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Preface

Stochastic gradient Markov chain Monte Carlo (SG-MCMC):
A new technique for approximate Bayesian sampling.
It is about scalable Bayesian learning for big data.
It draws samples {θ}’s from p(θ; D) where p(θ; D) is too
expensive to be evaluated in each iteration.

This lecture:
Will cover: basic ideas behind SG-MCMC.
Will not cover: different kinds of SG-MCMC algorithms,
applications, and the corresponding convergence theory.
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Monte Carlo methods

Monte Carlo method is about drawing
a set of samples from p(θ):

θl ∼ p(θ), l = 1,2, · · · ,L

Approximate the target distribution
p(θ) as count frequency:

p(θ) ≈ 1
L

L∑

l=1

δ(θ,θl)

6 8 10 12 14

An intractable integration is approximated as:
∫

f (θ)p(θ) ≈ 1
L

L∑

l=1

f (θl)

In Bayesian modeling, p(θ) is usually a posterior distribution, the
integral is a predicted quantity.
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How does the approximation work?

1 An intractable integration is approximated as:

∫
f (θ)p(θ) ≈ 1

L

L∑

l=1

f (θl) , f̃

2 If {θl}’s are independent:

Ef̃ = E

[
1
L

L∑

l=1

f (θl)

]
= Ef , Var(f̃ ) = Var

(
1
L

L∑

l=1

f (θl)

)
=

1
L

Var(f )

I the variance decreases linearly w.r.t. the number of samples, and
independent of the dimension of θ

3 However, obtaining independent samples is hard:
I usually resort to drawing dependent samples with Markov chain

Monte Carlo (MCMC)
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MCMC example: a Gaussian model
1 Assume the following generative process (with α = 5, β = 1):

xi |µ, τ ∼ N(µ,1/τ), i = 1, · · · ,n = 1000
µ|τ, {xi} ∼ N(µ0,1/τ),

τ ∼ Gamma(α, β)

2 Posterior distribution:
p(µ, τ |{xi}) ∝

[∏n
i=1 N(xi ;µ,1/τ)

]
N(µ;µ0,1/τ)Gamma(τ ;α, β)

3 Marginal posterior distributions for µ and τ are available:

p(µ|{xi}) ∝
(

2β + (µ− µ0)2 +
∑

i

(xi − µ)2

)−α−(n+1)/2

p(τ |{xi}) = Gamma

(
α +

n
2
, β +

1
2

∑

i

(xi − x̄)2 +
n

2(n + 1)
(x̄ − µ0)2

)

I p(µ|{xi}) is a non-standardized Student’s t-distribution with mean
(
∑

i xi + µ0)/(n + 1)
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Gibbs sampling µ and τ

1 Conditional distributions:

µ|τ, {xi} ∼ N
(

n
n + 1

x̄ +
1

n + 1
µ0,

1
(n + 1)τ

)

τ |µ, {xi} ∼ Gamma
(
α +

n + 1
2

, β +

∑
i(xi − µ)2 + (µ− µ0)2

2

)
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Trace plot for µ
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Sample approximation for µ
True posterior is a non-standardized Student’s t-distribution.

0.9 0.95 1 1.05 1.1
7

0

5

10

15

20

25

30
p
(7

jx
)

true sample approximation

Changyou Chen (Duke University) SG-MCMC 10 / 56



Trace plot for τ
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Sample approximation for τ
True posterior is a Gamma distribution.
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Markov chain Monte Carlo methods
1 We are interested in drawing samples from some desired

distribution p∗(θ) = 1
Z p̃∗(θ).

2 Define a Markov chain:

θ0 → θ1 → θ2 → θ3 → θ4 → θ5 → · · ·

where θ0 ∼ p0(θ), θ1 ∼ p1(θ), · · · , satisfying

pt (θ
′) =

∫
pt−1(θ)T (θ → θ′)dθ ,

where T (θ → θ′) is the Markov chain transition probability from θ
to θ′.

3 We say p∗(θ) is an invariant (stationary) distribution of the Markov
chain iff:

p∗(θ′) =

∫
p∗(θ)T (θ → θ′)dθ
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Metroplis-Hasting algorithm

1 Design T (θ → θ′) as the composition of a proposal distribution
qt (θ

′ |θ) and an accept-reject mechanism.
2 At step t , draw a sample1 θ∗ ∼ qt (θ |θt−1), and accept it with

probability:

At (θ
∗,θt−1) = min

(
1,

p̃(θ∗)qt (θt−1 |θ∗)
p̃(θt−1)qt (θ

∗ |θt−1)

)

3 The acceptance can be done by:
I draw a random variable u ∼ Uniform(0,1)
I accept the sample if At (θ

∗,θt−1) > u
4 The corresponding transition kernel satisfies the detailed balance

condition, thus has an invariant probability p∗(θ).

1A standard setting of qt (θ | θt−1) is a normal distribution with mean θt−1 and tunable variance.
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Discussion on the proposal distribution

1 Standard proposal distribution is an isotropic Gaussian center at
the current state with variance σ:

I small σ leads to high acceptance rate, but moves too slowly
I large σ moves fast, but leads to high rejection rate

2 How to choose better proposals?

-3 -2 -1 0 1 2 3

<

-3

-2

-1

0

1

2

3
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Gibbs sampler

1 Assume θ is multi-dimensional2, θ = (θ1, · · · ,θk , · · · ,θK ), denote
θ−k , {θj : j 6= k}.

2 Sample θk sequentially, with proposal distribution being the true
conditional distribution:

qk (θ∗ |θ) = p(θ∗k |θ−k )

3 Note θ∗−k = θ−k , p(θ) = p(θk |θ−k )p(θ−k ).
4 The MH acceptance probability is:

A(θ∗,θ) =
p(θ∗)qk (θ |θ∗)
p(θ)qk (θ∗ |θ)

=
p(θ∗k |θ∗−k )p(θ∗−k )p(θk |θ∗−k )

p(θ∗k |θ−k )p(θ−k )p(θk |θ−k )

= 1

2One dimensional random variable is relatively easy to sample.
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Discussion of Gibbs sampler
1 No accept-reject step, very efficient.
2 Conditional distributions are not always easy to sample.
3 May not mix well when in high-dimensional space with highly

correlated variables.

Gibbs sampling

A method with no rejections:

– Initialize x to some value

– Pick each variable in turn or randomly

and resample P (xi|xj 6=i)

z1

z2

L

l

Figure from PRML, Bishop (2006)

Proof of validity: a) check detailed balance for component update.

b) Metropolis–Hastings ‘proposals’ P (xi|xj 6=i)) accept with prob. 1

Apply a series of these operators. Don’t need to check acceptance.

Figure: Sample path does not follow gradients. Figure from PRML, Bishop (2006)
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The Metropolis-adjusted Langevin: a better proposal
1 Gibbs sampling travels the parameter space following a zipzag

curve, which might be slow in high-dimensional space.
2 The Metropolis-adjusted Langevin uses a proposal that points

directly to the center of the probabilistic contour.
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The Metropolis-adjusted Langevin: a better proposal

1 Let E(θ) , − log p̃(θ), the direction of the contour is just the
gradient: −∇θE(θ).

2 In iteration l , define the proposal as a Gaussian centering at
θ∗ = θl−1−∇θE(θl−1)hl , where hl is a small stepsize:

q(θl |θl−1) = N
(
θl ;θ

∗, σ2
)
.

3 Need to do an accept-reject step:
I calculate the acceptance probability:

A(θ∗,θl−1) =
p̃(θ∗)q(θl−1 |θ∗)

p̃(θ)q(θ∗ |θl−1)

I accept θ∗ with probability A(θ∗,θl−1), otherwise set θl = θl−1
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Hamiltonian Monte Carlo

Frictionless ball rolling:
1 A dynamic system with total

energy or Hamiltonian:
H = E(θ) + K (v), where
E(θ) , − log p̃(θ),
K (v) , vT v /2.

2 Hamiltonian’s equation
describes the equations of
motion of the ball:

dθ
dt

=
∂H
∂ v

= v

d v
dt

= −∂H
∂ θ

=
∂ log p̃(θ)

∂ θ

3 Joint distribution:
p(θ,v) ∝ e−H(θ,v).

Figure: Rolling ball. Movie from
Matthias Liepe
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Solving Hamiltonian dynamics

1 Solving the continuous-time differential equation with
discretized-time approximation:
{

dθ = v dt
d v = ∇θ log p̃(θ)dt

=⇒
{

θl = θl−1 + vl−1 hl
vl = vl−1 +∇θ log p̃(θl)hl

I proposals follow historical gradients of the distribution contour
2 Need an accept-reject test to design whether accept the proposal,

because of the discretization error:
I proposal is deterministic
I acceptance probability: min (1,exp {H(θl ,vl )− H(θl+1,vl+1)})

3 Almost identical to SGD with momentum:
I

{
θl = θl−1 + pl−1
pl = (1−m) pl−1 +∇θ log p̃(θl )εl

I they will be make equivalent in the context of stochastic gradient
MCMC
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MCMC
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Demo: MH vs. HMC

1 Nine mixtures of Gaussians3.
2 Sequential of samples connected by yellow lines.

3Demo by T. Broderick and D. Duvenaud.
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Recap

1 Bayesian sampling with traditional MCMC methods, in each
iteration:

I generate a candidate sample from a proposal distribution
I calculate the acceptance probability
I accept or reject the proposed sample

Changyou Chen (Duke University) SG-MCMC 23 / 56



Discussion

1 All the above traditional MCMC methods are not scalable in a
big-data setting4, in each iteration:

I the whole data need to be used to generate a proposal
I the whole data need to be used to calculate the acceptance

probability
I scales O(N), where N is the number of data samples

2 Scalable MCMC uses sub-data in each iteration,
I to calculate the acceptance probability5

I to generate proposals, and ignore the acceptance step – stochastic
gradient MCMC methods (SG-MCMC)

4when the number of data samples are large.
5A. Korattikara, Y. Chen, and M. Welling. “Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget”. In: ICML. 2014;

R. Bardenet, A. Doucet, and C. Holmes. “Towards scaling up Markov chain Monte Carlo: an adaptive subsampling approach”.
In: ICML. 2014.
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Two key steps in SG-MCMC

1 Proposals typically follow stochastic
gradients of log-posteriors:

I make samples concentrate on the
modes

2 Adding random Gaussian noise to
proposals.

I encourage algorithms to jump out of
local modes, and to explore the
parameter space

I the noise in stochastic gradients not
sufficient to make the algorithm
move around parameter space

Figure: Proposals of Gibbs
and SG-MCMC.
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Basic setup
1 Given data X = {x1, · · · ,xN}, a generative model (likelihood)

p(X |θ) =
∏N

i=1 p(xi |θ) and prior p(θ), we want to sample from the
posterior:

p(θ |X) ∝ p(θ)p(X |θ) = p(θ)
N∏

i=1

p(xi |θ)

2 We are interested in the case when N is extremely large, so that
computing p(X |θ) is prohibitively expensive.

3 Define the following two quantities (unnormalized log-posterior
and stochastic unnormalized log-posterior):

U(θ) , −
N∑

i=1

log p(xi |θ)− log p(θ)

Ũ(θ) , −N
n

n∑

i=1

log p(xπi |θ)− log p(θ)

where (π1, · · · , πN) is a random permutation of (1, · · · ,N).
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Basic setup

1 SG-MCMC relies on the following quantity (stochastic gradient):

∇θŨ(θ) , −N
n

n∑

i=1

∇θ log p(xπi |θ)−∇θ log p(θ) ,

2 ∇θŨ(θ) is an unbiased estimate of ∇θU(θ):
I SG-MCMC samples parameters based on ∇θŨ(θ)
I very cheap to compute
I bringing the name “stochastic gradient MCMC”
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Comparing with traditional MCMC

1 Ignore the acceptance step:
I the detailed balance condition typically not hold, and the algorithm

is not reversible6

I typically leads to biased, but controllable estimations
2 Use sub-data in each iteration:

I yielding stochastic gradients
I does not affect the convergence properties (e.g., convergence

rates), compared to using the whole data in each iteration

6These are sufficient conditions for a valid MCMC method, but not necessary conditions.
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Demo: the two key steps

1 Proposals follow stochastic gradients of log-posteriors:
I stuck in a local mode
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Demo: the two key steps

1 After adding random Gaussian noise:
I it works !!
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First attempt

1 A 1st-order method: stochastic gradients directly applied on the
model parameter θ.

2 Use a proposal that follows the stochastic gradient of the
log-posterior:

θl+1 = θl −hl+1∇θŨ(θl)

I hl ’s are the stepsizes, could be fixed (∀l ,hl = h) or deceasing
(∀l ,hl > hl+1)

3 Ignore the acceptance step.
4 Resulting in Stochastic Gradient Descend (SGD).
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Random noise to the rescue

1 Need to make the algorithm explore the parameter space:
I adding random Gaussian noise to the update7

θl+1 = θl −hl+1∇θŨ(θl) +
√

2hl+1ζl+1

ζl+1 ∼ N (0, I)

2 The magnitude of the Gaussian needs to be
√

2hl+1 in order to
guarantee a correct sampler:

I guaranteed by the Fokker-Planck Equation
3 This is called stochastic gradient Langevin dynamics (SGLD).

7In the following, we will directly useN (0, I) to represent a normal random variable with zero-mean and covariance matrix I.
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SGLD in algorithm

Input: Parameters {hl}
Output: Approximate samples {θl}

Initialize θ0 ∈ Rn

for l = 1,2, . . . do
Evaluate ∇θŨ(θl−1) from the l-th minibatch
θl = θl−1−∇Ũ(θl−1)hl +

√
2hl N (0, I)

end
Return {θl}

Algorithm 1: Stochastic Gradient Langevin Dynamics
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Example8

1 A simple Gaussian mixture:

θ1 ∼ N (0,10), θ2 ∼ N (0,1)

xi ∼
1
2
N (θ1,2) +

1
2
N (θ1 +θ2,2), i = 1, · · · ,100

Stochastic Gradient Langevin Dynamics
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Figure 1. True and estimated posterior distribution.
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Figure 2. Left: variances of stochastic gradient noise and
injected noise. Right: rejection probability versus step size.
We report the average rejection probability per iteration in
each sweep through the dataset.

Since
∑∞

t=1 ϵt = ∞, this estimator will be consistent
as well. The intuition is that the rate at which the
Markov chain mixes is proportional to the step size, so
that we expect the effective sample size of {θ1, . . . , θT }
to be proportional to

∑T
t=1 ϵt, and that each θt will

contribute an effective sample size proportional to ϵt.

5. Experiments

5.1. Simple Demonstration

We first demonstrate the workings of our stochastic
gradient Langevin algorithm on a simple example in-
volving only two parameters. To make the posterior
multimodal and a little more interesting, we use a mix-
ture of Gaussians with tied means:

θ1 ∼ N(0,σ2
1) ; θ2 ∼ N(0,σ2

2)

xi ∼ 1
2N(θ1, σ

2
x) + 1

2N(θ1 + θ2,σ
2
x)

where σ2
1 = 10, σ2

2 = 1 and σ2
x = 2. 100 data points

are drawn from the model with θ1 = 0 and θ2 = 1.
There is a mode at this parameter setting, but also a
secondary mode at θ1 = 1, θ2 = −1, with strong neg-
ative correlation between the parameters. We ran the
stochastic gradient Langevin algorithm with a batch-
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Figure 3. Average log joint probability per data item (left)
and accuracy on test set (right) as functions of the num-
ber of sweeps through the whole dataset. Red dashed line
represents accuracy after 10 iterations. Results are aver-
aged over 50 runs; blue dotted lines indicate 1 standard
deviation.

size of 1 and using 10000 sweeps through the whole
dataset. The step sizes are ϵt = a(b + t)−γ where
γ = .55 and a and b are set such that ϵt decreases
from .01 to .0001 over the duration of the run. We see
from Figure 1 that the estimated posterior distribu-
tion is very accurate. In Figure 2 we see that there are
indeed two phases to the stochastic gradient Langevin
algorithm: a first phase where the stochastic gradient
noise dominates the injected noise, and a second phase
where the converse occurs. To explore the scaling of
the rejection rate as a function of step sizes, we reran
the experiment with step sizes exponentially decreas-
ing from 10−2 to 10−8. In the original experiment the
dynamic range of the step sizes is not wide enough for
visual inspection. Figure 2(right) shows the rejection
probability decreasing to zero as step size decreases.

5.2. Logistic Regression

We applied our stochastic gradient Langevin algorithm
to a Bayesian logistic regression model. The probabil-
ity of the ith output yi ∈ {−1,+1} given the corre-
sponding input vector xi is modelled as:

p(yi|xi) = σ(yiβ
⊤xi) (12)

where β are the parameters, and σ(z) = 1
1+exp(−z) .

The bias parameter is absorbed into β by including 1
as an entry in xi. We use a Laplace prior for β with a
scale of 1. The gradient of the log likelihood is:

∂

∂β
log p(yi|xi) = σ(−yiβ

⊤xi)yixi (13)

while the gradient of the prior is simply −sign(β),
which is applied elementwise.

We applied our inference algorithm to the a9a dataset
derived by (Lin et al., 2008) from the UCI adult
dataset. It consists of 32561 observations and 123 fea-
tures, and we used batch sizes of 10. Results from 50

Figure: Left: true posterior; Right: sample-based estimation.

8M. Welling and Y. W. Teh. “Bayesian learning via stochastic gradient Langevin dynamics”. In: ICML. 2011.
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SGHMC
1 A 2nd-order method: stochastic gradients applied on some

auxiliary parameters (momentum).
2 SGLD is slow when parameter space exhibits uneven curvatures.
3 Use the momentum idea to improve SGLD:

I a generalization of the HMC, in that the ball is rolling on a friction
surface

I the ball follows the momentum instead of gradients, which is a
summarization of historical gradients, thus could jump out local
modes easier and move faster

I needs a balance between these extra forces

gravity

friction

random force

momentum
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Adding a friction term

1 Without a friction term, the random Gaussian noise would drive
the ball too far away from their stationary distribution.

2 After adding a friction term:

θl = θl−1 + vl−1 hl

vl = vl−1−∇θŨ(θl)hl − A vl−1 hl +
√

2Ahl N (0, I) ,

where A > 0 is a constant9, controlling the magnitude of the
friction.

3 The fraction term penalize the momentum:
I the more momentum, the more fraction it has, thus slowing down

the ball

9In the original SGHMC paper, A is decomposed into a known variance of injected noise and an unknown variance of
stochastic gradients.
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SGHMC in algorithm

Input: Parameters A, {hl}
Output: Approximate samples {θl}

Initialize θ0 ∈ Rn

for l = 1,2, . . . do
Evaluate ∇θŨ(θl−1) from the l-th minibatch
θl = θl−1 + vl−1 hl

vl = vl−1−∇Ũ(θl)hl − A vl−1 hl +
√

2Ahl N (0, I)
end
Return {θl}

Algorithm 2: Stochastic Gradient Hamiltonian Monte Carlo
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Reparametrize SGHMC

for l = 1,2, . . . do
Evaluate ∇θŨ(θl−1) from the
l-th minibatch
θl = θl−1 + vl−1 hl

vl = vl−1−∇Ũ(θl)hl −
A vl−1 hl +

√
2Ahl N (0, I)

end

for l = 1,2, . . . do
Evaluate ∇θŨ(θl−1) from the
l-th minibatch
θl = θl−1 + pl−1

pl = (1−m) pl−1−∇Ũ(θl)εl +√
2mεl N (0, I)

end

Reparametrization: ε = h2, m = Ah, p = v h
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Reparametrize SGHMC

for l = 1,2, . . . do
Evaluate ∇θŨ(θl−1) from the
l-th minibatch
θl = θl−1 + vl−1 hl

vl = vl−1−∇Ũ(θl)hl −
A vl−1 hl +

√
2Ahl N (0, I)

end

for l = 1,2, . . . do
Evaluate ∇θŨ(θl−1) from the
l-th minibatch
θl = θl−1 + pl−1

pl = (1−m) pl−1−∇Ũ(θl)εl +√
2mεl N (0, I)

end

Reparametrization: ε = h2, m = Ah, v = p h
εl : learning rate; m: momentum weight
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SGD vs. SGLD

∇θŨ(θl−1) , −N
n

n∑

i=1

∇θ log p(xπi |θl−1)−∇θ log p(θl−1) ,

SGD:
for l = 1,2, . . . do

Evaluate ∇θŨ(θl−1) from the
l-th minibatch
θl = θl−1−∇Ũ(θl)εl

end

SGLD:
for l = 1,2, . . . do

Evaluate ∇θŨ(θl−1) from the
l-th minibatch
θl = θl−1−∇Ũ(θl)εl + δl
δl ∼ N (0,2εl I)

end
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SGD with Momentum (SGD-M) vs. SGHMC

∇θŨ(θl−1) , −N
n

n∑

i=1

∇θ log p(xπi |θl−1)−∇θ log p(θl−1) ,

SGD-M:
for l = 1,2, . . . do

Evaluate ∇θŨ(θl−1) from the
l-th minibatch
θl = θl−1 + pl−1

pl = (1−m) pl−1−∇Ũ(θl)εl
end

SGHMC:
for l = 1,2, . . . do

Evaluate ∇θŨ(θl−1) from the
l-th minibatch
θl = θl−1 + pl−1

pl = (1−m) pl−1−∇Ũ(θl)εl +δl
δl ∼ N (0,2mεl I)

end
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Example10

1 Sample from a 2D Gaussian distribution:
I U(θ) = 1

2 θT Σ−1 θ

Stochastic Gradient Hamiltonian Monte Carlo
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Figure 2. Points (✓,r) simulated from discretizations of various
Hamiltonian dynamics over 15000 steps using U(✓) = 1

2
✓2 and

✏ = 0.1. For the noisy scenarios, we replace the gradient by
rŨ(✓) = ✓ + N (0, 4). We see that noisy Hamiltonian dynam-
ics lead to diverging trajectories when friction is not introduced.
Resampling r helps control divergence, but the associated HMC
stationary distribution is not correct, as illustrated in Fig. 1.
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Figure 3. Contrasting sampling of a bivariate Gaussian with cor-
relation using SGHMC versus SGLD. Here, U(✓) = 1

2
✓T⌃�1✓,

rŨ(✓) = ⌃�1✓+ N (0, I) with ⌃11 = ⌃22 = 1 and correlation
⇢ = ⌃12 = 0.9. Left: Mean absolute error of the covariance
estimation using ten million samples versus autocorrelation time
of the samples as a function of 5 step size settings. Right: First
50 samples of SGHMC and SGLD.

We also consider simply simulating from the discretized
Hamiltonian dynamical systems associated with the vari-
ous samplers compared. In Fig. 2, we compare the result-
ing trajectories and see that the path of (✓, r) from the noisy
system without friction diverges significantly. The modifi-
cation of the dynamical system by adding friction (corre-
sponding to SGHMC) corrects this behavior. We can also
correct for this divergence through periodic resampling of
the momentum, though as we saw in Fig. 1, the correspond-
ing MCMC algorithm (“Naive stochastic gradient HMC
(no MH)”) does not yield the correct target distribution.
These results confirm the importance of the friction term
in maintaining a well-behaved Hamiltonian and leading to
the correct stationary distribution.

It is known that a benefit of HMC over many other MCMC
algorithms is the efficiency in sampling from correlated
distributions (Neal, 2010)—this is where the introduction
of the momentum variable shines. SGHMC inherits this

property. Fig. 3 compares SGHMC and SGLD (Welling &
Teh, 2011) when sampling from a bivariate Gaussian with
positive correlation. For each method, we examine five
different settings of the initial step size on a linearly de-
creasing scale and generate ten million samples. For each
of these sets of samples (one set per step-size setting), we
calculate the autocorrelation time2 of the samples and the
average absolute error of the resulting sample covariance.
Fig. 3(a) shows the autocorrelation versus estimation error
for the five settings. As we decrease the stepsize, SGLD has
reasonably low estimation error but high autocorrelation
time indicating an inefficient sampler. In contrast, SGHMC
achieves even lower estimation error at very low autocorre-
lation times, from which we conclude that the sampler is in-
deed efficiently exploring the distribution. Fig. 3(b) shows
the first 50 samples generated by the two samplers. We see
that SGLD’s random-walk behavior makes it challenging to
explore the tails of the distribution. The momentum vari-
able associated with SGHMC instead drives the sampler to
move along the distribution contours.

4.2. Bayesian Neural Networks for Classification

We also test our method on a handwritten digits classifica-
tion task using the MNIST dataset3. The dataset consists
of 60,000 training instances and 10,000 test instances. We
randomly split a validation set containing 10,000 instances
from the training data in order to select training parame-
ters, and use the remaining 50,000 instances for training.
For classification, we consider a two layer Bayesian neu-
ral network with 100 hidden variables using a sigmoid unit
and an output layer using softmax. We tested four meth-
ods: SGD, SGD with momentum, SGLD and SGHMC.
For the optimization-based methods, we use the validation
set to select the optimal regularizer � of network weights4.
For the sampling-based methods, we take a fully Bayesian
approach and place a weakly informative gamma prior on
each layer’s weight regularizer �. The sampling procedure
is carried out by running SGHMC and SGLD using mini-
batches of 500 training instances, then resampling hyperpa-
rameters after an entire pass over the training set. We run
the samplers for 800 iterations (each over the entire training
dataset) and discard the initial 50 samples as burn-in.

The test error as a function of MCMC or optimization iter-
ation (after burn-in) is reported for each of these methods
in Fig. 4. From the results, we see that SGD with mo-
mentum converges faster than SGD. SGHMC also has an
advantage over SGLD, converging to a low test error much
more rapidly. In terms of runtime, in this case the gra-

2Autocorrelation time is defined as 1 +
P1

s=1 ⇢s, where ⇢s is
the autocorrelation at lag s.

3http://yann.lecun.com/exdb/mnist/
4We also tried MAP inference for selecting � in the

optimization-based method, but found similar performance.

10T. Chen, E. B. Fox, and C. Guestrin. “Stochastic Gradient Hamiltonian Monte Carlo”. In: ICML. 2014.
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Recap

1 For SG-MCMC methods, in each iteration:
I calculate the stochastic gradient based on the current parameter

sample
I generate the next sample by moving the current sample (probably

in an extended space) along the direction of the stochastic gradient,
plus a suitable random Gaussian noise

I no need for accept-reject
I guaranteed to converge close to the true posterior in some sense
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Outline

1 Markov Chain Monte Carlo Methods
Monte Carlo methods
Markov chain Monte Carlo

2 Stochastic Gradient Markov Chain Monte Carlo Methods
Introduction
Stochastic gradient Langevin dynamics
Stochastic gradient Hamiltonian Monte Carlo
Application in Latent Dirichlet allocation
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Latent Dirichlet allocation

1 For each topic k , draw the topic-word
distribution:

βk ∼ Dir(γ)

2 For each document d , draw its topic
distribution: θd ∼ Dir(α)

I For each word l , draw its topic indicator:

cdl ∼ Discrete(θd )

I Draw the observed word:

xdl ∼ Discrete(βcdl )

γ

βk

xdl

cdl

θd

α

K

N

D
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Latent Dirichlet allocation
1 Let β , (βk )K

k=1, θ , (θd )D
d=1, C , (cdl)

D,nd
d ,l=1, X , (xdl)

D,nd
d ,l=1, the

posterior distribution

p(β,θ,C |X) ∝
[

K∏

k=1

p(βk |γ)

][
D∏

d=1

p(θd |α)

nd∏

l=1

p(cdl |θd )p(xdl |β, cdl)

]

2 From previous lectures:

p(cdl |θd ) =
K∏

k=1

(θdk )1(cdl =k)

p(xdl |θ, cdl) =
K∏

k=1

V∏

v=1

β
1(xdl =v)1(cdl =k)
kv

3 Together with the fact:
∫

θ∈4K−1

K∏

k=1

θαk−1
k dθk =

∏K
k=1 Γ(αk )

Γ(
∑K

k=1 αk )
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Latent Dirichlet allocation
1 Integrate out the local parameters: topic distributions θ for each

document, it results in the following semi-collapsed distribution:
p(X,C, β|α, γ) =

D∏

d=1

Γ(Kα)

Γ(Kα + nd ··)

K∏

k=1

Γ(α + ndk ·)

Γ(α)

K∏

k=1

Γ(Vγ)

Γ(γ)V

V∏

v=1

βγ+n·kv−1
kv ,

where ndkw ,
∑nd

l=1 1(cdl = k)1(xdl = w) is #word w in doc d with
topic k ; · means marginal sum, e.g. n·kw ,

∑D
d=1 ndkw .

2 SG-MCMC requires parameter spaces unconstrained:
I reparameterization: βkv = λkv/

∑
v ′ λkv ′ , with the following prior:

λkv ∼ Ga(λkv ; γ,1)

K∏

k=1

Γ(Vγ)

Γ(γ)V

V∏

v=1

βγ+n·kv−1
kv =⇒

K∏

k=1

V∏

v=1

Ga(λkv ; γ,1)
V∏

v=1

(λkv/
∑

v ′
λkv ′)

n·kw

Changyou Chen (Duke University) SG-MCMC 50 / 56



Latent Dirichlet allocation
1 Integrate out the local parameters: topic distributions θ for each

document, it results in the following semi-collapsed distribution:
p(X,C, β|α, γ) =

D∏

d=1

Γ(Kα)

Γ(Kα + nd ··)

K∏

k=1

Γ(α + ndk ·)

Γ(α)

K∏

k=1

Γ(Vγ)

Γ(γ)V

V∏

v=1

βγ+n·kv−1
kv ,

where ndkw ,
∑nd

l=1 1(cdl = k)1(xdl = w) is #word w in doc d with
topic k ; · means marginal sum, e.g. n·kw ,

∑D
d=1 ndkw .

2 SG-MCMC requires parameter spaces unconstrained:
I reparameterization: βkv = λkv/

∑
v ′ λkv ′ , with the following prior:

λkv ∼ Ga(λkv ; γ,1)

K∏

k=1

Γ(Vγ)

Γ(γ)V

V∏

v=1

βγ+n·kv−1
kv =⇒

K∏

k=1

V∏

v=1

Ga(λkv ; γ,1)
V∏

v=1

(λkv/
∑

v ′
λkv ′)

n·kw

Changyou Chen (Duke University) SG-MCMC 50 / 56



Latent Dirichlet allocation
1 Still need to integrate out the local parameter C:

p(X, λ|α, γ) = EC [p(X,C, β|α, γ)] = EC

[
D∏

d=1

Γ(Kα)

Γ(Kα + nd ··)

K∏

k=1

Γ(α + ndk ·)

Γ(α)

V∏

v=1

Ga(λkv ; γ,1)

(
λkv∑
v ′ λkv ′

)n·kw
]

2 The stochastic gradient with a minibatch documents D̄ of size
|D̄| � D is:

∂ log p̃(λ|α, γ,X)

∂λkw
=
γ − 1
λkw

− 1 +
D
|D̄|

∑

d∈D̄

Ecd | xd ,λ,α

[
ndkw

λkw
− ndk ·
λk ·

]

3 SGLD update:

λt+1
kw = λt

kw +
∂ log p̃(λ|α, γ,X)

∂λkw
ht+1 +

√
2ht+1N(0, I)
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Latent Dirichlet allocation

1 LDA with the above SGLD update would not work well in practice
because of the high dimensionality of model parameters.

2 To make it work, Riemannian geometry information (2nd-order
information) need to bring in SGLD:

I leading to Stochastic Gradient Riemannian Langevin Dynamics
(SGRLD) for LDA11

I it considers parameter geometry so that step sizes for each
dimension of the parameter are adaptive

11S. Patterson and Y. W. Teh. “Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex”. In: NIPS.
2013.
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Experiments: SGRLD for LDA12

1 NIPS dataset:
I the collection of NIPS papers from 1988-2003, with 2483

documents, 50 topics

12S. Patterson and Y. W. Teh. “Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex”. In: NIPS.
2013.Changyou Chen (Duke University) SG-MCMC 53 / 56



Experiments: SGRLD for LDA13

1 Wikipedia dataset:
I a set of articles downloaded at random from Wikipedia, with

150,000 documents

13S. Patterson and Y. W. Teh. “Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex”. In: NIPS.
2013.
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Conclusion

1 I have introduced:
I basic concepts in MCMC
I basic ideas in SG-MCMC, two SG-MCMC algorithms, and

application in LDA
2 Topics not covered:

I a general review of SG-MCMC algorithms
I theory related to stochastic differential equations and Itó diffusions
I convergence theory
I various applications in deep learning, including SG-MCMC for

learning weight uncertainty and SG-MCMC for deep generative
models

I interested readers should refer to related references
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Thank You
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