ′mk}) = 1.

• Otherwise,

p(zmk = 1|µ̃m, {ñ′mk}) =
qm−m

′
/Jm

qm−m′/Jm + (1− qm−m′)/J−km
,

where Jm =
(∑

m′≤m
∑

k′ zm′k′Jm′k′
)ñ′m·, J−km =

(∑
m′≤m

∑
k′ 6=k zm′k′Jm′k′

)ñ′m·
,

and ñ′m· =
∑

k′ ñ
′
mk′.
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A Proofs

Proof of Lemma 2 We have ν(dx, dt/λ). Doing a change of variables t′ = t/λ
and some rearranging of the Lévy-Khintchine formula yields the following:

E
[
e−

∫
X(λf(x))(µ̃(dx)/λ)

]
= e

−
∫
R+×X

(
1−e−t′ (λf(x))

)
λν(dx,dt′)

Since µ̃(dx)/λ normalises to the same measure as µ̃(dx), and saying something holds
for any f(x) is the same as saying something holds for any λf(x) (when λ > 0), the
result follows.

Proof of Lemma 3 First, for the infinite mixture model, we have infinite num-
ber of components, thus given the observed data (x1, · · · , xN) and their allocation
indicators ~s, the model likelihood is

fµ(~x,~s|~θ, ~J) =
N∏
i=1

Jsi
J+

g0(xi|θsi),

where J+ =
∑∞

k=1 Jk. Now introduce the slice auxiliary variables ~u for each data,
such that we only consider the components whose jumps are larger than a threshold
ui for data xi, in this auxiliary space we have

fµ(~x, ~u,~s|~θ, ~J) =
1

JN+

N∏
i=1

1(ui < Jsi)g0(xi|θsi).

Now using the fact that

1

JN+
=

∫∞
0
UN−1
N exp {−UNJ+} dUN

Γ(N)
,

after introducing the auxiliary variable UN , we have

fµ(~x, ~u,~s, UN |~θ, ~J) ∝ UN−1
N exp {−UNJ+}

N∏
i=1

1(ui < Jsi)g0(xi|θsi).

Further decomposing J+ as

J+ = J∗ +
K∑
k=1

Jk,

where K is the number of jumps which are large than a threshold L, J∗ =∑∞
k=K+1 Jk, then we get

fµ(~x, ~u,~s, UN |~θ, J1, · · · , JK , K)

∝ Un−1
N exp

{
−UN

K∑
k=1

Jk

}
E [exp {−UNJ∗}]

N∏
i=1

1(ui < Jsi)g0(xi|θsi). (46)
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Now use the Lévy-Khintchine representation of a Lévy process (4) to evaluate
E [exp {−UNJ∗}], we get

fµ(~x, ~u,~s, UN |~θ, J1, · · · , JK , K) ∝ UN−1
N exp

{
−UN

K∑
k=1

Jk

}

exp

{
−M

∫ L

0

(1− exp {−UN t}) ρη(t)dt
} N∏

i=1

1(ui < Jsi)g0(xi|θsi). (47)

Now combining with the priors

p(J1, · · · , JK) =
K∏
k=1

ρη(Jk)∫∞
L
ρη(t)dt

,

K ∼ Poisson(M

∫ ∞
L

ρη(dt)), θk ∼ h(θk),

the result follows.

Proof of Theorem 2 The definition for τn(u) comes from [Proposition 1][JLP09].
The posterior marginal of Equation (21) comes from [Proposition 3][JLP09] and is
simplified using the change of variables t = M (1 + u)a. For the predictive posterior,
the weights in Equation (23) are derived directly from the posterior. The posterior
proportionality for p(UN = u| ~X,NGG(a,M,H(·))) discards terms not containing u.

Proof of Corollary 1 Marginalise out M from the posterior of Equation (21) us-
ing the alternative definition of TN,Ka,M . It can be seen this yields the posterior of a
Poisson-Dirichlet distribution with discount parameter a and concentration parame-
ter b. Since the posteriors are equivalent for all data, the distributions are equivalent
almost surely.

Proof of Lemma 8 Equation (25) holds by noticing TN,Ka.M is decreasing in N and
then using the definition of the upper incomplete Gamma function. To prove Equa-

tion (26), expand the term
(

1−
(
M
t

)1/a
)N−1

using the binomial expansion and

absorbing the powers t−n/a into tK−1 as an incomplete Gamma integral.
Now manipulate Equation (26). Expand Γ

(
K − n

a
,M
)

using the recursion for
the upper incomplete Gamma function, which can be applied for all first arguments
when M > 0.

=
N−1∑
n=0

(
N − 1

n

)(
−M1/a

)n ((
K − 1− n

a

)
Γ
(
K − 1− n

a
,M
)

+MK−1−n
a e−M

)
=

N−1∑
n=0

(
N − 1

n

)(
−M1/a

)n (
K − 1− n

a

)
Γ
(
K − 1− n

a
,M
)

+MK−1e−M
N−1∑
n=0

(
N − 1

n

)
(−1)n
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The second sum is a binomial expansion of (1 − 1)N−1 and therefore disappears.
Apply this step repeatedly. For K ∈ N+, this terminates after K − 1 steps to get
Equation (28).

Equation (29) holds by expanding(
1−

(
M

t

)1/a
)N−1

=

(
1−

(
M

t

)1/a
)N−2

−

(
1−

(
M

t

)1/a
)N−2(

M

t

)1/a

inside the integral definition of TN+1,K
a,M and then recognising the terms.

Equation (27) and Equation (30) hold by applying the integration by parts for-

mula on the terms A(t) =
(

1−
(
M
t

)1/a
)N−1

and B(t) = tK−1e−t. Rearranging the

resultant integrals and recognising the terms yields

0 = M1/aT
N−1,K−1−1/a
a,M + (K − 1)TN,K−1

a,M − TN,Ka,M .

This proves Equation (30). Equation (27) follows by then applying Equation (29).

Proof of Theorem 3 The posterior marginal of Equation (31) comes from [Propo-
sition 4][JLP09]. Although the denominator is difficult to evaluate, and it can be
derived through a recursion, the easiest way is simply to normalise the renumerator.
Sum over (Ma (1 + u)a)

K∏K
k=1(1−a)nk−1 for all length K partitions (n1, n2, ..., nK)

yields (Ma (1 + u)a)
K
SNK,a and the result follows by again summing over K. The

predictive posterior, as before, follows directly from the posterior marginal. The pos-
terior proportionality for UN , p(UN = u| ~X,NGG(a,M,H(·))), comes from [Propo-
sition 4][JLP09] after discarding terms not containing u. The normalising constant
is obtained using the methods of Theorem 2.

Proof of Corollary 2 Equation (34) can be seen to hold true since conditioning
it on UN = u and ~X yields respectively Equation (31) and Equation (33). The
posterior on Jk comes from [GW11].

This can also be proven from [GW11] at the end of Section 3, and includes
the prior on KL, J1, ..., JK described in Section 4. The mixture model component
k(yi|θsi) has also been stripped and the slice sampling variables marginalised out.
One then takes the limit as L→ 0.

Proof of Lemma 9 This uses a similar technique to that of Theorem 1 in [GKS11].
Using the identity 1/b =

∫∞
0
e−v bdv we get

E [µ(B)] = E
[
µ̃(B)

µ̃(X)

]
=

∫ ∞
0

E [µ̃(B) exp {−vµ̃(B)}]E [exp {−vµ̃(X \B)}] dv . (48)
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According to the Lévy-Khintchine representation of µ̃ and definition (6), we have

E [exp {−vµ̃(B)}] = exp
{
−P (B)Mψ̃η(v)

}
(49)

E [µ̃(B) exp {−vµ̃(B)}] = −E
[

d

dv
exp {−vµ̃(B)}

]
= P (B)Mψ̃′η(v) exp

{
−P (B)Mψ̃η(v)

}
(50)

E
[
µ̃(B)2 exp {−vµ̃(B)}

]
= E

[
d

dv2
exp {−vµ̃(B)}

]
=

(
P (B)2M2

(
ψ̃′η(v)

)2

− P (B)Mψ̃′′η(v)

)
exp

{
−P (B)Mψ̃η(v)

}
(51)

Substituting (49) and (50) into (48) and using the fact in (7), after simplifying
we have

E [µ(B)] = P (B).

Since Var (µ(B)) = E [µ(B)2]−(E [µ(B)])2, and the last term is equal to (P (B))2,
we now deal with the first term.

E
[
µ(B)2

]
= E

[
µ̃(B)2

µ̃(X)2

]
=

∫ ∞
0

∫ ∞
0

E
[
µ̃(B)2 × exp {−v1µ̃(X)− v2µ̃(X)}

]
dv1dv2 (52)

=

∫ ∞
0

∫ ∞
0

E
[
µ̃(B)2 exp {−(v1 + v2)µ̃(B)}

]
E [exp {−(v1 + v2)µ̃(X \B)}] dv1dv2

Substituting (49)(51) into (52) we have

(52) =

∫ ∞
0

∫ ∞
0

[
P (B)2M2

(
ψ̃′η(v1 + v2)

)2

− P (B)Mψ̃′′η(v1 + v2)

]
exp

{
−Mψ̃η(v1 + v2)

}
dv1dv2 . (53)

Furthermore, let v = v1 + v2, B = X in (51), after integrating out v1, v2 in [0,∞], we
have ∫ ∞

0

∫ ∞
0

M2
(
ψ̃′η(v1 + v2)

)2

exp
{
−Mψ̃η(v1 + v2)

}
dv1dv2 (54)

=1 +

∫ ∞
0

∫ ∞
0

Mψ̃′′η(v1 + v2) exp
{
−Mψ̃η(v1 + v2)

}
dv1dv2

Substitute (54) into (53) and simplify we get

Var(µ(B)) =

P (B)(1− P (B))M

∫ ∞
0

∫ ∞
0

−ψ̃′′η(v1 + v2) exp
{
−Mψ̃η(v1 + v2)

}
dv1dv2 .(55)

Now use a change of variables, let v′1 = v1, v
′
2 = v1 + v2 and simplify we get the

result of (36).
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Proof of Theorem 5 From the definition we have

Cov (µk(B), µ(B)) =
n∑
i=1

Cov

(
Mi∑
jMj

µi(B), µk(B)

)

= Cov

(
Mk∑
jMj

µk(B), µk(B)

)
+
∑
i 6=k

Cov

(
Mi∑
jMj

µi(B), µk(B)

)
(56)

= E

 µ̃k(B)2(∑
j µ̃j(X)

)
µ̃k(X)

− E

[
µ̃k(B)∑
j µ̃j(X)

]
E
[
µ̃k(B)

µ̃k(X)

]

+
∑
i 6=k

E

 µ̃i(B)µ̃k(B)(∑
j µ̃j(X)

)
µ̃k(X)

− E

[
µ̃i(B)∑
j µ̃j(X)

]
E
[
µ̃k(B)

µ̃k(X)

]

Note that for the Dirichlet process, the last n − 1 terms of (56) vanish because
µi’s are independent from their total mass Mi’s, but this is not the case for general
NRMs. Now we calculate these term by term.

For the first term, we have

E

 µ̃k(B)2(∑
j µ̃j(X)

)
µ̃k(X)


=

∫ ∞
0

∫ ∞
0

E

[
µ̃k(B)2 exp

{
−v1(

∑
j

µ̃j)(X)− v2µ̃k(X)

}]
dv1dv2

=

∫ ∞
0

∫ ∞
0

E
[
µ̃k(B)2 exp {−(v1 + v2)µ̃k(B)}

]
E [exp {−(v1 + v2)µ̃k(X \B)}]

E

[
exp

{
−v1(

∑
j 6=k

µ̃j(X))

}]
dv1dv2

=

∫ ∞
0

∫ v2

0

(
P (B)2M2

k ψ̃
′
η(v1)2 − P (B)Mkψ̃

′′
η(v1)

)
exp

{
−Mkψ̃η(v1)

}
exp

{
−(
∑
j 6=k

Mj)ψ̃η(v2)

}
dv1dv2

= P (B)Mk

∫ ∞
0

γ(Mk, P (B), v) exp

{
−(
∑
j 6=k

Mj)ψ̃η(v)

}
dv (57)
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For the second term, we have

E

[
µ̃k(B)∑
j µ̃j(X)

]
E
[
µ̃k(B)

µ̃k(X)

]
= P (B)

∫ ∞
0

E

[
µ̃k(B) exp

{
−v
∑
j

µ̃j(X)

}]
dv

= P (B)2Mk

∫ ∞
0

ψ̃′η(v) exp

{
−(
∑
j

Mj)ψ̃η(v)

}
dv

=
P (B)2Mk exp

{
−
(∑

jMj

)
ψ̃η(0)

}
∑

jMj

=
P (B)2Mk∑

jMj

(58)

For the third term, similarly

E

 µ̃i(B)µ̃k(B)(∑
j µ̃j(X)

)
µ̃k(X)


=

∫ ∞
0

∫ ∞
0

E

[
µ̃i(B)µ̃k(B) exp

{
−v1(

∑
j

µ̃j)(X)− v2µ̃k(X)

}]
dv1dv2

=

∫ ∞
0

∫ ∞
0

E [µ̃k(B) exp {−(v1 + v2)µ̃k(B)}]E [exp {−(v1 + v2)µ̃k(X \B)}]

E [µ̃i(B) exp {−v1µ̃i(B)}]E [exp {−v1µ̃i(X \B)}]E

exp

−v1(
∑

j 6={i,k}

µ̃j(X))


 dv1dv2

=

∫ ∞
0

∫ ∞
0

P (B)Mkψ̃
′
η(v1 + v2) exp

{
−Mkψ̃η(v1 + v2)

}
P (B)Miψ̃

′
η(v1) exp

{
−Miψ̃η(v1)

}
exp

−(
∑

j 6={i,k}

Mj)ψ̃η(v1)

 dv1dv2

= P (B)2MiMk

∫ ∞
0

ψ̃′η(v1) exp

{
−(
∑
j 6=k

Mj)ψ̃η(v1)

}∫ v1

0

ψ̃′η(v2) exp
{
−Mkψ̃η(v2)

}
dv2dv1

= P (B)2Mi

(
1∑

j 6=kMj

− 1∑
jMj

)
exp

{
−(
∑
j

Mj)ψ̃η(0)

}

= P (B)2Mi

(
1∑

j 6=kMj

− 1∑
jMj

)
(59)
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The fourth term is similar to the second term, and is equal to

E

[
µ̃i(B)∑
j µ̃j(X)

]
E
[
µ̃k(B)

µ̃k(X)

]
=

P (B)2Mi exp
{
−
(∑

jMj

)
ψ̃η(0)

}
∑

jMj

=
P (B)2Mi∑

jMj

(60)

The result follows.

Proof of Theorem 6 By subsampling, we obtain two independent NRMs µq and
µq0, corresponding to those points selected and those rejected by the independent
Bernoulli trials, respectively.

We denote the total mass of the corresponding unnormalized µq as Mq, and M0
q

for µq0. From the definition of subsampling, we have

Mq := (qµ̃)(X) =

∫
X
q(x)µ̃(x)dx,

M0
q = M −Mq.

Furthermore, notice that the original NRM µ is the superposition of µq and µq0.
Thus according to Theorem 5, the covariance between µ and µq is

P (B)Mq

∫ ∞
0

γ(Mq, P (B), v) exp
{
−(M −Mq)ψ̃η(v)

}
dv + P (B)2

(
2Mq −M

M

)
,

Proof of Theorem 7 Note that µ̃ and µ̃′ are not independent, thus they can not
be separated when taking the expectation. Now let A and B are defined as in the
theorem, then:

E [µ(B) ((Tµ)(B))] = E
[
µ̃(B)

µ̃(X)

µ̃′(B)

µ̃′(X)

]
= E

[
µ̃(B)

µ̃(X)

µ̃(A)

µ̃(X)

]
=

∫ ∞
0

∫ ∞
0

E [µ̃(B)µ̃(A)× exp {−(v1 + v2)µ̃(X)}] dv1dv2

=

∫ ∞
0

∫ ∞
0

E [µ̃(B) exp {−(v1 + v2)µ̃(B)}]

E [µ̃(A) exp {−(v1 + v2)µ̃(A)}]
E [exp {−(v1 + v2)µ̃(X/{A ∪B})}] dv1dv2

=

∫ ∞
0

∫ ∞
0

P (B)Mψ̃′η(v1 + v2) exp
{
−P (B)Mψ̃η(v1 + v2)

}
P (A)Mψ̃′η(v1 + v2) exp

{
−P (A)Mψ̃η(v1 + v2)

}
P (X/{A ∪B})Mψ̃′η(v1 + v2) exp

{
−P (X/{A ∪B})Mψ̃η(v1 + v2)

}
dv1dv2

= P (A)P (B)M2

∫ ∞
0

∫ v1

0

ψ̃′η(v2)2 exp
{
−Mψ̃η(v2)

}
dv2dv1
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Then the covariance is:

Cov (µ(B), (Tµ)(B))

= E [µ(B) ((Tµ)(B))]− E [µ(B)]E [(Tµ)(B)]

= P (A)P (B)(
M2

∫ ∞
0

∫ v1

0

ψ̃′η(v2)2 exp
{
−Mψ̃η(v2)

}
dv2dv1 − 1

)
(61)

Proof of Lemma 10 From the existing of Poisson processes, each Lévy measure
νi(dt, dx) corresponds to a Poisson random measure Ni(dt, dx) with

E [Ni(dt, dx)] = νi(dt, dx).

Also we have ∀i,

µ̃i(dx) =

∫ ∞
0

tNi(dt, dx).

Thus from (41) we have

µ̃(dx) =

∫ ∞
0

t

(
n∑
i=1

Ni(dt, dx)

)
=

∫ ∞
0

tN(dt, dx),

where N(·) =
∑n

i=1Ni(·) is again a Poisson random measure. Thus the Lévy inten-
sity for µ̃(·) is

ν(dt, dx) =
n∑
i=1

νi(dt, dx). (62)

Because Theorem 1 in [JLP09] applies for any CRMs with Lévy measure ν(dt, dx),
the Lemma is proved.

Proof of Lemma 11 The case for point transition and superposition are developed
similarly to the case for subsampling, so we only consider the later here.

The case for subsampling follows by merging the impact of the subsampling
operation with the sampling step in Lemma 1. Suppose the Lévy measure is in the
form Mρ(dt|x)H(dx). The infinitesimal rate at data point xi when sampling the
jump is now q(xi)Mρ(dt|x). Thus the Lévy measure for the subsampled measure
must be Mρ(dt|x)q(x)H(dx).

This argument can also be seen from the detailed derivation below. First note
that Sq(µ̃) is equivalent to

Sq(µ̃) =

∫
R+×X

z(dx)sN(ds, dx). (63)
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Let B ∈ X, we divide B into n non-overlap patches and use Anm to denote the m-th
patch of them. So we have

EN(·),z
[
e−uS

q(µ̃)(B)
] n→∞

= EN(·),z
[
e−

∑
Anm∈B uz(Anm)snmN(Anm,snm)

]
= EN(·),z

[ ∏
Anm∈B

e−uz(Anm)snmN(Anm,snm)

]
=

∏
Anm∈B

EN(·),z
[
e−uz(Anm)snmN(Anm,snm)

]
= e

∑
Anm∈B log{EN(·),z[e−uz(Anm)snmN(Anm,snm)−1]+1}

(a)
= e

∑
Anm∈B EN(·),z[e−uz(Anm)snmN(Anm,snm)−1]

(b)
= eq

∑
Anm∈B EN(·)[e−usnmN(Anm,snm)−1]

n→∞
= e−

∫
R+×B(1−e−us)(qν(ds,dx))

(64)

Here (a) above follows because EN(·)
[(
e−uz(Anm)snmN(Anm,snm) − 1

)]
is infinitesimal

thus log(1 + x)
x→0∼ x applies. (b) is obtained by integrating out z(Anm) with

Bernoulli distribution. Thus it can be seen from (64) that Sq(µ̃) has the Lévy
measure of q(dx)ν(dt, dx).

Proof of Theorem 8 We show that starting from (44) and (43), we can both end
up the random measures defined in (45).

First, for the operations in (44), adapting from Theorem 2.17 of [Ç10], a Poisson
random measure with mean measure ν on the space R+ × X has the form

N =
∞∑
n=1

∑
i<Kn

δ(s,x), (65)

where Kn is a Poisson distributed random variable with mean ν, and (s ∈ R+, x ∈ X)
are points in the corresponding Poisson processes. Then a realization of N composes
of points in a Poisson process Π1, and the corresponding Poisson random measure
can be written as N1 =

∑
(s,x)∈Π1

δ(s,x).
Now consider doing a subsampling Sq and a point transition T on Π1, by the

definitions and (65) we get a new random measure

Ñ = T (Sq(N1)) = T (Sq(
∑

δ(s,x)))

(*)
=

∑
z(q(T (x)))δ(s,T (x))

(**)
=
∑

z(q(x))δ(s,T (x)), (66)

where z(q(·)) means a Bernoulli random variable with acceptance rate q(·), (∗)
follows from definitions, (∗∗) follows from the assumption of constant subsampling
rate.
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It is easy to show by induction that by subsampling and point transitioning i
times of the Poisson process Π1, we get a random measure as

Ñ ′ =
∑

z(qi(x))δ(s,T i(x)). (67)

By the definition, when superpositioning the this Poisson process T i(Sqi (Π1))
with another Poisson process Π2 with mean measure ν2, we get another random
measure as

N ′′ =
∑

(s,x)∈Π1

z(qi(x))δ(s,T i(x)) +
∑

(s,x)∈Π2

δ(s,T (x)). (68)

This Poisson random measure is then used to construct a completely random
measure µ̃ using (3) as:

µ̃(A) =

∫
R+×X

sN ′′(ds, dx)

=
∑

(s,x)∈Π1

z(qi(x))sδ(s,T i(x)) +
∑

(s,x)∈Π2

sδ(s,x). (69)

By marginalize over r’s and normalizing this random measure, we get

µ(A) =
µ̃(A)

µ̃(X)

=
M ′

1

M1 +M ′
2

∑
(s,x)∈Π1∩A sδ(s,T i(x))∑
(s,x)∈Π1∩X sδ(s,T i(x))

+
M ′

2

M ′
1 +M ′

2

∑
(s,x)∈Π2∩A sδ(s,T i(x))∑
(s,x)∈Π2∩X sδ(s,T i(x))

=
M ′

1

M ′
1 +M ′

2

(T iµ1)(A) +
M ′

2

M ′
1 +M ′

2

(T iµ2)(A),

(70)

where by apply Lemma 11 we conclude that M ′
1 = (qiµ̃1) (X) is the total mass of the

random measure with Lévy measure qj(dx)ν(dt, dx) and M ′
2 = µ̃2(X). We use the

fact that (T kµ̃i)(X) = µ̃i(X) in the derivation of (70), because the point transition
operation only moves the points (s, x) of the Poisson process to other locations
(s, x+dx), thus does not affect the total mass of the corresponding random measure.

This means by superpositioning after subsampling, the mass of the normalized
random measure decades exponentially fast with respect to the distance i. Based on
Eq. (70), when taking i from 1 to n, and taking superposition for all these random
measure induced, the resulting normalized random measure is:

µ′n =
n∑
i=1

(qn−iµ̃i) (X)∑n
j=1 (qn−jµ̃j) (X)

T n−i(µi). (71)
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Next, for the operations in (43), from the definition we have

µ′2 = T (Sq (µ′1))⊕ µ2

=
(qµ̃1) (X)

(qµ̃1 + µ̃2) (X)
T (µ1) +

(µ̃1) (X)

(qµ̃1 + µ̃2) (X)
µ2 (72)

Now µ′2 has a total mass of (qµ̃1 + µ̃2)(X), by induction on i, we get the formula in
(45) for i = n.

This completes the proof.

Proof of Theorem 9 Given the current data configuration {nk, k = 1, 2, · · · }, for
a particular k,

• If nk > 0, this means this jump Jk must exist in µ, otherwise it is impossible
to have nk > 0, thus p(zk = 1|µ̃, n) = 1.

• Otherwise,since µ =
∑

k:zk=1
Jkδk∑
k′ zk′Jk′

, we have the likelihood as:∏
k′′:nk′′>0

J
nk′′
k′′

(
∑

k′ 6=k zk′Jk′ + zkJk)nk
=

∏
k′′:nk′′>0 J

nk′′
k′′

(
∑

k′ 6=k zk′Jk′ + zkJk)n
.

Furthermore, we know that the prior for zk is p(zk = 1) = q, thus the posterior
is:

p(zk = 1|µ̃, n) ∝ q

(
∑

k′ 6=k zk′Jk′ + Jk)n
.

p(zk = 0|µ̃, n) ∝ 1− q
(
∑

k′ 6=k zk′Jk′)
n
.

After normalizing, we get the posterior for the case nk = 0 in (45).

Proof of Corollary 3 Note that J ′mk is obtained by subsampling of {Jm′k,m′ ≤
m}, the number of data points in µ̃′m is denoted as ñ′m· =

∑
k′ ñ
′
mk′ .

Following the same arguments as in the proof of Theorem 9, when ñ′mk > 0,
p(zmk = 1|µ̃m, ñ′m·) = 1. Otherwise, by subsampling, µ′m can be written as:

µ′m =
∑
m′≤m

∑
k′:zm′k′=1

zm′k′Jm′k′δθm′k′∑
m′′≤m

∑
k′′ zm′′k′′Jm′′k′′

.

Now following the same proof of Theorem 9, if we define

Jm =

(∑
m′≤m

∑
k′

zm′k′Jm′k′

)ñ′m·

, J−km =

(∑
m′≤m

∑
k′ 6=k

zm′k′Jm′k′

)ñ′m·

,

then we get the likelihood as ∏
k′′:ñ′

mk′′>0 J
′
mk′′

nk′′

Jm
.

Furthermore, from subsampling, we know that the Bernoulli prior for zmk is qm−m
′
,

and the posterior can then be derived using the Bayes rule as in the proof of Theo-
rem 9.
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