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Training Deep Neural Networks

Significant empirical success of Deep Neural Networks
While SGD with Backpropagation is popular, two issues
exit:

1 Overfitting
Make overly confident decisions on prediction

2 Pathological curvature and nonconvex of parameter space
Render optimization difficult to find a good local minima
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Incorporating uncertainty

Bayesian Learning Reduces Overfitting; Incorporation of
uncertainty helps improve performance
Recent works of being Bayesian for deep learning

1 Early Stop and Dropout have Bayesian interpretation
[Duvenaud AISTATS 2016], [Kingma, NIPS 2015]

2 Variation Inference
[Blundell, ICML 2015], [Hernandez, ICML 2015]

3 Markov Chain Monte Carlo (MCMC)
HMC
Stochastic Gradient MCMC (SG-MCMC)
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Incorporating geometry

1 Higher-order gradient information helps train DNNs when
employing optimization methods

Quasi-Newton methods
Rescale parameters so that the loss function has similar
curvature along all directions: Adagrad, Adadelta, Adam
and RMSprop algorithms.

2 MCMC
Conventional MCMC: Riemann Manifold HMC
Consider geometry in SG-MCMC?
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Preliminaries

Given data D = {di}Ni=1, di is i.i.d.; model parameters θ

p(θ|D)︸ ︷︷ ︸
Posterior

∝ p(θ)︸︷︷︸
Prior

∏N
i=1 p(di|θ)︸ ︷︷ ︸

Likelihood

For DNNs, di , (xi, yi): input xi ∈ RD and output yi ∈ Y.

Bayesian predictive estimate, for testing input x

p(y|x,D) = Ep(θ|D)[p(y|x,θ)] (1)

In optimization, θMAP = argmax log p(θ|D).
The MAP approximates this expectation as

p(y|x,D) ≈ p(y|x,θMAP) (2)

Parameter uncertainty is ignored.
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Preliminaries

SG-MCMC
Stochastic Gradient Langevin Dynamics (SGLD)

∆θt ∼ N

 εt︸︷︷︸
step size

(
∇θ log p(θt) + N

n

n∑
i=1
∇θ log p(dti |θt)︸ ︷︷ ︸

stochastic gradient from Dt = {dt1 , · · · ,dtn}

)
, 2εtI

 (3)

Monte Carlo approximations to predictive distribution

p(y|x,D) ≈ 1
T

T∑
t=1

p(y|x,θt) (4)

Closely related to Stochastic Optimization
Stochastic Gradient Descent (SGD)

∆θt = εt

(
∇θ log p(θt) + N

n

n∑
i=1
∇θ log p(dti |θt)

)
(5)
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SGRLD

Stochastic gradient Riemannian Langevin dynamics
(SGRLD)

∆θt ∼ εt
[
G(θt)

(
∇θ log p(θt) + N

n

n∑
i=1
∇θ log p(dti |θt)

)
+ Γ(θt)

]
(6)

+G
1
2 (θt)N (0, 2εtI)

What’s new in SGRLD?
G(θt) : preconditioner ( e.g., preconditioning matrix)
Γi(θ) =

∑
j
∂Gi,j(θ)
∂θj

: change of manifold curvature.
In SGLD, G(θt) = I, and Γ(θt) valishes.

Problem: G(θt) is usually intractable
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RMSprop as the Preconditioner

ḡ(θt;Dt) = 1
n

∑n
i=1∇θ log p(dti |θt): sample mean of gradient.

Our preconditioner is updated using only the current
gradient, and only estimates a diagonal matrix

V (θt+1) = αV (θt) + (1− α)ḡ(θt;Dt)� ḡ(θt;Dt) , (7)

G(θt+1) = diag
(

1�
(
λ1 +

√
V (θt+1)

))
(8)

Intuitive interpretations:
1 The preconditioner equalizes the gradient so that a constant

stepsize is adequate for all dimensions.
2 The stepsizes are adaptive, in that flat directions have larger

stepsizes while curved directions have smaller stepsizes.
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Finite-time Error Analysis

Task: for a testing function φ(θ)
True posterior expectation φ̄ =

∫
X φ(θ)p(θ|D)dθ

MC Estimator: φ̂ = 1
ST

∑T
t=1 εtφ(θt) at time ST =

∑T
t=1 εt

Theorem 1: MSE bound

MSE : E
[(
φ̂− φ̄

)2
]
≤ Bmse (9)

, C


∑
t

ε2t
S2
T

E ‖∆Vt‖2︸ ︷︷ ︸
Estimation error of stochastic gradients

+ 1
ST

+ (
∑T
t=1 ε

2
t )2

S2
T︸ ︷︷ ︸

discretization error of numerical integrators


Asymptotic convergence (ST →∞):
Decreasing-step-size pSGLD is asymptotically consistent with
true posterior expectation.
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Bias-Variance Tradeoff

Risk of Estimator E[(φ̄− φ̂)2] = B2 + V .

Bias : B = φ̄η − φ̄ (10)
Variance : V = E[(φ̄η − φ̂)2] (11)

where φ̄η =
∫
X φ(θ)ρη(θ)dθ as the ergodic average under

the invariant measure, ρη(θ), of the pSGLD.

Increase ESS or decrease autocorrelation time leads to
better estimation

V ∝ 1
effective sample size (ESS) ∝ autocorrelation time
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Two Practical Techniques

1 Excluding Γ(θt) term
Corollary 1: ignoring Γ(θt) produces a bias controlled by α
on the MSE
More samples per unit time are generated, resulting in a
smaller variance on the estimation
Dropped in [Ahn et al, ICML 2012] and [Teh et al, 2015]

2 Thinning
Corollary 2: MSE remains the same form.
These thinned samples have a lower autocorrelation time
and can have a similar ESS.

Algorithm: Practical pSGLD is RMSprop with a Gaussian
noise, whose variance is proportion to the preconditioner.

[Ahn et al, ICML 2012] Bayesian posterior sampling via stochastic gradient fisher scoring
[Teh et al, 2015] Distributed Bayesian learning with expectation propagation and posterior server
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Simulation: 2D distribution

N(
[

0
0

]
,

[
0.16 0

0 1

]
). The goal is to estimate the covariance matrix.

pSGLD dominates the “vanilla” SGLD in that it consistently shows a lower
error and autocorrelation time, particularly with larger stepsize.
pSGLD can adapt stepsizes acorrding to the geometry of different
dimensions.
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Simulation: 2D distribution

Even if the covariance matrix of a target distribution is mildly rescaled, we
do not have to choose a new stepsize for pSGLD.
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Exp. 1: Bayesian Logistic Regression

pSGLD generates much larger ESS compared to SGLD, especially when the
stepsize is large. Meanwhile, pSGLD provides smaller error in estimating
weights
Though pSGLD takes a bit more time to compute preconditioner, this is
compensated by obtaining more effective samples in given time. Therefore,
the variance in risk of prediction is reduced.
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Exp. 1: Bayesian Logistic Regression

Settings
a9a dataset: Ntrain = 32561, Ntest = 16281, minibatch size = 50.
pSGLD converges in less than 4× 103 iterations, while SGLD at least
needs double the time to reach this accuracy.
Comparable with recent advances in stochastic gradient variation
inference

Results

Table: Test error on a9a.

Method Test error
pSGLD 14.86%
SGLD 14.86%
DSVI† 15.20%
L-BFGS-SGVI‡ 14.91%
HFSGVI‡ 15.16%
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[ † ] Doubly Stochastic Variational Bayes for non-Conjugate Inference, Titsias et al. ICML 2014
[ ‡ ] Fast 2nd Order Stochastic Backpropagation for Variational Inference, Fan et al. NIPS 2015
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Exp. 2: Feedforward Neural Networks

Settings: ReLU, 784-X-X-10, minibatch size = 100. After burnin and
thinning, 30 samples yield good esitmates

Results
SG-MCMC methods are better than their corresponding stochastic
optimization counterparts
Higher uncertainty leads to lower errors
distilled pSGLD∗ can maintain good results

Table: Classification error of FNN on MNIST.

Method Test Error
400-400 800-800 1200-1200

pSGLD (σ2 = 100) 1.40% 1.26% 1.14%
pSGLD (σ2 = 1) 1.45% 1.32% 1.24%
distilled pSGLD 1.44% 1.40% 1.41%
SGLD 1.64% 1.41% 1.40%
RMSprop 1.59% 1.43% 1.39%
RMSspectral 1.65% 1.56% 1.46%
SGD 1.72% 1.47% 1.47%
BPB, Gaussian� 1.82% 1.99% 2.04%
BPB, Scale mixture� 1.32% 1.34% 1.32%
SGD, dropout� 1.51% 1.33% 1.36%

[ � ] Weight Uncertainty in Neural Networks, Blundell et al. ICML 2015
[ ∗ ] Bayesian Dark Knowledge, Korattikara et al. NIPS 2015
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Exp. 2: Feedforward Neural Networks

Weights: Smaller variance in the prior imposes lower uncertainty, by making
the weights concentrate to 0; while larger variance in the prior leads to a
wider range of weight choices, thus higher uncertainty.
Converge: pSGLD consistently converges faster and to a better point than
SGLD
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Figure: FNN of size 1200-1200 on MNIST.
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Exp. 3: Convolutional Neural Networks

LeNet: 2 covolutional layers: 5× 5 filter size with 32 and 64 channels
Comparable with some recent state-of-the-art CNN based systems

Method Test error
pSGLD 0.45%
SGLD 0.71%
RMSprop 0.65%
RMSspectral 0.78%
SGD 0.82%
Stochastic Pooling 0.47%
NIN + Dropout 0.47%
MN + Dropout 0.45%
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Summary

Algorithms
pSGLD: preconditioned stochastic gradient Langevin
dynamics
Error analysis and practical techniques

Applications:
Model uncertainty in deep neural networks
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Questions?
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