
Large-Scale Bayesian Learning with
Stochastic Gradient Markov Chain Monte Carlo

Changyou Chen

Department of Electrical and Computer Engineering, Duke University
cc448@duke.edu

Xidian University
August 19, 2016

Changyou Chen (Duke University) SG-MCMC 1 / 119

Preface

Stochastic gradient Markov chain Monte Carlo:
A new technique for approximate Bayesian sampling.
It is about scalable Bayesian learning for big data.
It draws samples {θ}’s from p(θ; D) where p(θ; D) is too
expensive to be evaluated in each iteration.

Changyou Chen (Duke University) SG-MCMC 2 / 119

Outline

1 Basics on Bayesian Modeling
2 Stochastic Gradient Markov Chain Monte Carlo
3 SG-MCMC for Stochastic Optimization

Changyou Chen (Duke University) SG-MCMC 3 / 119

Large-Scale Bayesian Learning with Stochastic Gradient
Markov Chain Monte Carlo Methods

Part One: Basics on Bayesian Modeling

Changyou Chen (Duke University) SG-MCMC 4 / 119

Outline

1 Basics on Bayesian Modeling
Bayesian modeling
Markov chain Monte Carlo

Changyou Chen (Duke University) SG-MCMC 5 / 119

Outline

1 Basics on Bayesian Modeling
Bayesian modeling
Markov chain Monte Carlo

Changyou Chen (Duke University) SG-MCMC 5 / 119

Background

1 We are in an era of abundant data:
I text, images, videos from the Internet; raw medical notes from

doctors, etc
2 We need tools for modeling, searching, visualizing, and

understanding large-scale data sets.
3 We want our modeling tools:

I faithfully represent uncertainty in our model structure and
parameters

I automatically deal with noise in our data
I exhibit robustness

4 Modeling from two aspects: Bayesian and Frequentist.

Changyou Chen (Duke University) SG-MCMC 6 / 119

Background

1 We are in an era of abundant data:
I text, images, videos from the Internet; raw medical notes from

doctors, etc
2 We need tools for modeling, searching, visualizing, and

understanding large-scale data sets.
3 We want our modeling tools:

I faithfully represent uncertainty in our model structure and
parameters

I automatically deal with noise in our data
I exhibit robustness

4 Modeling from two aspects: Bayesian and Frequentist.

Changyou Chen (Duke University) SG-MCMC 6 / 119

Bayesian vs. Frequentist

When generating data:

Frequentist:
1 Data are a repeatable

random sample:
I there is a frequency

2 Underlying parameters
remain constant during this
repeatable process.

3 Parameters are fixed.
4 Task is to learn values of

the unknown parameters.

Bayesian:

1 Data are observed from
the realized samples.

2 Parameters are unknown
and described
probabilistically.

3 Data are fixed.
4 Task is to learn

distributions of the
unknown parameters.

In Bayesian modeling, parameters are treated as random
variables. The prior is just the prior belief about these parameters.

Changyou Chen (Duke University) SG-MCMC 7 / 119

Bayesian vs. Frequentist

When generating data:

Frequentist:
1 Data are a repeatable

random sample:
I there is a frequency

2 Underlying parameters
remain constant during this
repeatable process.

3 Parameters are fixed.
4 Task is to learn values of

the unknown parameters.

Bayesian:
1 Data are observed from

the realized samples.
2 Parameters are unknown

and described
probabilistically.

3 Data are fixed.
4 Task is to learn

distributions of the
unknown parameters.

In Bayesian modeling, parameters are treated as random
variables. The prior is just the prior belief about these parameters.

Changyou Chen (Duke University) SG-MCMC 7 / 119

Bayesian vs. Frequentist

When generating data:

Frequentist:
1 Data are a repeatable

random sample:
I there is a frequency

2 Underlying parameters
remain constant during this
repeatable process.

3 Parameters are fixed.
4 Task is to learn values of

the unknown parameters.

Bayesian:
1 Data are observed from

the realized samples.
2 Parameters are unknown

and described
probabilistically.

3 Data are fixed.
4 Task is to learn

distributions of the
unknown parameters.

In Bayesian modeling, parameters are treated as random
variables. The prior is just the prior belief about these parameters.

Changyou Chen (Duke University) SG-MCMC 7 / 119

Bayes’ rule

p(M|D) =
p(D,M)

p(D)
=

p(M)p(D|M)∫
p(M)p(D|M)dM =

p(M)p(D|M)

p(D)
,

whereM and D are events

p(M) and p(D): the probabilities
of observingM and D
p(D|M), a conditional probability,
the probability of observing event
D given thatM is true
p(M|D): the probability of
observing eventM given that D is
true

Changyou Chen (Duke University) SG-MCMC 8 / 119

Bayes’ rule in machine learning

1 Let D be a given data set;M be a model.

p(M|D) =
p(M)p(D|M)

p(D)

p(M) :prior probability ofM
p(D|M) :likelihood ofM on data
p(M|D) :posterior probability

p(D) :marginal likelihood
2 Model comparison: M = {M}.

p(M|D) =
p(D|M)p(M)

p(D)
, p(D|M) =

∫
p(D|M,M)p(M|M)dM

3 Prediction under posterior distribution:

p(x |D,M) =

∫
p(x |M,D,M)p(M|D,M)dM

I p(x |M,D,M) = p(x |M) for most models

Changyou Chen (Duke University) SG-MCMC 9 / 119

Bayes’ rule in machine learning

1 Let D be a given data set;M be a model.

p(M|D) =
p(M)p(D|M)

p(D)

p(M) :prior probability ofM
p(D|M) :likelihood ofM on data
p(M|D) :posterior probability

p(D) :marginal likelihood
2 Model comparison: M = {M}.

p(M|D) =
p(D|M)p(M)

p(D)
, p(D|M) =

∫
p(D|M,M)p(M|M)dM

3 Prediction under posterior distribution:

p(x |D,M) =

∫
p(x |M,D,M)p(M|D,M)dM

I p(x |M,D,M) = p(x |M) for most models

Changyou Chen (Duke University) SG-MCMC 9 / 119

Why be Bayesian?

Theoretically:
1 Infinite Exchangeability:

∀n,∀π (permutation) ,p(x1, · · · ,xn) = p(xπ(1), · · · ,xπ(n))

2 Infinite exchangeability means:
I The way data items are ordered or indexed does not matter
I Model is unaffected by existence of additional unobserved data

items, e.g., test items
F to predict m additional test items, we need

p(x1, · · · , xn, xn+1, · · · , xn+m)

F if not infinitely exchangeable, predictive probabilities will be different
for different ordering of training data

3 Exchangeability is a common assumption for most models.

Changyou Chen (Duke University) SG-MCMC 10 / 119

Why be Bayesian?

Theoretically:
1 Infinite Exchangeability:

∀n,∀π (permutation) ,p(x1, · · · ,xn) = p(xπ(1), · · · ,xπ(n))

2 Infinite exchangeability means:
I The way data items are ordered or indexed does not matter
I Model is unaffected by existence of additional unobserved data

items, e.g., test items
F to predict m additional test items, we need

p(x1, · · · , xn, xn+1, · · · , xn+m)

F if not infinitely exchangeable, predictive probabilities will be different
for different ordering of training data

3 Exchangeability is a common assumption for most models.

Changyou Chen (Duke University) SG-MCMC 10 / 119

Why be Bayesian?

Theoretically:
1 Infinite Exchangeability:

∀n,∀π (permutation) ,p(x1, · · · ,xn) = p(xπ(1), · · · ,xπ(n))

2 Infinite exchangeability means:
I The way data items are ordered or indexed does not matter
I Model is unaffected by existence of additional unobserved data

items, e.g., test items
F to predict m additional test items, we need

p(x1, · · · , xn, xn+1, · · · , xn+m)

F if not infinitely exchangeable, predictive probabilities will be different
for different ordering of training data

3 Exchangeability is a common assumption for most models.

Changyou Chen (Duke University) SG-MCMC 10 / 119

Why be Bayesian?

Theoretically:
1 Infinite Exchangeability:

∀n,∀π (permutation) ,p(x1, · · · ,xn) = p(xπ(1), · · · ,xπ(n))

2 De Finetti’s Theorem (1955): if (x1,x2, · · ·) are infinitely
exchangeable, then ∀n,

p(x1, · · · ,xn) =

∫ n∏

i=1

p(xi |M)dP(M)

for some random variableM with probability measure P(M)
I M is the model in Bayes’ rule, with prior measure P

Changyou Chen (Duke University) SG-MCMC 11 / 119

Why be Bayesian?

Practically:
1 Model parameter uncertainty in prediction:

p(x |D) =

∫
p(x |M)p(M|D)dM

I an effective way to deal with overfiting
2 In frequentist, the data are generated from a fixed modelM∗, the

prediction is:

p(x |D) =

∫
p(x |M)δ(M =M∗)dM = p(x |M∗)

whereM∗ is usually obtained using optimization
I easily get overfiting when optimizingM∗

Changyou Chen (Duke University) SG-MCMC 12 / 119

Why be Bayesian?

Practically:
1 Model parameter uncertainty in prediction:

p(x |D) =

∫
p(x |M)p(M|D)dM

I an effective way to deal with overfiting
2 In frequentist, the data are generated from a fixed modelM∗, the

prediction is:

p(x |D) =

∫
p(x |M)δ(M =M∗)dM = p(x |M∗)

whereM∗ is usually obtained using optimization
I easily get overfiting when optimizingM∗

Changyou Chen (Duke University) SG-MCMC 12 / 119

Challenges for being Bayesian

1 Computing integrals could be computationally intractable.
2 Prediction:

p(x |D) =

∫
p(x |M)p(M|D)dM

3 The presence of latent variables results in additional dimensions
that need to be marginalized out.

p(x |D) =

∫ ∫
p(x,θ |M)p(M|D)dθ dM

Changyou Chen (Duke University) SG-MCMC 13 / 119

Challenges for being Bayesian

1 Computing integrals could be computationally intractable.
2 Prediction:

p(x |D) =

∫
p(x |M)p(M|D)dM

3 The presence of latent variables results in additional dimensions
that need to be marginalized out.

p(x |D) =

∫ ∫
p(x,θ |M)p(M|D)dθ dM

Changyou Chen (Duke University) SG-MCMC 13 / 119

Challenges for being Bayesian

1 Computing integrals could be computationally intractable.
2 Prediction:

p(x |D) =

∫
p(x |M)p(M|D)dM

3 The presence of latent variables results in additional dimensions
that need to be marginalized out.

p(x |D) =

∫ ∫
p(x,θ |M)p(M|D)dθ dM

Changyou Chen (Duke University) SG-MCMC 13 / 119

Approximation methods for marginalization1

1 Laplace approximation
2 Bayesian Information Criterion (BIC)
3 Variational inference
4 Expectation Propagation (EP)
5 Markov chain Monte Carlo methods (MCMC)
6 · · ·

1from Zoubin Ghahramani’s talk

Changyou Chen (Duke University) SG-MCMC 14 / 119

Approximation methods for marginalization1

1 Laplace approximation
2 Bayesian Information Criterion (BIC)
3 Variational inference
4 Expectation Propagation (EP)
5 Markov chain Monte Carlo methods (MCMC)
6 · · ·

1from Zoubin Ghahramani’s talk

Changyou Chen (Duke University) SG-MCMC 14 / 119

Outline

1 Basics on Bayesian Modeling
Bayesian modeling
Markov chain Monte Carlo

Changyou Chen (Duke University) SG-MCMC 15 / 119

Monte Carlo methods

Monte Carlo method is about drawing
a set of samples:

θl ∼ p(θ), l = 1,2, · · · ,L

Approximate the target distribution
p(θ) as count frequency:

p(θ) ≈ 1
L

L∑

l=1

δ(θ,θl) 6 8 10 12 14

An intractable integration is approximated as:
∫

f (θ)p(θ) ≈ 1
L

L∑

l=1

f (θl)

In Bayesian modeling, p(θ) is usually a posterior distribution, the
integral is a predicted quantity.

Changyou Chen (Duke University) SG-MCMC 16 / 119

Monte Carlo methods

Monte Carlo method is about drawing
a set of samples:

θl ∼ p(θ), l = 1,2, · · · ,L

Approximate the target distribution
p(θ) as count frequency:

p(θ) ≈ 1
L

L∑

l=1

δ(θ,θl) 6 8 10 12 14

An intractable integration is approximated as:
∫

f (θ)p(θ) ≈ 1
L

L∑

l=1

f (θl)

In Bayesian modeling, p(θ) is usually a posterior distribution, the
integral is a predicted quantity.

Changyou Chen (Duke University) SG-MCMC 16 / 119

Monte Carlo methods

Monte Carlo method is about drawing
a set of samples:

θl ∼ p(θ), l = 1,2, · · · ,L

Approximate the target distribution
p(θ) as count frequency:

p(θ) ≈ 1
L

L∑

l=1

δ(θ,θl) 6 8 10 12 14

An intractable integration is approximated as:
∫

f (θ)p(θ) ≈ 1
L

L∑

l=1

f (θl)

In Bayesian modeling, p(θ) is usually a posterior distribution, the
integral is a predicted quantity.

Changyou Chen (Duke University) SG-MCMC 16 / 119

Monte Carlo methods

Monte Carlo method is about drawing
a set of samples:

θl ∼ p(θ), l = 1,2, · · · ,L

Approximate the target distribution
p(θ) as count frequency:

p(θ) ≈ 1
L

L∑

l=1

δ(θ,θl) 6 8 10 12 14

An intractable integration is approximated as:
∫

f (θ)p(θ) ≈ 1
L

L∑

l=1

f (θl)

In Bayesian modeling, p(θ) is usually a posterior distribution, the
integral is a predicted quantity.

Changyou Chen (Duke University) SG-MCMC 16 / 119

How does the approximation work?

1 An intractable integration is approximated as:

∫
f (θ)p(θ) ≈ 1

L

L∑

l=1

f (θl) , f̃

2 If {θl}’s are independent:

Ef̃ = Ef , Var(f̃) =
1
L

Var(f)

I the variance decreases linearly w.r.t. the number of samples, and
independent of the dimension of θ

3 However, obtaining independent samples is hard:
I usually resort to drawing dependent samples with Markov chain

Monte Carlo (MCMC)

Changyou Chen (Duke University) SG-MCMC 17 / 119

How does the approximation work?

1 An intractable integration is approximated as:

∫
f (θ)p(θ) ≈ 1

L

L∑

l=1

f (θl) , f̃

2 If {θl}’s are independent:

Ef̃ = Ef , Var(f̃) =
1
L

Var(f)

I the variance decreases linearly w.r.t. the number of samples, and
independent of the dimension of θ

3 However, obtaining independent samples is hard:
I usually resort to drawing dependent samples with Markov chain

Monte Carlo (MCMC)

Changyou Chen (Duke University) SG-MCMC 17 / 119

How does the approximation work?

1 An intractable integration is approximated as:

∫
f (θ)p(θ) ≈ 1

L

L∑

l=1

f (θl) , f̃

2 If {θl}’s are independent:

Ef̃ = Ef , Var(f̃) =
1
L

Var(f)

I the variance decreases linearly w.r.t. the number of samples, and
independent of the dimension of θ

3 However, obtaining independent samples is hard:
I usually resort to drawing dependent samples with Markov chain

Monte Carlo (MCMC)

Changyou Chen (Duke University) SG-MCMC 17 / 119

MCMC example: a Gaussian model
1 Assume the following generative process (with α = 5, β = 1):

xi |µ, τ ∼ N(µ,1/τ), i = 1, · · · ,n = 1000
µ|τ, {xi} ∼ N(µ0,1/τ),

τ ∼ Gamma(α, β)

2 Posterior distribution:
p(µ, τ |{xi}) ∝

[∏n
i=1 N(xi ;µ,1/τ)

]
N(µ;µ0,1/τ)Gamma(τ ;α, β)

3 Marginal posterior distributions for µ and τ are available:

p(µ|{xi}) ∝
(

2β + (µ− µ0)2 +
∑

i

(xi − µ)2

)−α−(n+1)/2

p(τ |{xi}) = Gamma

(
α +

n
2
, β +

1
2

∑

i

(xi − x̄)2 +
n

2(n + 1)
(x̄ − µ0)2

)

I p(µ|{xi}) is a non-standardized Student’s t-distribution with mean
(
∑

i xi + µ0)/(n + 1)

Changyou Chen (Duke University) SG-MCMC 18 / 119

MCMC example: a Gaussian model
1 Assume the following generative process (with α = 5, β = 1):

xi |µ, τ ∼ N(µ,1/τ), i = 1, · · · ,n = 1000
µ|τ, {xi} ∼ N(µ0,1/τ),

τ ∼ Gamma(α, β)

2 Posterior distribution:
p(µ, τ |{xi}) ∝

[∏n
i=1 N(xi ;µ,1/τ)

]
N(µ;µ0,1/τ)Gamma(τ ;α, β)

3 Marginal posterior distributions for µ and τ are available:

p(µ|{xi}) ∝
(

2β + (µ− µ0)2 +
∑

i

(xi − µ)2

)−α−(n+1)/2

p(τ |{xi}) = Gamma

(
α +

n
2
, β +

1
2

∑

i

(xi − x̄)2 +
n

2(n + 1)
(x̄ − µ0)2

)

I p(µ|{xi}) is a non-standardized Student’s t-distribution with mean
(
∑

i xi + µ0)/(n + 1)

Changyou Chen (Duke University) SG-MCMC 18 / 119

MCMC example: a Gaussian model
1 Assume the following generative process (with α = 5, β = 1):

xi |µ, τ ∼ N(µ,1/τ), i = 1, · · · ,n = 1000
µ|τ, {xi} ∼ N(µ0,1/τ),

τ ∼ Gamma(α, β)

2 Posterior distribution:
p(µ, τ |{xi}) ∝

[∏n
i=1 N(xi ;µ,1/τ)

]
N(µ;µ0,1/τ)Gamma(τ ;α, β)

3 Marginal posterior distributions for µ and τ are available:

p(µ|{xi}) ∝
(

2β + (µ− µ0)2 +
∑

i

(xi − µ)2

)−α−(n+1)/2

p(τ |{xi}) = Gamma

(
α +

n
2
, β +

1
2

∑

i

(xi − x̄)2 +
n

2(n + 1)
(x̄ − µ0)2

)

I p(µ|{xi}) is a non-standardized Student’s t-distribution with mean
(
∑

i xi + µ0)/(n + 1)

Changyou Chen (Duke University) SG-MCMC 18 / 119

Gibbs sampling µ and τ

1 Conditional distributions:

µ|τ, {xi} ∼ N
(

n
n + 1

x̄ +
1

n + 1
µ0,

1
(n + 1)τ

)

τ |µ, {xi} ∼ Gamma
(
α +

n + 1
2

, β +

∑
i(xi − µ)2 + (µ− µ0)2

2

)

Changyou Chen (Duke University) SG-MCMC 19 / 119

Trace plot for µ

0 200 400 600 800 1000
Iteration

0.94

0.96

0.98

1

1.02

1.04

1.06

µ

sample trace
true mean
sample mean

Changyou Chen (Duke University) SG-MCMC 20 / 119

Sample approximation for µ
True posterior is a non-standardized Student’s t-distribution.

0.9 0.95 1 1.05 1.1
7

0

5

10

15

20

25

30
p
(7

jx
)

true sample approximation

Changyou Chen (Duke University) SG-MCMC 21 / 119

Trace plot for τ

0 200 400 600 800 1000
Iteration

4

4.5

5

5.5

τ

sample trace
true mean
sample mean

Changyou Chen (Duke University) SG-MCMC 22 / 119

Sample approximation for τ
True posterior is a Gamma distribution.

2 3 4 5 6
=

0

0.5

1

1.5

2
p
(=

jx
)

true
sample approximation

Changyou Chen (Duke University) SG-MCMC 23 / 119

Markov chain Monte Carlo methods
1 We are interested in drawing samples from some desired

distribution p∗(θ) = 1
Z p̃∗(θ).

2 Define a Markov chain:

θ0 → θ1 → θ2 → θ3 → θ4 → θ5 → · · ·

where θ0 ∼ p0(θ), θ1 ∼ p1(θ), · · · , satisfying

pt (θ
′) =

∫
pt−1(θ)T (θ → θ′)dθ ,

where T (θ → θ′) is the Markov chain transition probability from θ
to θ′.

3 We say p∗(θ) is an invariant (stationary) distribution of the Markov
chain iff:

p∗(θ′) =

∫
p∗(θ)T (θ → θ′)dθ

Changyou Chen (Duke University) SG-MCMC 24 / 119

Markov chain Monte Carlo methods
1 We are interested in drawing samples from some desired

distribution p∗(θ) = 1
Z p̃∗(θ).

2 Define a Markov chain:

θ0 → θ1 → θ2 → θ3 → θ4 → θ5 → · · ·

where θ0 ∼ p0(θ), θ1 ∼ p1(θ), · · · , satisfying

pt (θ
′) =

∫
pt−1(θ)T (θ → θ′)dθ ,

where T (θ → θ′) is the Markov chain transition probability from θ
to θ′.

3 We say p∗(θ) is an invariant (stationary) distribution of the Markov
chain iff:

p∗(θ′) =

∫
p∗(θ)T (θ → θ′)dθ

Changyou Chen (Duke University) SG-MCMC 24 / 119

Markov chain Monte Carlo methods
1 We are interested in drawing samples from some desired

distribution p∗(θ) = 1
Z p̃∗(θ).

2 Define a Markov chain:

θ0 → θ1 → θ2 → θ3 → θ4 → θ5 → · · ·

where θ0 ∼ p0(θ), θ1 ∼ p1(θ), · · · , satisfying

pt (θ
′) =

∫
pt−1(θ)T (θ → θ′)dθ ,

where T (θ → θ′) is the Markov chain transition probability from θ
to θ′.

3 We say p∗(θ) is an invariant (stationary) distribution of the Markov
chain iff:

p∗(θ′) =

∫
p∗(θ)T (θ → θ′)dθ

Changyou Chen (Duke University) SG-MCMC 24 / 119

Markov chain Monte Carlo methods

θ0 → θ1 → θ2 → θ3 → θ4 → θ5 → · · ·

where pt (θ
′) =

∫
pt−1(θ)T (θ → θ′)dθ.

1 An invariant (stationary) distribution satisfies:

p∗(θ′) =

∫
p∗(θ)T (θ → θ′)dθ

2 If the Markov chain is ergodic2, we have:

lim
t→∞

pt (θ) = p∗(θ)

3 The task is to design appropriate transition kernel T (θ → θ′), so
that its invariant distribution coincides p∗(θ).

2It could go from every state to every state.

Changyou Chen (Duke University) SG-MCMC 25 / 119

Markov chain Monte Carlo methods

θ0 → θ1 → θ2 → θ3 → θ4 → θ5 → · · ·

where pt (θ
′) =

∫
pt−1(θ)T (θ → θ′)dθ.

1 An invariant (stationary) distribution satisfies:

p∗(θ′) =

∫
p∗(θ)T (θ → θ′)dθ

2 If the Markov chain is ergodic2, we have:

lim
t→∞

pt (θ) = p∗(θ)

3 The task is to design appropriate transition kernel T (θ → θ′), so
that its invariant distribution coincides p∗(θ).

2It could go from every state to every state.

Changyou Chen (Duke University) SG-MCMC 25 / 119

Markov chain Monte Carlo methods

θ0 → θ1 → θ2 → θ3 → θ4 → θ5 → · · ·

where pt (θ
′) =

∫
pt−1(θ)T (θ → θ′)dθ.

1 An invariant (stationary) distribution satisfies:

p∗(θ′) =

∫
p∗(θ)T (θ → θ′)dθ

2 If the Markov chain is ergodic2, we have:

lim
t→∞

pt (θ) = p∗(θ)

3 The task is to design appropriate transition kernel T (θ → θ′), so
that its invariant distribution coincides p∗(θ).

2It could go from every state to every state.

Changyou Chen (Duke University) SG-MCMC 25 / 119

Markov chain Monte Carlo methods

1 A sufficient (but not necessary) condition to guarantee an invariant
distribution is the detailed balance condition:

p∗(θ′)T (θ′ → θ) = p∗(θ)T (θ → θ′)

Proof.
Taking integration on both sides over θ:

∫
p∗(θ′)T (θ′ → θ)dθ =

∫
p∗(θ)T (θ → θ′)dθ

=⇒p∗(θ′)
∫

T (θ′ → θ)dθ =

∫
p∗(θ)T (θ → θ′)dθ

=⇒p∗(θ′) =

∫
p∗(θ)T (θ → θ′)dθ ,

by using the fact that
∫

T (θ′ → θ)dθ = 1.

Changyou Chen (Duke University) SG-MCMC 26 / 119

Markov chain Monte Carlo methods

1 A sufficient (but not necessary) condition to guarantee an invariant
distribution is the detailed balance condition:

p∗(θ′)T (θ′ → θ) = p∗(θ)T (θ → θ′)

Proof.
Taking integration on both sides over θ:

∫
p∗(θ′)T (θ′ → θ)dθ =

∫
p∗(θ)T (θ → θ′)dθ

=⇒p∗(θ′)
∫

T (θ′ → θ)dθ =

∫
p∗(θ)T (θ → θ′)dθ

=⇒p∗(θ′) =

∫
p∗(θ)T (θ → θ′)dθ ,

by using the fact that
∫

T (θ′ → θ)dθ = 1.

Changyou Chen (Duke University) SG-MCMC 26 / 119

Metroplis-Hasting algorithm

1 Design T (θ → θ′) as the composition of a proposal distribution
qt (θ

′ |θ) and an accept-reject mechanism.
2 At step t , draw a sample3 θ∗ ∼ qt (θ |θt−1), and accept it with

probability:

At (θ
∗,θt−1) = min

(
1,

p̃(θ∗)qt (θt−1 |θ∗)
p̃(θt−1)qt (θ

∗ |θt−1)

)

3 The acceptance can be done by:
I draw a random variable u ∼ Uniform(0,1)
I accept the sample if At (θ

∗,θt−1) > u
4 The corresponding transition kernel satisfies the detailed balance

condition, thus has an invariant probability p∗(θ).

3A standard setting of qt (θ | θt−1) is a normal distribution with mean θt−1 and tunable variance.

Changyou Chen (Duke University) SG-MCMC 27 / 119

Metroplis-Hasting algorithm

1 Design T (θ → θ′) as the composition of a proposal distribution
qt (θ

′ |θ) and an accept-reject mechanism.
2 At step t , draw a sample3 θ∗ ∼ qt (θ |θt−1), and accept it with

probability:

At (θ
∗,θt−1) = min

(
1,

p̃(θ∗)qt (θt−1 |θ∗)
p̃(θt−1)qt (θ

∗ |θt−1)

)

3 The acceptance can be done by:
I draw a random variable u ∼ Uniform(0,1)
I accept the sample if At (θ

∗,θt−1) > u
4 The corresponding transition kernel satisfies the detailed balance

condition, thus has an invariant probability p∗(θ).

3A standard setting of qt (θ | θt−1) is a normal distribution with mean θt−1 and tunable variance.

Changyou Chen (Duke University) SG-MCMC 27 / 119

Metroplis-Hasting algorithm

1 Design T (θ → θ′) as the composition of a proposal distribution
qt (θ

′ |θ) and an accept-reject mechanism.
2 At step t , draw a sample3 θ∗ ∼ qt (θ |θt−1), and accept it with

probability:

At (θ
∗,θt−1) = min

(
1,

p̃(θ∗)qt (θt−1 |θ∗)
p̃(θt−1)qt (θ

∗ |θt−1)

)

3 The acceptance can be done by:
I draw a random variable u ∼ Uniform(0,1)
I accept the sample if At (θ

∗,θt−1) > u
4 The corresponding transition kernel satisfies the detailed balance

condition, thus has an invariant probability p∗(θ).

3A standard setting of qt (θ | θt−1) is a normal distribution with mean θt−1 and tunable variance.

Changyou Chen (Duke University) SG-MCMC 27 / 119

Metroplis-Hasting algorithm

1 Design T (θ → θ′) as the composition of a proposal distribution
qt (θ

′ |θ) and an accept-reject mechanism.
2 At step t , draw a sample3 θ∗ ∼ qt (θ |θt−1), and accept it with

probability:

At (θ
∗,θt−1) = min

(
1,

p̃(θ∗)qt (θt−1 |θ∗)
p̃(θt−1)qt (θ

∗ |θt−1)

)

3 The acceptance can be done by:
I draw a random variable u ∼ Uniform(0,1)
I accept the sample if At (θ

∗,θt−1) > u
4 The corresponding transition kernel satisfies the detailed balance

condition, thus has an invariant probability p∗(θ).

3A standard setting of qt (θ | θt−1) is a normal distribution with mean θt−1 and tunable variance.

Changyou Chen (Duke University) SG-MCMC 27 / 119

Metroplis-Hasting algorithm

1 The corresponding transition kernel:

T (θ → θ′) = qt (θ
∗ |θt−1)At (θ

∗,θt−1)

2 Satisfying the detailed balance condition:

p(θt−1)qt (θ
∗ |θt−1)At (θ

∗,θt−1)

= min (p(θt−1)qt (θ
∗ |θt−1),p(θ∗)qt (θt−1 |θ∗))

= min (p(θ∗)qt (θt−1 |θ∗),p(θt−1)qt (θ
∗ |θt−1))

=p(θ∗)qt (θt−1 |θ∗) min
(

1,
p(θt−1)qt (θ

∗ |θt−1)

p(θ∗)qt (θt−1 |θ∗)

)

=p(θ∗)qt (θt−1 |θ∗)At (θt−1,θ
∗)

Changyou Chen (Duke University) SG-MCMC 28 / 119

Metroplis-Hasting algorithm

1 The corresponding transition kernel:

T (θ → θ′) = qt (θ
∗ |θt−1)At (θ

∗,θt−1)

2 Satisfying the detailed balance condition:

p(θt−1)qt (θ
∗ |θt−1)At (θ

∗,θt−1)

= min (p(θt−1)qt (θ
∗ |θt−1),p(θ∗)qt (θt−1 |θ∗))

= min (p(θ∗)qt (θt−1 |θ∗),p(θt−1)qt (θ
∗ |θt−1))

=p(θ∗)qt (θt−1 |θ∗) min
(

1,
p(θt−1)qt (θ

∗ |θt−1)

p(θ∗)qt (θt−1 |θ∗)

)

=p(θ∗)qt (θt−1 |θ∗)At (θt−1,θ
∗)

Changyou Chen (Duke University) SG-MCMC 28 / 119

Discussion on the proposal distribution

1 Standard proposal distribution is an isotropic Gaussian center at
the current state with variance σ:

I small σ leads to high acceptance rate, but moves too slow
I large σ moves fast, but leads to high rejection rate

2 How to choose better proposals?

-3 -2 -1 0 1 2 3

<

-3

-2

-1

0

1

2

3

Changyou Chen (Duke University) SG-MCMC 29 / 119

Gibbs sampler

1 Assume θ is multi-dimensional4, θ = (θ1, · · · ,θk , · · · ,θK), denote
θ−k , {θj : j 6= k}.

2 Sample θk sequentially, with proposal distribution being the true
conditional distribution:

qk (θ∗ |θ) = p(θ∗k |θ−k)

3 Note θ∗−k = θ−k , p(θ) = p(θk |θ−k)p(θ−k).
4 The MH acceptance probability is:

A(θ∗,θ) =
p(θ∗)qk (θ |θ∗)
p(θ)qk (θ∗ |θ)

=
p(θ∗k |θ∗−k)p(θ∗−k)p(θk |θ∗−k)

p(θ∗k |θ−k)p(θ−k)p(θk |θ−k)

= 1

4One dimensional random variable is relatively easy to sample.

Changyou Chen (Duke University) SG-MCMC 30 / 119

Gibbs sampler

1 Assume θ is multi-dimensional4, θ = (θ1, · · · ,θk , · · · ,θK), denote
θ−k , {θj : j 6= k}.

2 Sample θk sequentially, with proposal distribution being the true
conditional distribution:

qk (θ∗ |θ) = p(θ∗k |θ−k)

3 Note θ∗−k = θ−k , p(θ) = p(θk |θ−k)p(θ−k).
4 The MH acceptance probability is:

A(θ∗,θ) =
p(θ∗)qk (θ |θ∗)
p(θ)qk (θ∗ |θ)

=
p(θ∗k |θ∗−k)p(θ∗−k)p(θk |θ∗−k)

p(θ∗k |θ−k)p(θ−k)p(θk |θ−k)

= 1

4One dimensional random variable is relatively easy to sample.

Changyou Chen (Duke University) SG-MCMC 30 / 119

Gibbs sampler

1 Assume θ is multi-dimensional4, θ = (θ1, · · · ,θk , · · · ,θK), denote
θ−k , {θj : j 6= k}.

2 Sample θk sequentially, with proposal distribution being the true
conditional distribution:

qk (θ∗ |θ) = p(θ∗k |θ−k)

3 Note θ∗−k = θ−k , p(θ) = p(θk |θ−k)p(θ−k).
4 The MH acceptance probability is:

A(θ∗,θ) =
p(θ∗)qk (θ |θ∗)
p(θ)qk (θ∗ |θ)

=
p(θ∗k |θ∗−k)p(θ∗−k)p(θk |θ∗−k)

p(θ∗k |θ−k)p(θ−k)p(θk |θ−k)

= 1

4One dimensional random variable is relatively easy to sample.

Changyou Chen (Duke University) SG-MCMC 30 / 119

Discussion of Gibbs sampler
1 No acceptance step, very efficient.
2 Conditional distributions are not always easy to sample.
3 Mix not well when highly variables are correlated.

Gibbs sampling

A method with no rejections:

– Initialize x to some value

– Pick each variable in turn or randomly

and resample P (xi|xj 6=i)

z1

z2

L

l

Figure from PRML, Bishop (2006)

Proof of validity: a) check detailed balance for component update.

b) Metropolis–Hastings ‘proposals’ P (xi|xj 6=i)) accept with prob. 1

Apply a series of these operators. Don’t need to check acceptance.

Figure: Sample path does not follow gradients. Figure from PRML, Bishop (2006)

Changyou Chen (Duke University) SG-MCMC 31 / 119

The Metropolis-adjusted Langevin: a better proposal
1 Gibbs sampling travels the parameter space following a zipzag

curve, which might be slow in high-dimensional space.
2 The Metropolis-adjusted Langevin uses a proposal that points

directly to the center of the probabilistic contour.

Changyou Chen (Duke University) SG-MCMC 32 / 119

The Metropolis-adjusted Langevin: a better proposal

1 Let E(θ) , − log p̃(θ), the direction of the contour is just the
gradient: −∇θE(θ).

2 In iteration l , define the proposal as a Gaussian centering at
θ∗ = θl−1−∇θE(θl−1)hl , where hl is a small stepsize:

q(θl |θl−1) = N
(
θl ;θ

∗, σ2
)
.

3 Need to do an accept-reject step:
I calculate the acceptance probability:

A(θ∗,θl−1) =
p̃(θ∗)q(θl−1 |θ∗)
p̃(θ)q(θ∗ |θl−1)

I accept θ∗ with probability A(θ∗,θl−1), otherwise set θl = θl−1

Changyou Chen (Duke University) SG-MCMC 33 / 119

The Metropolis-adjusted Langevin: a better proposal

1 Let E(θ) , − log p̃(θ), the direction of the contour is just the
gradient: −∇θE(θ).

2 In iteration l , define the proposal as a Gaussian centering at
θ∗ = θl−1−∇θE(θl−1)hl , where hl is a small stepsize:

q(θl |θl−1) = N
(
θl ;θ

∗, σ2
)
.

3 Need to do an accept-reject step:
I calculate the acceptance probability:

A(θ∗,θl−1) =
p̃(θ∗)q(θl−1 |θ∗)
p̃(θ)q(θ∗ |θl−1)

I accept θ∗ with probability A(θ∗,θl−1), otherwise set θl = θl−1

Changyou Chen (Duke University) SG-MCMC 33 / 119

Hamiltonian Monte Carlo

1 Design a proposal that follows the gradient of the target
distribution p∗(θ) = 1

Z p̃(θ).
2 Construct a landscape with gravitational potential energy,

E(θ) = − log p̃(θ).
3 Introduce velocity v carrying kinetic energy K (v) = vT v /2.
4 Let H(θ,v) , E(θ) + K (v). Hamiltonian’s equation used to

describe the evolution of the state (θt ,vt) along time t5:

dθ
dt

=
∂H
∂ v

d v
dt

= −∂H
∂ θ

5A continuous-time Markov chain.

Changyou Chen (Duke University) SG-MCMC 34 / 119

Hamiltonian Monte Carlo

1 Design a proposal that follows the gradient of the target
distribution p∗(θ) = 1

Z p̃(θ).
2 Construct a landscape with gravitational potential energy,

E(θ) = − log p̃(θ).
3 Introduce velocity v carrying kinetic energy K (v) = vT v /2.
4 Let H(θ,v) , E(θ) + K (v). Hamiltonian’s equation used to

describe the evolution of the state (θt ,vt) along time t5:

dθ
dt

=
∂H
∂ v

d v
dt

= −∂H
∂ θ

5A continuous-time Markov chain.

Changyou Chen (Duke University) SG-MCMC 34 / 119

Hamiltonian Monte Carlo

1 Design a proposal that follows the gradient of the target
distribution p∗(θ) = 1

Z p̃(θ).
2 Construct a landscape with gravitational potential energy,

E(θ) = − log p̃(θ).
3 Introduce velocity v carrying kinetic energy K (v) = vT v /2.
4 Let H(θ,v) , E(θ) + K (v). Hamiltonian’s equation used to

describe the evolution of the state (θt ,vt) along time t5:

dθ
dt

=
∂H
∂ v

d v
dt

= −∂H
∂ θ

5A continuous-time Markov chain.

Changyou Chen (Duke University) SG-MCMC 34 / 119

Hamiltonian Monte Carlo

1 Design a proposal that follows the gradient of the target
distribution p∗(θ) = 1

Z p̃(θ).
2 Construct a landscape with gravitational potential energy,

E(θ) = − log p̃(θ).
3 Introduce velocity v carrying kinetic energy K (v) = vT v /2.
4 Let H(θ,v) , E(θ) + K (v). Hamiltonian’s equation used to

describe the evolution of the state (θt ,vt) along time t5:

dθ
dt

=
∂H
∂ v

d v
dt

= −∂H
∂ θ

5A continuous-time Markov chain.

Changyou Chen (Duke University) SG-MCMC 34 / 119

Hamiltonian Monte Carlo

Physics point of view:
1 A dynamic system with total

energy or Hamiltonian:
H = E(θ) + K (v).

2 Frictionless ball rolling
(θ,v)→ (θ′,v′) satisfies
energy preserving,
H(θ′,v′) = H(θ,v).

3 Hamiltonian’s equation
describes the equations of
motion of the ball.

4 Ideal Hamiltonian dynamics
are time reversible:

I reverse v and the ball will
return to its start point

Figure: Rolling ball. Movie from
Matthias Liepe

Changyou Chen (Duke University) SG-MCMC 35 / 119

Hamiltonian Monte Carlo

Physics point of view:
1 A dynamic system with total

energy or Hamiltonian:
H = E(θ) + K (v).

2 Frictionless ball rolling
(θ,v)→ (θ′,v′) satisfies
energy preserving,
H(θ′,v′) = H(θ,v).

3 Hamiltonian’s equation
describes the equations of
motion of the ball.

4 Ideal Hamiltonian dynamics
are time reversible:

I reverse v and the ball will
return to its start point

Figure: Rolling ball. Movie from
Matthias Liepe

Changyou Chen (Duke University) SG-MCMC 35 / 119

Hamiltonian Monte Carlo

Physics point of view:
1 A dynamic system with total

energy or Hamiltonian:
H = E(θ) + K (v).

2 Frictionless ball rolling
(θ,v)→ (θ′,v′) satisfies
energy preserving,
H(θ′,v′) = H(θ,v).

3 Hamiltonian’s equation
describes the equations of
motion of the ball.

4 Ideal Hamiltonian dynamics
are time reversible:

I reverse v and the ball will
return to its start point

Figure: Rolling ball. Movie from
Matthias Liepe

Changyou Chen (Duke University) SG-MCMC 35 / 119

Hamiltonian Monte Carlo

Physics point of view:
1 A dynamic system with total

energy or Hamiltonian:
H = E(θ) + K (v).

2 Frictionless ball rolling
(θ,v)→ (θ′,v′) satisfies
energy preserving,
H(θ′,v′) = H(θ,v).

3 Hamiltonian’s equation
describes the equations of
motion of the ball.

4 Ideal Hamiltonian dynamics
are time reversible:

I reverse v and the ball will
return to its start point

Figure: Rolling ball. Movie from
Matthias Liepe

Changyou Chen (Duke University) SG-MCMC 35 / 119

Hamiltonian Monte Carlo

Markov chain point of view:
1 Joint distribution: p(θ,v) ∝ e−E(θ)−K (v) = e−H(θ,v).
2 To generate a sample:

I Gibbs sampling velocity v from a Gaussian
I evolving Hamiltonian dynamics by following Hamiltonian’s equation

for some time, then flip sign of velocity
I the resulting (θ,v) is a random sample from p(θ,v)

3 Proposal (evolving Hamiltonian dynamics) is deterministic and
reversible: q(θ′,v′ |θ,v) = q(θ,v |θ′,v′) = 1.

4 Conservation of energy means p(θ,v) = p(θ′,v′).
5 As a result, acceptance rate is always 1.

Except we can’t simulate Hamiltonian dynamics exactly , i.e.,
p(θ,v) 6= p(θ′,v′)

Changyou Chen (Duke University) SG-MCMC 36 / 119

Hamiltonian Monte Carlo

Markov chain point of view:
1 Joint distribution: p(θ,v) ∝ e−E(θ)−K (v) = e−H(θ,v).
2 To generate a sample:

I Gibbs sampling velocity v from a Gaussian
I evolving Hamiltonian dynamics by following Hamiltonian’s equation

for some time, then flip sign of velocity
I the resulting (θ,v) is a random sample from p(θ,v)

3 Proposal (evolving Hamiltonian dynamics) is deterministic and
reversible: q(θ′,v′ |θ,v) = q(θ,v |θ′,v′) = 1.

4 Conservation of energy means p(θ,v) = p(θ′,v′).
5 As a result, acceptance rate is always 1.

Except we can’t simulate Hamiltonian dynamics exactly , i.e.,
p(θ,v) 6= p(θ′,v′)

Changyou Chen (Duke University) SG-MCMC 36 / 119

Hamiltonian Monte Carlo

Markov chain point of view:
1 Joint distribution: p(θ,v) ∝ e−E(θ)−K (v) = e−H(θ,v).
2 To generate a sample:

I Gibbs sampling velocity v from a Gaussian
I evolving Hamiltonian dynamics by following Hamiltonian’s equation

for some time, then flip sign of velocity
I the resulting (θ,v) is a random sample from p(θ,v)

3 Proposal (evolving Hamiltonian dynamics) is deterministic and
reversible: q(θ′,v′ |θ,v) = q(θ,v |θ′,v′) = 1.

4 Conservation of energy means p(θ,v) = p(θ′,v′).
5 As a result, acceptance rate is always 1.

Except we can’t simulate Hamiltonian dynamics exactly , i.e.,
p(θ,v) 6= p(θ′,v′)

Changyou Chen (Duke University) SG-MCMC 36 / 119

Hamiltonian Monte Carlo

Markov chain point of view:
1 Joint distribution: p(θ,v) ∝ e−E(θ)−K (v) = e−H(θ,v).
2 To generate a sample:

I Gibbs sampling velocity v from a Gaussian
I evolving Hamiltonian dynamics by following Hamiltonian’s equation

for some time, then flip sign of velocity
I the resulting (θ,v) is a random sample from p(θ,v)

3 Proposal (evolving Hamiltonian dynamics) is deterministic and
reversible: q(θ′,v′ |θ,v) = q(θ,v |θ′,v′) = 1.

4 Conservation of energy means p(θ,v) = p(θ′,v′).
5 As a result, acceptance rate is always 1.

Except we can’t simulate Hamiltonian dynamics exactly , i.e.,
p(θ,v) 6= p(θ′,v′)

Changyou Chen (Duke University) SG-MCMC 36 / 119

Solving Hamiltonian dynamics

1 Solving the continuous-time differential equation with
discretized-time approximation:
{

dθ = v dt
d v = ∇θ log p̃(θ)dt

=⇒
{

θl = θl−1 + vl−1 hl
vl = vl−1 +∇θ log p̃(θl)hl

I proposals follow historical gradients of the distribution contour
2 Need an accept-reject test to design whether accept the proposal,

because of the discretization error:
I proposal is deterministic
I acceptance probability: min (1,exp {H(θl ,vl)− H(θl+1,vl+1)})

3 Almost identical to SGD with momentum:
I

{
θl = θl−1 + pl−1
pl = (1−m) pl−1 +∇θ log p̃(θl)εl

I they will be make equivalent in the context of stochastic gradient
MCMC

Changyou Chen (Duke University) SG-MCMC 37 / 119

Solving Hamiltonian dynamics

1 Solving the continuous-time differential equation with
discretized-time approximation:
{

dθ = v dt
d v = ∇θ log p̃(θ)dt

=⇒
{

θl = θl−1 + vl−1 hl
vl = vl−1 +∇θ log p̃(θl)hl

I proposals follow historical gradients of the distribution contour
2 Need an accept-reject test to design whether accept the proposal,

because of the discretization error:
I proposal is deterministic
I acceptance probability: min (1,exp {H(θl ,vl)− H(θl+1,vl+1)})

3 Almost identical to SGD with momentum:
I

{
θl = θl−1 + pl−1
pl = (1−m) pl−1 +∇θ log p̃(θl)εl

I they will be make equivalent in the context of stochastic gradient
MCMC

Changyou Chen (Duke University) SG-MCMC 37 / 119

Solving Hamiltonian dynamics

1 Solving the continuous-time differential equation with
discretized-time approximation:
{

dθ = v dt
d v = ∇θ log p̃(θ)dt

=⇒
{

θl = θl−1 + vl−1 hl
vl = vl−1 +∇θ log p̃(θl)hl

I proposals follow historical gradients of the distribution contour
2 Need an accept-reject test to design whether accept the proposal,

because of the discretization error:
I proposal is deterministic
I acceptance probability: min (1,exp {H(θl ,vl)− H(θl+1,vl+1)})

3 Almost identical to SGD with momentum:
I

{
θl = θl−1 + pl−1
pl = (1−m) pl−1 +∇θ log p̃(θl)εl

I they will be make equivalent in the context of stochastic gradient
MCMC

Changyou Chen (Duke University) SG-MCMC 37 / 119

Detailed balance

1 Verify that the detailed balance for HMC holds.
I let the initial state be (θ,v), the state after Leap-frog simulation be

(θ′,v′)

1
Z

exp(−H(θ,v)) min
(
1,exp(−H(θ′,v′) + H(θ,v))

)

=
1
Z

min
(
exp(−H(θ,v)),exp(−H(θ′,v′)

)

=
1
Z

exp(−H(θ′,v′)) min
(
1,exp(−H(θ,v) + H(θ′,v′))

)

Changyou Chen (Duke University) SG-MCMC 38 / 119

Hamiltonian Monte Carlo algorithm

Set l = 0
Random initialize a position state θ0
for l = 1,2, . . . do

Sample a new initial momentum v0 ∼ e−K (v) (Gaussian)
Set θ0 = θl−1
Run Leap-frog algorithm starting at (θ0,v0) for L steps to obtain
proposed states (θ∗,v∗)
Calculate the Metropolis acceptance probability:
α = min (1,exp (H(θ0,v0)− H(θ∗,v∗)))
Draw u ∼ Unif(0,1)

if u ≤ α, θl = θ∗

else θl = θl−1

end

Changyou Chen (Duke University) SG-MCMC 39 / 119

Demo: MH vs. HMC

1 Nine mixtures of Gaussians6.
2 Sequential of samples connected by yellow lines.

6Demo by T. Broderick and D. Duvenaud.

Changyou Chen (Duke University) SG-MCMC 40 / 119

Discussion

1 All the above traditional MCMC methods are not scalable in a
big-data setting7, in each iteration:

I the whole data need to be used to generate a proposal
I the whole data need to be used to calculate the acceptance

probability
I scales O(N), where N is the number of data samples

2 Scalable MCMC uses sub-data in each iteration,
I to calculate the acceptance probability8

I to generate proposals with acceptance probability close to 1, and
ignore the acceptance step – stochastic gradient MCMC methods
(SG-MCMC)

7when the number of data samples are large.
8A. Korattikara, Y. Chen, and M. Welling. “Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget”. In: ICML. 2014;

R. Bardenet, A. Doucet, and C. Holmes. “Towards scaling up Markov chain Monte Carlo: an adaptive subsampling approach”.
In: ICML. 2014.

Changyou Chen (Duke University) SG-MCMC 41 / 119

Discussion

1 All the above traditional MCMC methods are not scalable in a
big-data setting7, in each iteration:

I the whole data need to be used to generate a proposal
I the whole data need to be used to calculate the acceptance

probability
I scales O(N), where N is the number of data samples

2 Scalable MCMC uses sub-data in each iteration,
I to calculate the acceptance probability8

I to generate proposals with acceptance probability close to 1, and
ignore the acceptance step – stochastic gradient MCMC methods
(SG-MCMC)

7when the number of data samples are large.
8A. Korattikara, Y. Chen, and M. Welling. “Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget”. In: ICML. 2014;

R. Bardenet, A. Doucet, and C. Holmes. “Towards scaling up Markov chain Monte Carlo: an adaptive subsampling approach”.
In: ICML. 2014.

Changyou Chen (Duke University) SG-MCMC 41 / 119

Large-Scale Bayesian Learning with Stochastic Gradient
Markov Chain Monte Carlo Methods

Part Two: Stochastic Gradient Markov Chain
Monte Carlo

Changyou Chen (Duke University) SG-MCMC 42 / 119

Outline

2 Stochastic Gradient Markov Chain Monte Carlo
SG-MCMC algorithms
Theory

Changyou Chen (Duke University) SG-MCMC 43 / 119

Outline

2 Stochastic Gradient Markov Chain Monte Carlo
SG-MCMC algorithms
Theory

Changyou Chen (Duke University) SG-MCMC 43 / 119

Two key steps in SG-MCMC

1 Proposals typically follow stochastic
gradients of log-posteriors:

I make samples concentrate on the
modes

2 Adding random Gaussian noise to
proposals.

I encourage algorithms to jump out of
local modes, and to explore the
parameter space

Figure: Proposals of Gibbs
and SG-MCMC.

Changyou Chen (Duke University) SG-MCMC 44 / 119

Basic setup
1 Given data X = {x1, · · · ,xN}, a generative model (likelihood)

p(X |θ) =
∏N

i=1 p(xi |θ) and prior p(θ), we want to sample from the
posterior:

p(θ |X) ∝ p(θ)p(X |θ) = p(θ)
N∏

i=1

p(xi |θ)

2 We are interested in the case when N is extremely large, so that
computing p(X |θ) is prohibitively expensive.

3 Define the following two quantities (unnormalized log-posterior
and stochastic unnormalized log-posterior):

U(θ) , −
N∑

i=1

log p(xi |θ)− log p(θ)

Ũ(θ) , −N
n

n∑

i=1

log p(xπi |θ)− log p(θ)

where (π1, · · · , πN) is a random permutation of (1, · · · ,N).
Changyou Chen (Duke University) SG-MCMC 45 / 119

Basic setup
1 Given data X = {x1, · · · ,xN}, a generative model (likelihood)

p(X |θ) =
∏N

i=1 p(xi |θ) and prior p(θ), we want to sample from the
posterior:

p(θ |X) ∝ p(θ)p(X |θ) = p(θ)
N∏

i=1

p(xi |θ)

2 We are interested in the case when N is extremely large, so that
computing p(X |θ) is prohibitively expensive.

3 Define the following two quantities (unnormalized log-posterior
and stochastic unnormalized log-posterior):

U(θ) , −
N∑

i=1

log p(xi |θ)− log p(θ)

Ũ(θ) , −N
n

n∑

i=1

log p(xπi |θ)− log p(θ)

where (π1, · · · , πN) is a random permutation of (1, · · · ,N).
Changyou Chen (Duke University) SG-MCMC 45 / 119

Basic setup
1 Given data X = {x1, · · · ,xN}, a generative model (likelihood)

p(X |θ) =
∏N

i=1 p(xi |θ) and prior p(θ), we want to sample from the
posterior:

p(θ |X) ∝ p(θ)p(X |θ) = p(θ)
N∏

i=1

p(xi |θ)

2 We are interested in the case when N is extremely large, so that
computing p(X |θ) is prohibitively expensive.

3 Define the following two quantities (unnormalized log-posterior
and stochastic unnormalized log-posterior):

U(θ) , −
N∑

i=1

log p(xi |θ)− log p(θ)

Ũ(θ) , −N
n

n∑

i=1

log p(xπi |θ)− log p(θ)

where (π1, · · · , πN) is a random permutation of (1, · · · ,N).
Changyou Chen (Duke University) SG-MCMC 45 / 119

Basic setup

1 SG-MCMC relies on the following quantity (stochastic gradient):

∇θŨ(θ) , −N
n

n∑

i=1

∇θ log p(xπi |θ)−∇θ log p(θ) ,

2 ∇θŨ(θ) is an unbiased estimate of ∇θU(θ):
I SG-MCMC samples parameters based on ∇θŨ(θ)
I very cheap to compute
I bringing the name “stochastic gradient MCMC”

Changyou Chen (Duke University) SG-MCMC 46 / 119

Basic setup

1 SG-MCMC relies on the following quantity (stochastic gradient):

∇θŨ(θ) , −N
n

n∑

i=1

∇θ log p(xπi |θ)−∇θ log p(θ) ,

2 ∇θŨ(θ) is an unbiased estimate of ∇θU(θ):
I SG-MCMC samples parameters based on ∇θŨ(θ)
I very cheap to compute
I bringing the name “stochastic gradient MCMC”

Changyou Chen (Duke University) SG-MCMC 46 / 119

Some facts about SG-MCMC

1 By ignoring the acceptance step:
I the detailed balance condition typically not hold, and the algorithm

is not reversible9

I typically leads to biased, but controllable estimations
2 By using sub-data in each iteration:

I yielding stochastic gradients
I does not affect the convergence properties (e.g., convergence

rates), compared to using the whole data in each iteration

9These are not necessary conditions for a valid MCMC method.

Changyou Chen (Duke University) SG-MCMC 47 / 119

Some facts about SG-MCMC

1 By ignoring the acceptance step:
I the detailed balance condition typically not hold, and the algorithm

is not reversible9

I typically leads to biased, but controllable estimations
2 By using sub-data in each iteration:

I yielding stochastic gradients
I does not affect the convergence properties (e.g., convergence

rates), compared to using the whole data in each iteration

9These are not necessary conditions for a valid MCMC method.

Changyou Chen (Duke University) SG-MCMC 47 / 119

Demo: the two key steps

1 Proposals follow stochastic gradients of log-posteriors:
I stuck in a local mode

Changyou Chen (Duke University) SG-MCMC 48 / 119

Demo: the two key steps

1 After adding random Gaussian noise:
I it works !!

Changyou Chen (Duke University) SG-MCMC 49 / 119

Outline

Stochastic Gradient Markov Chain Monte Carlo
1 SG-MCMC algorithms

Stochastic Gradient Langevin Dynamics (SGLD)
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)
Stochastic Gradient Thermostats (SGNHT)
Stochastic Gradient MCMC with Riemannian Geometry

I stochastic gradient Riemannian Langevin dynamics (SGRLD)
I preconditioned stochastic gradient Langevin dynamics (PSGLD)

2 Theory

Changyou Chen (Duke University) SG-MCMC 50 / 119

Outline

Stochastic Gradient Markov Chain Monte Carlo
1 SG-MCMC algorithms

Stochastic Gradient Langevin Dynamics (SGLD)
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)
Stochastic Gradient Thermostats (SGNHT)
Stochastic Gradient MCMC with Riemannian Geometry

I stochastic gradient Riemannian Langevin dynamics (SGRLD)
I preconditioned stochastic gradient Langevin dynamics (PSGLD)

2 Theory

Changyou Chen (Duke University) SG-MCMC 50 / 119

First attempt

1 A 1st-order method: directly update on the model parameter θ.
2 Use a proposal that follows the stochastic gradient of the

log-posterior:

θl+1 = θl −hl+1∇θŨ(θl)

I hl ’s are the stepsizes, could be fixed (∀l ,hl = h) or deceasing
(∀l ,hl > hl+1)

3 Ignore the acceptance step.
4 Resulting in Stochastic Gradient Descend (SGD).

Changyou Chen (Duke University) SG-MCMC 51 / 119

First attempt

1 A 1st-order method: directly update on the model parameter θ.
2 Use a proposal that follows the stochastic gradient of the

log-posterior:

θl+1 = θl −hl+1∇θŨ(θl)

I hl ’s are the stepsizes, could be fixed (∀l ,hl = h) or deceasing
(∀l ,hl > hl+1)

3 Ignore the acceptance step.
4 Resulting in Stochastic Gradient Descend (SGD).

Changyou Chen (Duke University) SG-MCMC 51 / 119

Random noise to the rescue

1 Need to make the algorithm explore the parameter space:
I adding random Gaussian noise to the update10

θl+1 = θl −hl+1∇θŨ(θl) +
√

2hl+1ζl+1

ζl+1 ∼ N (0, I)

2 The magnitude of the Gaussian needs to be
√

2hl+1 in order to
guarantee a correct sampler:

I reasons to be explained later
3 This is called stochastic gradient Langevin dynamics (SGLD).

10 In the following, we will directly use N (0, I) to represent a normal random variable with zero-mean and covariance matrix I.

Changyou Chen (Duke University) SG-MCMC 52 / 119

SGLD in algorithm

Input: Parameters {hl}
Output: Approximate samples {θl}

Initialize θ0 ∈ Rn

for l = 1,2, . . . do
Evaluate ∇θŨ(θl−1) from the l-th minibatch
θl = θl−1−∇Ũ(θl−1)hl +

√
2hl N (0, I)

end
Return {θl}

Algorithm 1: Stochastic Gradient Langevin Dynamics

Changyou Chen (Duke University) SG-MCMC 53 / 119

Example11

1 A simple Gaussian mixture:

θ1 ∼ N (0,10), θ2 ∼ N (0,1)

xi ∼
1
2
N (θ1,2) +

1
2
N (θ1 +θ2,2), i = 1, · · · ,100

Stochastic Gradient Langevin Dynamics

−1 0 1 2
−3

−2

−1

0

1

2

3

−1 0 1 2
−3

−2

−1

0

1

2

3

Figure 1. True and estimated posterior distribution.

10
0

10
2

10
4

10
6

10
−6

10
−4

10
−2

10
0

iteration

n
o
is

e
 v

a
ri
a
n
ce

∇θ
1
 noise

∇θ
2
 noise

injected noise

10
−8

10
−6

10
−4

10
−2

10
−3

10
−2

10
−1

10
0

step size

a
ve

ra
g
e
 r

e
je

ct
io

n
 r

a
te

Figure 2. Left: variances of stochastic gradient noise and
injected noise. Right: rejection probability versus step size.
We report the average rejection probability per iteration in
each sweep through the dataset.

Since
∑∞

t=1 ϵt = ∞, this estimator will be consistent
as well. The intuition is that the rate at which the
Markov chain mixes is proportional to the step size, so
that we expect the effective sample size of {θ1, . . . , θT }
to be proportional to

∑T
t=1 ϵt, and that each θt will

contribute an effective sample size proportional to ϵt.

5. Experiments

5.1. Simple Demonstration

We first demonstrate the workings of our stochastic
gradient Langevin algorithm on a simple example in-
volving only two parameters. To make the posterior
multimodal and a little more interesting, we use a mix-
ture of Gaussians with tied means:

θ1 ∼ N(0,σ2
1) ; θ2 ∼ N(0,σ2

2)

xi ∼ 1
2N(θ1, σ

2
x) + 1

2N(θ1 + θ2,σ
2
x)

where σ2
1 = 10, σ2

2 = 1 and σ2
x = 2. 100 data points

are drawn from the model with θ1 = 0 and θ2 = 1.
There is a mode at this parameter setting, but also a
secondary mode at θ1 = 1, θ2 = −1, with strong neg-
ative correlation between the parameters. We ran the
stochastic gradient Langevin algorithm with a batch-

0 2 4 6 8 10
−7

−6

−5

−4

−3

−2

−1

0

Number of iterations through whole dataset

L
o

g
 jo

in
t

p
ro

b
a

b
ili

ty
 p

e
r

d
a

tu
m

0 2 6 84

-6

-4

-5

-3

10

-2

-1
0

-7
0 0.5 1 1.5 2

0.65

0.7

0.75

0.8

0.85

Number of iterations through whole dataset

A
cc

u
ra

cy
 o

n
 t
e
st

 d
a
ta

Accuracy after 10 iterations
Accuracy

0 0.5 1.5 21

0.7

0.8

0.75

0.85

0.65

Figure 3. Average log joint probability per data item (left)
and accuracy on test set (right) as functions of the num-
ber of sweeps through the whole dataset. Red dashed line
represents accuracy after 10 iterations. Results are aver-
aged over 50 runs; blue dotted lines indicate 1 standard
deviation.

size of 1 and using 10000 sweeps through the whole
dataset. The step sizes are ϵt = a(b + t)−γ where
γ = .55 and a and b are set such that ϵt decreases
from .01 to .0001 over the duration of the run. We see
from Figure 1 that the estimated posterior distribu-
tion is very accurate. In Figure 2 we see that there are
indeed two phases to the stochastic gradient Langevin
algorithm: a first phase where the stochastic gradient
noise dominates the injected noise, and a second phase
where the converse occurs. To explore the scaling of
the rejection rate as a function of step sizes, we reran
the experiment with step sizes exponentially decreas-
ing from 10−2 to 10−8. In the original experiment the
dynamic range of the step sizes is not wide enough for
visual inspection. Figure 2(right) shows the rejection
probability decreasing to zero as step size decreases.

5.2. Logistic Regression

We applied our stochastic gradient Langevin algorithm
to a Bayesian logistic regression model. The probabil-
ity of the ith output yi ∈ {−1,+1} given the corre-
sponding input vector xi is modelled as:

p(yi|xi) = σ(yiβ
⊤xi) (12)

where β are the parameters, and σ(z) = 1
1+exp(−z) .

The bias parameter is absorbed into β by including 1
as an entry in xi. We use a Laplace prior for β with a
scale of 1. The gradient of the log likelihood is:

∂

∂β
log p(yi|xi) = σ(−yiβ

⊤xi)yixi (13)

while the gradient of the prior is simply −sign(β),
which is applied elementwise.

We applied our inference algorithm to the a9a dataset
derived by (Lin et al., 2008) from the UCI adult
dataset. It consists of 32561 observations and 123 fea-
tures, and we used batch sizes of 10. Results from 50

Figure: Left: true posterior; Right: sample-based estimation.

11M. Welling and Y. W. Teh. “Bayesian learning via stochastic gradient Langevin dynamics”. In: ICML. 2011.

Changyou Chen (Duke University) SG-MCMC 54 / 119

Outline

Stochastic Gradient Markov Chain Monte Carlo
1 SG-MCMC algorithms

Stochastic Gradient Langevin Dynamics (SGLD)
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)
Stochastic Gradient Thermostats (SGNHT)
Stochastic Gradient MCMC with Riemannian Geometry

I stochastic gradient Riemannian Langevin dynamics (SGRLD)
I preconditioned stochastic gradient Langevin dynamics (PSGLD)

2 Theory

Changyou Chen (Duke University) SG-MCMC 55 / 119

SGHMC

1 SGLD is slow when parameter space exhibits uneven curvatures.
2 Use the momentum idea to improve SGLD:

I a generalization of the HMC, in that the ball is rolling on a friction
surface

I the ball follows the momentum instead of gradients, which is a
summarization of historical gradients, thus could jump out local
modes easier and move faster

I needs a balance between these extra forces

gravity

friction

random force

momentum

Changyou Chen (Duke University) SG-MCMC 56 / 119

SGHMC

1 SGLD is slow when parameter space exhibits uneven curvatures.
2 Use the momentum idea to improve SGLD:

I a generalization of the HMC, in that the ball is rolling on a friction
surface

I the ball follows the momentum instead of gradients, which is a
summarization of historical gradients, thus could jump out local
modes easier and move faster

I needs a balance between these extra forces

gravity

friction

random force

momentum

Changyou Chen (Duke University) SG-MCMC 56 / 119

A naive approach to generalize HMC without friction
1 Simply using injected Gaussian noise (random wind) in SGD with

momentum.

θl = θl−1 + p hl

pl = pl−1−∇θŨ(θl)hl +
√

2hl N (0, I)︸ ︷︷ ︸
random wind

2 Would not work:
I random wind tends to uniformize the location distribution12

I the probability of see the ball at any location is equal

gravity

random force

momentum

12T. Chen, E. B. Fox, and C. Guestrin. “Stochastic Gradient Hamiltonian Monte Carlo”. In: ICML. 2014.

Changyou Chen (Duke University) SG-MCMC 57 / 119

A naive approach to generalize HMC without friction
1 Simply using injected Gaussian noise (random wind) in SGD with

momentum.

θl = θl−1 + p hl

pl = pl−1−∇θŨ(θl)hl +
√

2hl N (0, I)︸ ︷︷ ︸
random wind

2 Would not work:
I random wind tends to uniformize the location distribution12

I the probability of see the ball at any location is equal

gravity

random force

momentum

12T. Chen, E. B. Fox, and C. Guestrin. “Stochastic Gradient Hamiltonian Monte Carlo”. In: ICML. 2014.

Changyou Chen (Duke University) SG-MCMC 57 / 119

Adding a friction term

1 Without a friction term, the random Gaussian noise would drive
the ball too far away from their stationary distribution.

2 After adding a friction term:

θl = θl−1 + p hl

pl = pl−1−∇θŨ(θl)hl − A p hl +
√

2Ahl N (0, I) ,

where A > 0 is a constant13, controlling the magnitude of the
friction.

3 The fraction term penalize the momentum:
I the more momentum, the more fraction it has, thus slowing down

the ball

13 In the original SGHMC paper, A is decomposed into a known variance of injected noise and an unknown variance of
stochastic gradients.

Changyou Chen (Duke University) SG-MCMC 58 / 119

Adding a friction term

1 Without a friction term, the random Gaussian noise would drive
the ball too far away from their stationary distribution.

2 After adding a friction term:

θl = θl−1 + p hl

pl = pl−1−∇θŨ(θl)hl − A p hl +
√

2Ahl N (0, I) ,

where A > 0 is a constant13, controlling the magnitude of the
friction.

3 The fraction term penalize the momentum:
I the more momentum, the more fraction it has, thus slowing down

the ball

13 In the original SGHMC paper, A is decomposed into a known variance of injected noise and an unknown variance of
stochastic gradients.

Changyou Chen (Duke University) SG-MCMC 58 / 119

Adding a friction term

1 Without a friction term, the random Gaussian noise would drive
the ball too far away from their stationary distribution.

2 After adding a friction term:

θl = θl−1 + p hl

pl = pl−1−∇θŨ(θl)hl − A p hl +
√

2Ahl N (0, I) ,

where A > 0 is a constant13, controlling the magnitude of the
friction.

3 The fraction term penalize the momentum:
I the more momentum, the more fraction it has, thus slowing down

the ball

13 In the original SGHMC paper, A is decomposed into a known variance of injected noise and an unknown variance of
stochastic gradients.

Changyou Chen (Duke University) SG-MCMC 58 / 119

SGHMC in algorithm

Input: Parameters A, {hl}
Output: Approximate samples {θl}

Initialize θ0 ∈ Rn

for l = 1,2, . . . do
Evaluate ∇θŨ(θl−1) from the l-th minibatch
θl = θl−1 + p hl

pl = pl−1−∇Ũ(θl)hl − A pl−1 hl +
√

2Ahl N (0, I)
end
Return {θl}

Algorithm 2: Stochastic Gradient Hamiltonian Monte Carlo

Changyou Chen (Duke University) SG-MCMC 59 / 119

Example14

1 Sample from a 1D Gaussian
distribution:

I U(θ) = 1
2 θ2

2 Sample from a 2D Gaussian
distribution:

I U(θ) = 1
2 θT Σ−1 θ

Stochastic Gradient Hamiltonian Monte Carlo

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

θ

r

Noisy Hamiltonian dynamics
Noisy Hamiltonian dynamics(resample r each 50 steps)
Noisy Hamiltonian dynamics with friction
Hamiltonian dynamics

Figure 2. Points (✓,r) simulated from discretizations of various
Hamiltonian dynamics over 15000 steps using U(✓) = 1

2
✓2 and

✏ = 0.1. For the noisy scenarios, we replace the gradient by
rŨ(✓) = ✓ + N (0, 4). We see that noisy Hamiltonian dynam-
ics lead to diverging trajectories when friction is not introduced.
Resampling r helps control divergence, but the associated HMC
stationary distribution is not correct, as illustrated in Fig. 1.

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Autocorrelation Time

Av
er

ag
e

Ab
so

lu
te

 E
rro

r o
f S

am
pl

e
C

ov
ar

ia
nc

e

SGLD
SGHMC

x

y

−2 −1 0 1 2 3
−2

−1

0

1

2

3
SGLD
SGHMC

Figure 3. Contrasting sampling of a bivariate Gaussian with cor-
relation using SGHMC versus SGLD. Here, U(✓) = 1

2
✓T⌃�1✓,

rŨ(✓) = ⌃�1✓+ N (0, I) with ⌃11 = ⌃22 = 1 and correlation
⇢ = ⌃12 = 0.9. Left: Mean absolute error of the covariance
estimation using ten million samples versus autocorrelation time
of the samples as a function of 5 step size settings. Right: First
50 samples of SGHMC and SGLD.

We also consider simply simulating from the discretized
Hamiltonian dynamical systems associated with the vari-
ous samplers compared. In Fig. 2, we compare the result-
ing trajectories and see that the path of (✓, r) from the noisy
system without friction diverges significantly. The modifi-
cation of the dynamical system by adding friction (corre-
sponding to SGHMC) corrects this behavior. We can also
correct for this divergence through periodic resampling of
the momentum, though as we saw in Fig. 1, the correspond-
ing MCMC algorithm (“Naive stochastic gradient HMC
(no MH)”) does not yield the correct target distribution.
These results confirm the importance of the friction term
in maintaining a well-behaved Hamiltonian and leading to
the correct stationary distribution.

It is known that a benefit of HMC over many other MCMC
algorithms is the efficiency in sampling from correlated
distributions (Neal, 2010)—this is where the introduction
of the momentum variable shines. SGHMC inherits this

property. Fig. 3 compares SGHMC and SGLD (Welling &
Teh, 2011) when sampling from a bivariate Gaussian with
positive correlation. For each method, we examine five
different settings of the initial step size on a linearly de-
creasing scale and generate ten million samples. For each
of these sets of samples (one set per step-size setting), we
calculate the autocorrelation time2 of the samples and the
average absolute error of the resulting sample covariance.
Fig. 3(a) shows the autocorrelation versus estimation error
for the five settings. As we decrease the stepsize, SGLD has
reasonably low estimation error but high autocorrelation
time indicating an inefficient sampler. In contrast, SGHMC
achieves even lower estimation error at very low autocorre-
lation times, from which we conclude that the sampler is in-
deed efficiently exploring the distribution. Fig. 3(b) shows
the first 50 samples generated by the two samplers. We see
that SGLD’s random-walk behavior makes it challenging to
explore the tails of the distribution. The momentum vari-
able associated with SGHMC instead drives the sampler to
move along the distribution contours.

4.2. Bayesian Neural Networks for Classification

We also test our method on a handwritten digits classifica-
tion task using the MNIST dataset3. The dataset consists
of 60,000 training instances and 10,000 test instances. We
randomly split a validation set containing 10,000 instances
from the training data in order to select training parame-
ters, and use the remaining 50,000 instances for training.
For classification, we consider a two layer Bayesian neu-
ral network with 100 hidden variables using a sigmoid unit
and an output layer using softmax. We tested four meth-
ods: SGD, SGD with momentum, SGLD and SGHMC.
For the optimization-based methods, we use the validation
set to select the optimal regularizer � of network weights4.
For the sampling-based methods, we take a fully Bayesian
approach and place a weakly informative gamma prior on
each layer’s weight regularizer �. The sampling procedure
is carried out by running SGHMC and SGLD using mini-
batches of 500 training instances, then resampling hyperpa-
rameters after an entire pass over the training set. We run
the samplers for 800 iterations (each over the entire training
dataset) and discard the initial 50 samples as burn-in.

The test error as a function of MCMC or optimization iter-
ation (after burn-in) is reported for each of these methods
in Fig. 4. From the results, we see that SGD with mo-
mentum converges faster than SGD. SGHMC also has an
advantage over SGLD, converging to a low test error much
more rapidly. In terms of runtime, in this case the gra-

2Autocorrelation time is defined as 1 +
P1

s=1 ⇢s, where ⇢s is
the autocorrelation at lag s.

3http://yann.lecun.com/exdb/mnist/
4We also tried MAP inference for selecting � in the

optimization-based method, but found similar performance.

Stochastic Gradient Hamiltonian Monte Carlo

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

θ

r

Noisy Hamiltonian dynamics
Noisy Hamiltonian dynamics(resample r each 50 steps)
Noisy Hamiltonian dynamics with friction
Hamiltonian dynamics

Figure 2. Points (✓,r) simulated from discretizations of various
Hamiltonian dynamics over 15000 steps using U(✓) = 1

2
✓2 and

✏ = 0.1. For the noisy scenarios, we replace the gradient by
rŨ(✓) = ✓ + N (0, 4). We see that noisy Hamiltonian dynam-
ics lead to diverging trajectories when friction is not introduced.
Resampling r helps control divergence, but the associated HMC
stationary distribution is not correct, as illustrated in Fig. 1.

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Autocorrelation Time

Av
er

ag
e

Ab
so

lu
te

 E
rro

r o
f S

am
pl

e
C

ov
ar

ia
nc

e

SGLD
SGHMC

x

y

−2 −1 0 1 2 3
−2

−1

0

1

2

3
SGLD
SGHMC

Figure 3. Contrasting sampling of a bivariate Gaussian with cor-
relation using SGHMC versus SGLD. Here, U(✓) = 1

2
✓T⌃�1✓,

rŨ(✓) = ⌃�1✓+ N (0, I) with ⌃11 = ⌃22 = 1 and correlation
⇢ = ⌃12 = 0.9. Left: Mean absolute error of the covariance
estimation using ten million samples versus autocorrelation time
of the samples as a function of 5 step size settings. Right: First
50 samples of SGHMC and SGLD.

We also consider simply simulating from the discretized
Hamiltonian dynamical systems associated with the vari-
ous samplers compared. In Fig. 2, we compare the result-
ing trajectories and see that the path of (✓, r) from the noisy
system without friction diverges significantly. The modifi-
cation of the dynamical system by adding friction (corre-
sponding to SGHMC) corrects this behavior. We can also
correct for this divergence through periodic resampling of
the momentum, though as we saw in Fig. 1, the correspond-
ing MCMC algorithm (“Naive stochastic gradient HMC
(no MH)”) does not yield the correct target distribution.
These results confirm the importance of the friction term
in maintaining a well-behaved Hamiltonian and leading to
the correct stationary distribution.

It is known that a benefit of HMC over many other MCMC
algorithms is the efficiency in sampling from correlated
distributions (Neal, 2010)—this is where the introduction
of the momentum variable shines. SGHMC inherits this

property. Fig. 3 compares SGHMC and SGLD (Welling &
Teh, 2011) when sampling from a bivariate Gaussian with
positive correlation. For each method, we examine five
different settings of the initial step size on a linearly de-
creasing scale and generate ten million samples. For each
of these sets of samples (one set per step-size setting), we
calculate the autocorrelation time2 of the samples and the
average absolute error of the resulting sample covariance.
Fig. 3(a) shows the autocorrelation versus estimation error
for the five settings. As we decrease the stepsize, SGLD has
reasonably low estimation error but high autocorrelation
time indicating an inefficient sampler. In contrast, SGHMC
achieves even lower estimation error at very low autocorre-
lation times, from which we conclude that the sampler is in-
deed efficiently exploring the distribution. Fig. 3(b) shows
the first 50 samples generated by the two samplers. We see
that SGLD’s random-walk behavior makes it challenging to
explore the tails of the distribution. The momentum vari-
able associated with SGHMC instead drives the sampler to
move along the distribution contours.

4.2. Bayesian Neural Networks for Classification

We also test our method on a handwritten digits classifica-
tion task using the MNIST dataset3. The dataset consists
of 60,000 training instances and 10,000 test instances. We
randomly split a validation set containing 10,000 instances
from the training data in order to select training parame-
ters, and use the remaining 50,000 instances for training.
For classification, we consider a two layer Bayesian neu-
ral network with 100 hidden variables using a sigmoid unit
and an output layer using softmax. We tested four meth-
ods: SGD, SGD with momentum, SGLD and SGHMC.
For the optimization-based methods, we use the validation
set to select the optimal regularizer � of network weights4.
For the sampling-based methods, we take a fully Bayesian
approach and place a weakly informative gamma prior on
each layer’s weight regularizer �. The sampling procedure
is carried out by running SGHMC and SGLD using mini-
batches of 500 training instances, then resampling hyperpa-
rameters after an entire pass over the training set. We run
the samplers for 800 iterations (each over the entire training
dataset) and discard the initial 50 samples as burn-in.

The test error as a function of MCMC or optimization iter-
ation (after burn-in) is reported for each of these methods
in Fig. 4. From the results, we see that SGD with mo-
mentum converges faster than SGD. SGHMC also has an
advantage over SGLD, converging to a low test error much
more rapidly. In terms of runtime, in this case the gra-

2Autocorrelation time is defined as 1 +
P1

s=1 ⇢s, where ⇢s is
the autocorrelation at lag s.

3http://yann.lecun.com/exdb/mnist/
4We also tried MAP inference for selecting � in the

optimization-based method, but found similar performance.

14T. Chen, E. B. Fox, and C. Guestrin. “Stochastic Gradient Hamiltonian Monte Carlo”. In: ICML. 2014.
Changyou Chen (Duke University) SG-MCMC 60 / 119

Outline

Stochastic Gradient Markov Chain Monte Carlo
1 SG-MCMC algorithms

Stochastic Gradient Langevin Dynamics (SGLD)
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)
Stochastic Gradient Thermostats (SGNHT)
Stochastic Gradient MCMC with Riemannian Geometry

I stochastic gradient Riemannian Langevin dynamics (SGRLD)
I preconditioned stochastic gradient Langevin dynamics (PSGLD)

2 Theory

Changyou Chen (Duke University) SG-MCMC 61 / 119

Stochastic gradient Nośe-Hoover thermostats

1 Revisit SGHMC:

θl = θl−1 + p hl

pl = pl−1−∇θŨ(θl)hl − A p hl +
√

2Ahl N (0, I) ,

2 In the existence of stochastic gradient noise, e.g.,
∇θŨ(θl) = ∇θU(θl) +N (0,BI), the update of p:

pl = pl−1−∇θU(θl)hl − A p hl +
√

2(A + B)hl N (0, I)

3 The friction coefficient should be set to A + B instead of A, to
correctly sample from true posteriors15:

I B is usually unknown, needs a good estimation
I could it be learned from the algorithm?

15According to the Fokker-Planck equation in stochastic differential equation theory.

Changyou Chen (Duke University) SG-MCMC 62 / 119

Stochastic gradient Nośe-Hoover thermostats

1 Revisit SGHMC:

θl = θl−1 + p hl

pl = pl−1−∇θŨ(θl)hl − A p hl +
√

2Ahl N (0, I) ,

2 In the existence of stochastic gradient noise, e.g.,
∇θŨ(θl) = ∇θU(θl) +N (0,BI), the update of p:

pl = pl−1−∇θU(θl)hl − A p hl +
√

2(A + B)hl N (0, I)

3 The friction coefficient should be set to A + B instead of A, to
correctly sample from true posteriors15:

I B is usually unknown, needs a good estimation
I could it be learned from the algorithm?

15According to the Fokker-Planck equation in stochastic differential equation theory.

Changyou Chen (Duke University) SG-MCMC 62 / 119

Stochastic gradient Nośe-Hoover thermostats

1 Revisit SGHMC:

θl = θl−1 + p hl

pl = pl−1−∇θŨ(θl)hl − A p hl +
√

2Ahl N (0, I) ,

2 In the existence of stochastic gradient noise, e.g.,
∇θŨ(θl) = ∇θU(θl) +N (0,BI), the update of p:

pl = pl−1−∇θU(θl)hl − A p hl +
√

2(A + B)hl N (0, I)

3 The friction coefficient should be set to A + B instead of A, to
correctly sample from true posteriors15:

I B is usually unknown, needs a good estimation
I could it be learned from the algorithm?

15According to the Fokker-Planck equation in stochastic differential equation theory.

Changyou Chen (Duke University) SG-MCMC 62 / 119

Stochastic gradient Nośe-Hoover thermostats

1 How to adaptively learn the noise coefficient B?
2 Use the Nośe-Hoover thermostat:

I a physical system (e.g., rolling ball) embedded in a heat bath for
energy exchange

I when the system temperature is high, the heat bath absorbs
heat/energy by increasing the friction, thus slows down the
movement

I when the system temperature is low, the heat bath releases
heat/energy by decreasing the friction, thus speeds up the
movement

I the energy absorbing/releasing keeps the system steady (sampling
from the true posterior distribution)

Changyou Chen (Duke University) SG-MCMC 63 / 119

Stochastic gradient Nośe-Hoover thermostats

1 How to adaptively learn the noise coefficient B?
2 Use the Nośe-Hoover thermostat:

I a physical system (e.g., rolling ball) embedded in a heat bath for
energy exchange

I when the system temperature is high, the heat bath absorbs
heat/energy by increasing the friction, thus slows down the
movement

I when the system temperature is low, the heat bath releases
heat/energy by decreasing the friction, thus speeds up the
movement

I the energy absorbing/releasing keeps the system steady (sampling
from the true posterior distribution)

Changyou Chen (Duke University) SG-MCMC 63 / 119

Stochastic gradient Nośe-Hoover thermostats

1 How to adaptively learn the noise coefficient B?
2 Use the Nośe-Hoover thermostat:

I a physical system (e.g., rolling ball) embedded in a heat bath for
energy exchange

I when the system temperature is high, the heat bath absorbs
heat/energy by increasing the friction, thus slows down the
movement

I when the system temperature is low, the heat bath releases
heat/energy by decreasing the friction, thus speeds up the
movement

I the energy absorbing/releasing keeps the system steady (sampling
from the true posterior distribution)

Changyou Chen (Duke University) SG-MCMC 63 / 119

Stochastic gradient Nośe-Hoover thermostats

1 How to adaptively learn the noise coefficient B?
2 Use the Nośe-Hoover thermostat:

I a physical system (e.g., rolling ball) embedded in a heat bath for
energy exchange

I when the system temperature is high, the heat bath absorbs
heat/energy by increasing the friction, thus slows down the
movement

I when the system temperature is low, the heat bath releases
heat/energy by decreasing the friction, thus speeds up the
movement

I the energy absorbing/releasing keeps the system steady (sampling
from the true posterior distribution)

Changyou Chen (Duke University) SG-MCMC 63 / 119

Stochastic gradient Nośe-Hoover thermostats

1 How to adaptively learn the noise coefficient B?
2 Use the Nośe-Hoover thermostat:

I a physical system (e.g., rolling ball) embedded in a heat bath for
energy exchange

I when the system temperature is high, the heat bath absorbs
heat/energy by increasing the friction, thus slows down the
movement

I when the system temperature is low, the heat bath releases
heat/energy by decreasing the friction, thus speeds up the
movement

I the energy absorbing/releasing keeps the system steady (sampling
from the true posterior distribution)

Changyou Chen (Duke University) SG-MCMC 63 / 119

A little bit of statistical physics

1 Statistical physics describes the probability of states (θ,p) of a
system in thermal equilibrium with a heat bath at temperature T.

2 The probability follows the canonical distribution:

ρ(θ,p) ∝ exp (−H(θ,p)/ (kBT)) , exp
(
−E(θ,p) + K (p)

kBT

)
,

where kB is the Boltzmann constant, E(θ,p) the potential energy,
K (p) the kinetic energy.

3 Thermal equilibrium condition:

kBT/2 = E [K (p)] /D → kBT = E
[
pT p

]
/D

Changyou Chen (Duke University) SG-MCMC 64 / 119

A little bit of statistical physics

1 Statistical physics describes the probability of states (θ,p) of a
system in thermal equilibrium with a heat bath at temperature T.

2 The probability follows the canonical distribution:

ρ(θ,p) ∝ exp (−H(θ,p)/ (kBT)) , exp
(
−E(θ,p) + K (p)

kBT

)
,

where kB is the Boltzmann constant, E(θ,p) the potential energy,
K (p) the kinetic energy.

3 Thermal equilibrium condition:

kBT/2 = E [K (p)] /D → kBT = E
[
pT p

]
/D

Changyou Chen (Duke University) SG-MCMC 64 / 119

A little bit of statistical physics

1 Statistical physics describes the probability of states (θ,p) of a
system in thermal equilibrium with a heat bath at temperature T.

2 The probability follows the canonical distribution:

ρ(θ,p) ∝ exp (−H(θ,p)/ (kBT)) , exp
(
−E(θ,p) + K (p)

kBT

)
,

where kB is the Boltzmann constant, E(θ,p) the potential energy,
K (p) the kinetic energy.

3 Thermal equilibrium condition:

kBT/2 = E [K (p)] /D → kBT = E
[
pT p

]
/D

Changyou Chen (Duke University) SG-MCMC 64 / 119

SGNHT
1 In Bayesian setting, the equilibrium distribution
ρ(θ,p) ∝ exp (−H(θ,p)), thus kBT = 1

E
[
pT p

]
/D = kBT = 1

2 In SGHMC with stochastic gradients ∇θŨ(θ,p):
I the dynamic may drift away from thermal equilibrium if stochastic

gradients exibit too much noise
I need to adaptively control the friction
I idea is to replace the friction coefficient A in SGHMC with a

thermostat variable ξ, which is adaptively estimated using thermal
equilibrium condition

θl = θl−1 + p hl

pl = pl−1−∇θŨ(θl)hl − ξl−1 p hl +
√

2Ahl N (0, I)

ξl = ξl−1 +
(

pT
l pl /D − 1

)
hl

Changyou Chen (Duke University) SG-MCMC 65 / 119

SGNHT
1 In Bayesian setting, the equilibrium distribution
ρ(θ,p) ∝ exp (−H(θ,p)), thus kBT = 1

E
[
pT p

]
/D = kBT = 1

2 In SGHMC with stochastic gradients ∇θŨ(θ,p):
I the dynamic may drift away from thermal equilibrium if stochastic

gradients exibit too much noise
I need to adaptively control the friction
I idea is to replace the friction coefficient A in SGHMC with a

thermostat variable ξ, which is adaptively estimated using thermal
equilibrium condition

θl = θl−1 + p hl

pl = pl−1−∇θŨ(θl)hl − ξl−1 p hl +
√

2Ahl N (0, I)

ξl = ξl−1 +
(

pT
l pl /D − 1

)
hl

Changyou Chen (Duke University) SG-MCMC 65 / 119

SGNHT

θl = θl−1 + p hl

pl = pl−1−∇θŨ(θl)hl − ξl−1 p hl +
√

2Ahl N (0, I)

ξl = ξl−1 +
(

pT
l pl /D − 1

)
hl

1 If the kinetic energy is higher than 1/2 (high temperature), ξ gets
bigger, friction gets bigger, momentum p gets lower, vice versa.

2 The equilibrium is reached when E
[
pT

l pl
]
/D = 1:

I exactly the thermal equilibrium condition
3 Samples generated from the true posterior distribution.

Changyou Chen (Duke University) SG-MCMC 66 / 119

SGNHT

θl = θl−1 + p hl

pl = pl−1−∇θŨ(θl)hl − ξl−1 p hl +
√

2Ahl N (0, I)

ξl = ξl−1 +
(

pT
l pl /D − 1

)
hl

1 If the kinetic energy is higher than 1/2 (high temperature), ξ gets
bigger, friction gets bigger, momentum p gets lower, vice versa.

2 The equilibrium is reached when E
[
pT

l pl
]
/D = 1:

I exactly the thermal equilibrium condition
3 Samples generated from the true posterior distribution.

Changyou Chen (Duke University) SG-MCMC 66 / 119

SGNHT

θl = θl−1 + p hl

pl = pl−1−∇θŨ(θl)hl − ξl−1 p hl +
√

2Ahl N (0, I)

ξl = ξl−1 +
(

pT
l pl /D − 1

)
hl

1 If the kinetic energy is higher than 1/2 (high temperature), ξ gets
bigger, friction gets bigger, momentum p gets lower, vice versa.

2 The equilibrium is reached when E
[
pT

l pl
]
/D = 1:

I exactly the thermal equilibrium condition
3 Samples generated from the true posterior distribution.

Changyou Chen (Duke University) SG-MCMC 66 / 119

SGNHT in algorithm

Input: Parameters A, {hl}
Output: Approximate samples {θl}

Initialize θ0 ∈ Rn

for l = 1,2, . . . do
Evaluate ∇θŨ(θl−1) from the l-th minibatch
θl = θl−1 + p hl

pl = pl−1−∇Ũ(θl)hl − ξl−1 pl−1 hl +
√

2Ahl N (0, I)
ξl = ξl−1 +

(
pT p /D − 1

)
hl

end
Return {θl}

Algorithm 3: Stochastic Gradient Nośe-Hoover Thermostat

Changyou Chen (Duke University) SG-MCMC 67 / 119

Comparison: SGHMC vs. SGNHT16

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

θ

ρ
(θ

)

True distribution
A = 1

−6 −4 −2 0 2 4 6

0

1

2

θ

ρ
(θ

)

True distribution
A = 10

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

θ

ρ
(θ

)

True distribution
A = 0.1

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

θ

ρ
(θ

)

True distribution
SGNHT

Figure: SGHMC with A = 1, A = 10, A = 0.1, and the SGNHT.
16N. Ding et al. “Bayesian Sampling Using Stochastic Gradient Thermostats”. In: NIPS. 2014.

Changyou Chen (Duke University) SG-MCMC 68 / 119

Relation wih stochastic optimization

1 SG-MCMC is essentially stochastic optimzation with appropriate
injected noise:

I large noise tends to make samples uniform, small noise tends to
stuck algorithms on local modes

2 SGLD vs. SGD.
3 SGHMC vs. SGD with momentum.
4 No traditional stochastic optimization counterpart for SGNHT

yet17.

17Some new algorithm such as Santa could be considered as the counterpart, discussed later.

Changyou Chen (Duke University) SG-MCMC 69 / 119

Relation wih stochastic optimization

1 SG-MCMC is essentially stochastic optimzation with appropriate
injected noise:

I large noise tends to make samples uniform, small noise tends to
stuck algorithms on local modes

2 SGLD vs. SGD.
3 SGHMC vs. SGD with momentum.
4 No traditional stochastic optimization counterpart for SGNHT

yet17.

17Some new algorithm such as Santa could be considered as the counterpart, discussed later.

Changyou Chen (Duke University) SG-MCMC 69 / 119

SGLD vs. SGD

∇θŨ(θl−1) , −N
n

n∑

i=1

∇θ log p(xπi |θl−1)−∇θ log p(θl−1) ,

for l = 1,2, . . . do
Evaluate ∇θŨ(θl−1) from the l-th minibatch
θl = θl−1−∇Ũ(θl−1)hl+

√
2hl N (0, I)

end

Changyou Chen (Duke University) SG-MCMC 70 / 119

SGHMC vs. SGD-M

∇θŨ(θl) , −
N
n

n∑

i=1

∇θ log p(xπi |θl)−∇θ log p(θl) ,

for l = 1,2, . . . do
Evaluate ∇θŨ(θl−1) from the
l-th minibatch
θl = θl−1 + p hl

pl = pl−1−∇Ũ(θl)hl −
A pl−1 hl +

√
2Ahl N (0, I)

end

Changyou Chen (Duke University) SG-MCMC 71 / 119

SGHMC vs. SGD-M

∇θŨ(θl) , −
N
n

n∑

i=1

∇θ log p(xπi |θl)−∇θ log p(θl) ,

for l = 1,2, . . . do
Evaluate ∇θŨ(θl−1) from the
l-th minibatch
θl = θl−1 + p hl

pl = pl−1−∇Ũ(θl)hl −
A pl−1 hl +

√
2Ahl N (0, I)

end

for l = 1,2, . . . do
Evaluate ∇θŨ(θl−1) from the
l-th minibatch
θl = θl−1 + vl−1

vl = (1−m) vl−1−∇Ũ(θl)εl +√
2mεl N (0, I)

end

Reparametrization: ε = h2, m = Ah, v = p h

Changyou Chen (Duke University) SG-MCMC 72 / 119

SGHMC vs. SGD-M

∇θŨ(θl) , −
N
n

n∑

i=1

∇θ log p(xπi |θl)−∇θ log p(θl) ,

for l = 1,2, . . . do
Evaluate ∇θŨ(θl−1) from the
l-th minibatch
θl = θl−1 + p hl

pl = pl−1−∇Ũ(θl)hl −
A pl−1 hl +

√
2Ahl N (0, I)

end

for l = 1,2, . . . do
Evaluate ∇θŨ(θl−1) from the
l-th minibatch
θl = θl−1 + vl−1

vl = (1−m) vl−1−∇Ũ(θl)εl +√
2mεl N (0, I)

end

Reparametrization: ε = h2, m = Ah, v = p h

Changyou Chen (Duke University) SG-MCMC 72 / 119

SGHMC vs. SGD-M

∇θŨ(θl) , −
N
n

n∑

i=1

∇θ log p(xπi |θl)−∇θ log p(θl) ,

for l = 1,2, . . . do
Evaluate ∇θŨ(θl−1) from the
l-th minibatch
θl = θl−1 + p hl

pl = pl−1−∇Ũ(θl)hl −
A pl−1 hl +

√
2Ahl N (0, I)

end

for l = 1,2, . . . do
Evaluate ∇θŨ(θl−1) from the
l-th minibatch
θl = θl−1 + vl−1

vl = (1−m) vl−1−∇Ũ(θl)εl +√
2mεl N (0, I)

end

Reparametrization: ε = h2, m = Ah, v = p h
ε: learning rate; m: momentum weight

Changyou Chen (Duke University) SG-MCMC 73 / 119

Outline

Stochastic Gradient Markov Chain Monte Carlo
1 SG-MCMC algorithms

Stochastic Gradient Langevin Dynamics (SGLD)
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)
Stochastic Gradient Thermostats (SGNHT)
Stochastic Gradient MCMC with Riemannian Geometry

I stochastic gradient Riemannian Langevin dynamics (SGRLD)
I preconditioned stochastic gradient Langevin dynamics (PSGLD)

2 Theory

Changyou Chen (Duke University) SG-MCMC 74 / 119

Outline

Stochastic Gradient Markov Chain Monte Carlo
1 SG-MCMC algorithms

Stochastic Gradient Langevin Dynamics (SGLD)
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)
Stochastic Gradient Thermostats (SGNHT)
Stochastic Gradient MCMC with Riemannian Geometry

I stochastic gradient Riemannian Langevin dynamics (SGRLD)
I preconditioned stochastic gradient Langevin dynamics (PSGLD)

2 Theory

Changyou Chen (Duke University) SG-MCMC 74 / 119

Manifold information geometry

1 Higher-order gradient information have proven helpful in training
high-dimensional, complex optimization problems, e.g., deep
learning:

I quasi-Newton methods
I rescale parameters so that the loss function has similar curvature

along all directions: Adagrad, Adadelta, Adamand RMSprop
algorithms

I approximation to using Riemannian information geometry

2 Geometry information is
encoded with a
Riemannian metric G(θ):

- reflects the curvature
property, e.g., inner
product of two vectors v
and w on a tangent
space is vT G(θ) wT

Changyou Chen (Duke University) SG-MCMC 75 / 119

Manifold information geometry

1 Higher-order gradient information have proven helpful in training
high-dimensional, complex optimization problems, e.g., deep
learning:

I quasi-Newton methods
I rescale parameters so that the loss function has similar curvature

along all directions: Adagrad, Adadelta, Adamand RMSprop
algorithms

I approximation to using Riemannian information geometry

2 Geometry information is
encoded with a
Riemannian metric G(θ):

- reflects the curvature
property, e.g., inner
product of two vectors v
and w on a tangent
space is vT G(θ) wT

Changyou Chen (Duke University) SG-MCMC 75 / 119

Stochastic gradient Riemannian Langevin dynamics

1 Adding Riemannian information geometry into SGLD:

θl+1 = θl −hl+1

(
G(θl)∇θŨ(θl) + Γ(θl)

)

+
√

2hl+1G(θl)ζl+1

I G(θ): Riemannian metric, sometimes refer to as preconditioner
I Γi (θ) ,

∑
j
∂Gij (θ)
∂ θj

: change of manifold curvature
I In SGLD, G(θ) = I, Γ(θ) = 0

2 SGRLD for LDA18 is a good example of SGRLD.
3 Imposing Riemannian geometry into other SG-MCMC algorithms

follows similarly.
4 Challenge: G(θ) is usually intractable:

I need a computational efficient way to approximate G(θ)

18S. Patterson and Y. W. Teh. “Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex”. In: NIPS.
2013.

Changyou Chen (Duke University) SG-MCMC 76 / 119

Stochastic gradient Riemannian Langevin dynamics

1 Adding Riemannian information geometry into SGLD:

θl+1 = θl −hl+1

(
G(θl)∇θŨ(θl) + Γ(θl)

)

+
√

2hl+1G(θl)ζl+1

I G(θ): Riemannian metric, sometimes refer to as preconditioner
I Γi (θ) ,

∑
j
∂Gij (θ)
∂ θj

: change of manifold curvature
I In SGLD, G(θ) = I, Γ(θ) = 0

2 SGRLD for LDA18 is a good example of SGRLD.
3 Imposing Riemannian geometry into other SG-MCMC algorithms

follows similarly.
4 Challenge: G(θ) is usually intractable:

I need a computational efficient way to approximate G(θ)

18S. Patterson and Y. W. Teh. “Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex”. In: NIPS.
2013.

Changyou Chen (Duke University) SG-MCMC 76 / 119

Stochastic gradient Riemannian Langevin dynamics

1 Adding Riemannian information geometry into SGLD:

θl+1 = θl −hl+1

(
G(θl)∇θŨ(θl) + Γ(θl)

)

+
√

2hl+1G(θl)ζl+1

I G(θ): Riemannian metric, sometimes refer to as preconditioner
I Γi (θ) ,

∑
j
∂Gij (θ)
∂ θj

: change of manifold curvature
I In SGLD, G(θ) = I, Γ(θ) = 0

2 SGRLD for LDA18 is a good example of SGRLD.
3 Imposing Riemannian geometry into other SG-MCMC algorithms

follows similarly.
4 Challenge: G(θ) is usually intractable:

I need a computational efficient way to approximate G(θ)

18S. Patterson and Y. W. Teh. “Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex”. In: NIPS.
2013.

Changyou Chen (Duke University) SG-MCMC 76 / 119

Outline

Stochastic Gradient Markov Chain Monte Carlo
1 SG-MCMC algorithms

Stochastic Gradient Langevin Dynamics (SGLD)
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)
Stochastic Gradient Thermostats (SGNHT)
Stochastic Gradient MCMC with Riemannian Geometry

I stochastic gradient Riemannian Langevin dynamics (SGRLD)
I preconditioned stochastic gradient Langevin dynamics (PSGLD)

2 Theory

Changyou Chen (Duke University) SG-MCMC 77 / 119

Preconditioned stochastic gradient Langevin dynamics

1 RMSprop as the Preconditioner (Riemannian metric).
2 ḡ(θl) = 1

n
∑n

i=1∇θ log p(dπi |θl): sample mean of gradient.
3 Preconditioner construction:

V (θl+1) = αV (θl) + (1− α)ḡ(θl)� ḡ(θl)

G(θl+1) = diag
(

1�
(
λ+

√
V (θl+1)

))

4 Intuitive interpretations:
I the preconditioner equalizes the gradient so that a constant

stepsize is adequate for all dimensions
I the stepsizes are adaptive, in that flat directions have larger

stepsizes while curved directions have smaller stepsizes

Changyou Chen (Duke University) SG-MCMC 78 / 119

Preconditioned stochastic gradient Langevin dynamics

1 RMSprop as the Preconditioner (Riemannian metric).
2 ḡ(θl) = 1

n
∑n

i=1∇θ log p(dπi |θl): sample mean of gradient.
3 Preconditioner construction:

V (θl+1) = αV (θl) + (1− α)ḡ(θl)� ḡ(θl)

G(θl+1) = diag
(

1�
(
λ+

√
V (θl+1)

))

4 Intuitive interpretations:
I the preconditioner equalizes the gradient so that a constant

stepsize is adequate for all dimensions
I the stepsizes are adaptive, in that flat directions have larger

stepsizes while curved directions have smaller stepsizes

Changyou Chen (Duke University) SG-MCMC 78 / 119

Preconditioned stochastic gradient Langevin dynamics

1 RMSprop as the Preconditioner (Riemannian metric).
2 ḡ(θl) = 1

n
∑n

i=1∇θ log p(dπi |θl): sample mean of gradient.
3 Preconditioner construction:

V (θl+1) = αV (θl) + (1− α)ḡ(θl)� ḡ(θl)

G(θl+1) = diag
(

1�
(
λ+

√
V (θl+1)

))

4 Intuitive interpretations:
I the preconditioner equalizes the gradient so that a constant

stepsize is adequate for all dimensions
I the stepsizes are adaptive, in that flat directions have larger

stepsizes while curved directions have smaller stepsizes

Changyou Chen (Duke University) SG-MCMC 78 / 119

Preconditioned stochastic gradient Langevin dynamics

1 RMSprop as the Preconditioner (Riemannian metric).
2 ḡ(θl) = 1

n
∑n

i=1∇θ log p(dπi |θl): sample mean of gradient.
3 Preconditioner construction:

V (θl+1) = αV (θl) + (1− α)ḡ(θl)� ḡ(θl)

G(θl+1) = diag
(

1�
(
λ+

√
V (θl+1)

))

4 Intuitive interpretations:
I the preconditioner equalizes the gradient so that a constant

stepsize is adequate for all dimensions
I the stepsizes are adaptive, in that flat directions have larger

stepsizes while curved directions have smaller stepsizes

Changyou Chen (Duke University) SG-MCMC 78 / 119

Outline

2 Stochastic Gradient Markov Chain Monte Carlo
1 SG-MCMC algorithms
2 Theory

Changyou Chen (Duke University) SG-MCMC 79 / 119

Outline

Stochastic Gradient Markov Chain Monte Carlo
1 SG-MCMC algorithms
2 Theory

Itô diffusion
Convergence theory

Changyou Chen (Duke University) SG-MCMC 80 / 119

Outline

Stochastic Gradient Markov Chain Monte Carlo
1 SG-MCMC algorithms
2 Theory

Itô diffusion
Convergence theory

Changyou Chen (Duke University) SG-MCMC 80 / 119

Itô diffusion

1 Itô diffusion is a continuous-time stochastic process, governed by
stochastic differential equations of the form:

d xt = F (xt)dt + σ(xt)d wt

I t : time index

I xt : model states, typically
includes θ

I wt : standard Brownian motion,
e.g., ∀t ,∆h > 0,
∆ wt , wt+∆h−wt are
zero-mean Gaussian random
variables with standard
deviation ∆h

I F (xt): drift coefficient

I σ(xt): diffusion coefficient

Changyou Chen (Duke University) SG-MCMC 81 / 119

Itô diffusion

1 Itô diffusion typically endows an invariant measure, i.e., the
probability distribution of xt , ∀t (time invariant).

2 Ornstein-Uhlenbeck (OU) process:

dxt = β (µ− xt)︸ ︷︷ ︸
F (xt)

dt + α︸︷︷︸
σ(xt)

dwt , β, α > 0

I invariant measure: ρ(x) =
√

β
πα2 e−β(x−µ)2/α2

0 50 100 150 200
t

-5

0

5

x

trace

-4 -2 0 2 4
x

0

500

1000

1500

co
un
t

histogram

Figure: OU process with µ = 0, β = 0.5, α = 1.

Changyou Chen (Duke University) SG-MCMC 82 / 119

Itô diffusion

1 Itô diffusion typically endows an invariant measure, i.e., the
probability distribution of xt , ∀t (time invariant).

2 Ornstein-Uhlenbeck (OU) process:

dxt = β (µ− xt)︸ ︷︷ ︸
F (xt)

dt + α︸︷︷︸
σ(xt)

dwt , β, α > 0

I invariant measure: ρ(x) =
√

β
πα2 e−β(x−µ)2/α2

0 50 100 150 200
t

-5

0

5

x

trace

-4 -2 0 2 4
x

0

500

1000

1500

co
un
t

histogram

Figure: OU process with µ = 0, β = 0.5, α = 1.

Changyou Chen (Duke University) SG-MCMC 82 / 119

Fokker-Planck equation

1 Also known as the Kolmogorov forward equation.
2 It describes the time-evolving probability density function p(x, t)

on the random variable x, driven by the Itô diffusion:
d xt = F (xt)dt + σ(xt)d wt .

3 Let Dij(xt) ,
∑

k σik (xt)σjk (xt), then p(x, t) satisfies the
Fokker-Planck equation:

∂p(x, t)
∂t

= −
∑

i

∂

∂ xi
[Fi(xt)p(x, t)] +

1
2

∑

i,j

∂2

∂ xi ∂ xj

[
Dij(xt)p(x, t)

]
.

4 In stationary region, p(x, t) is independent of t , thus ∂p(x,t)
∂t = 0,

the Fokker-Planck equation becomes:

∑

i

∂

∂ xi
[Fi(xt)p(x)] =

1
2

∑

i,j

∂2

∂ xi ∂ xj

[
Dij(xt)p(x)

]
.

Changyou Chen (Duke University) SG-MCMC 83 / 119

Fokker-Planck equation

1 Also known as the Kolmogorov forward equation.
2 It describes the time-evolving probability density function p(x, t)

on the random variable x, driven by the Itô diffusion:
d xt = F (xt)dt + σ(xt)d wt .

3 Let Dij(xt) ,
∑

k σik (xt)σjk (xt), then p(x, t) satisfies the
Fokker-Planck equation:

∂p(x, t)
∂t

= −
∑

i

∂

∂ xi
[Fi(xt)p(x, t)] +

1
2

∑

i,j

∂2

∂ xi ∂ xj

[
Dij(xt)p(x, t)

]
.

4 In stationary region, p(x, t) is independent of t , thus ∂p(x,t)
∂t = 0,

the Fokker-Planck equation becomes:

∑

i

∂

∂ xi
[Fi(xt)p(x)] =

1
2

∑

i,j

∂2

∂ xi ∂ xj

[
Dij(xt)p(x)

]
.

Changyou Chen (Duke University) SG-MCMC 83 / 119

Fokker-Planck equation

1 Also known as the Kolmogorov forward equation.
2 It describes the time-evolving probability density function p(x, t)

on the random variable x, driven by the Itô diffusion:
d xt = F (xt)dt + σ(xt)d wt .

3 Let Dij(xt) ,
∑

k σik (xt)σjk (xt), then p(x, t) satisfies the
Fokker-Planck equation:

∂p(x, t)
∂t

= −
∑

i

∂

∂ xi
[Fi(xt)p(x, t)] +

1
2

∑

i,j

∂2

∂ xi ∂ xj

[
Dij(xt)p(x, t)

]
.

4 In stationary region, p(x, t) is independent of t , thus ∂p(x,t)
∂t = 0,

the Fokker-Planck equation becomes:

∑

i

∂

∂ xi
[Fi(xt)p(x)] =

1
2

∑

i,j

∂2

∂ xi ∂ xj

[
Dij(xt)p(x)

]
.

Changyou Chen (Duke University) SG-MCMC 83 / 119

Fokker-Planck equation

1 Also known as the Kolmogorov forward equation.
2 It describes the time-evolving probability density function p(x, t)

on the random variable x, driven by the Itô diffusion:
d xt = F (xt)dt + σ(xt)d wt .

3 Let Dij(xt) ,
∑

k σik (xt)σjk (xt), then p(x, t) satisfies the
Fokker-Planck equation:

∂p(x, t)
∂t

= −
∑

i

∂

∂ xi
[Fi(xt)p(x, t)] +

1
2

∑

i,j

∂2

∂ xi ∂ xj

[
Dij(xt)p(x, t)

]
.

4 In stationary region, p(x, t) is independent of t , thus ∂p(x,t)
∂t = 0,

the Fokker-Planck equation becomes:

∑

i

∂

∂ xi
[Fi(xt)p(x)] =

1
2

∑

i,j

∂2

∂ xi ∂ xj

[
Dij(xt)p(x)

]
.

Changyou Chen (Duke University) SG-MCMC 83 / 119

Fokker-Planck equation

1 The Fokker-Planck equation is useful in verifying the stationary
distribution for some specify Itô diffusions.

2 We can use it to verify that the stationary distribution of the
following Itô diffusion is p(x) ∝ e−U(x):

d xt = −∇xU(xt) +
1
2

d wt

Changyou Chen (Duke University) SG-MCMC 84 / 119

Diffusion form for SGLD

θl = θl−1−∇θŨl(θl−1)hl +
√

2hl N (0, I)

1 SGLD is based on 1st-order Langevin dynamics, with x = θ:

dθt = −∇θU(θt)︸ ︷︷ ︸
F (xt)

+
1
2

I
︸︷︷︸
σ(xt)

d wt

I invariant measure: ρ(θ) ∝ e−U(θ)

Changyou Chen (Duke University) SG-MCMC 85 / 119

Diffusion form for SGHMC

θl = θl−1 + p hl

pl = (1− Ahl) pl−1−∇Ũl(θl)hl +
√

2Ahl N (0, I)

1 SGHMC is based on 2nd-order Langevin dynamics, with
x = {θ,p}:

d
(θt

pt

)
=
(pt
−A pt −∇θU(θ)

)

︸ ︷︷ ︸
F (xt)

dt +
√

2A
(0 0

0 I

)

︸ ︷︷ ︸
σ(xt)

d wt

I invariant measure: ρ(θ,p) ∝ exp
{
−U(θ)− pT p

2

}

Changyou Chen (Duke University) SG-MCMC 86 / 119

Diffusion form for SGNHT

θl = θl−1 + p hl

pl = (1− ξl−1hl) pl−1−∇Ũl(θl)hl +
√

2Ahl N (0, I)

ξl = ξl−1 +
(

pT
l pl /D − 1

)
hl

1 SGNHT is based on the Nosé-Hoover thermostat, with
x = {θ,p, ξ}:

d

θt
pt
ξt

 =

pt
−ξt pt −∇θU(θt)

pT
t pt /D − 1

︸ ︷︷ ︸
F (xt)

dt +
√

2A

0 0 0
0 I 0
0 0 0

︸ ︷︷ ︸
σ(xt)

d wt

I invariant measure:
ρ(θ,p, ξ) ∝ exp

{
−U(θ)− pT p

2 − D
2 (ξ − D)2

}

Changyou Chen (Duke University) SG-MCMC 87 / 119

A complete recipe to construct appropriate Itô diffusions

1 Ma et al.19 gave a complete recipe to construct F (x) and σ(x):

F (x) = − (D(x) + Q(x))∇xH(x) + Γ(x)

σ(x) =
√

2D(x) ,

I Q(x): a skew-symmetric curl matrix, e.g., −M = MT

I D(x): a positive semidefinite diffusion matrix
2 Any diffusion with the above form endows a marginal invariant

measure: ρ(θ) ∝ e−U(θ).

3 In SGHMC, D(x) =

(
0 0
0 A · I

)
, Q(x) =

(
0 −I
I 0

)
.

19Y. A. Ma, T. Chen, and E. B. Fox. “A Complete Recipe for Stochastic Gradient MCMC”. . In: NIPS. 2015.

Changyou Chen (Duke University) SG-MCMC 88 / 119

A complete recipe to construct appropriate Itô diffusions

1 Ma et al.19 gave a complete recipe to construct F (x) and σ(x):

F (x) = − (D(x) + Q(x))∇xH(x) + Γ(x)

σ(x) =
√

2D(x) ,

I Q(x): a skew-symmetric curl matrix, e.g., −M = MT

I D(x): a positive semidefinite diffusion matrix
2 Any diffusion with the above form endows a marginal invariant

measure: ρ(θ) ∝ e−U(θ).

3 In SGHMC, D(x) =

(
0 0
0 A · I

)
, Q(x) =

(
0 −I
I 0

)
.

19Y. A. Ma, T. Chen, and E. B. Fox. “A Complete Recipe for Stochastic Gradient MCMC”. . In: NIPS. 2015.

Changyou Chen (Duke University) SG-MCMC 88 / 119

A complete recipe to construct appropriate Itô diffusions

1 Ma et al.19 gave a complete recipe to construct F (x) and σ(x):

F (x) = − (D(x) + Q(x))∇xH(x) + Γ(x)

σ(x) =
√

2D(x) ,

I Q(x): a skew-symmetric curl matrix, e.g., −M = MT

I D(x): a positive semidefinite diffusion matrix
2 Any diffusion with the above form endows a marginal invariant

measure: ρ(θ) ∝ e−U(θ).

3 In SGHMC, D(x) =

(
0 0
0 A · I

)
, Q(x) =

(
0 −I
I 0

)
.

19Y. A. Ma, T. Chen, and E. B. Fox. “A Complete Recipe for Stochastic Gradient MCMC”. . In: NIPS. 2015.

Changyou Chen (Duke University) SG-MCMC 88 / 119

From diffusions to algorithms: numerical integrator

1 The diffusions defined previously are continuous-time Markov
processes.

2 SG-MCMC algorithms approximate solutions of these Markov
processes via numerical integrators/methods.

3 Characterize how accurate the
algorithms approximate the
continuous-time processes in
terms of orders:

I e.g., a 1st-order numerical
integrator approximates the true
process, with an error bounded
by O(h), when evolving the
process for time h

6 Timothy Sauer

0 1time (years)

300

600

price

Fig. 1. Solution to the Black Scholes stochastic di↵erential equation (4).
The exact solution (5) is plotted as a black curve. The Euler-Maruyama approxima-
tion with time step �t = 0.2 is plotted as circles. The drift and di↵usion parameters
are set to µ = 0.75 and � = 0.30, respectively. Shown in grey is the actual stock
price series, from which µ and � were inferred.

As another example, consider the Langevin equation

dX(t) = �µX(t) dt + � dWt (11)

where µ and � are positive constants. In this case, it is not possible to ana-
lytically derive the solution to this equation in terms of simple processes. The
solution of the Langevin equation is a stochastic process called the Ornstein-
Uhlenbeck process. Fig. 2 shows one realization of the approximate solution.
It was generated from an Euler-Maruyama approximation, using the steps

w0 = X0 (12)

wi+1 = wi � µwi�ti + ��Wi

for i = 1, . . . , n. This stochastic di↵erential equation is used to model systems
that tend to revert to a particular state, in this case the state X = 0, in
the presence of a noisy background. Interest-rate models, in particular, often
contain mean-reversion assumptions.

3 Strong convergence of SDE solvers.

The definition of convergence is similar to the concept for ordinary di↵erential
equation solvers, aside from the di↵erences caused by the fact that a solution

Changyou Chen (Duke University) SG-MCMC 89 / 119

From diffusions to algorithms: numerical integrator

1 The diffusions defined previously are continuous-time Markov
processes.

2 SG-MCMC algorithms approximate solutions of these Markov
processes via numerical integrators/methods.

3 Characterize how accurate the
algorithms approximate the
continuous-time processes in
terms of orders:

I e.g., a 1st-order numerical
integrator approximates the true
process, with an error bounded
by O(h), when evolving the
process for time h

6 Timothy Sauer

0 1time (years)

300

600

price

Fig. 1. Solution to the Black Scholes stochastic di↵erential equation (4).
The exact solution (5) is plotted as a black curve. The Euler-Maruyama approxima-
tion with time step �t = 0.2 is plotted as circles. The drift and di↵usion parameters
are set to µ = 0.75 and � = 0.30, respectively. Shown in grey is the actual stock
price series, from which µ and � were inferred.

As another example, consider the Langevin equation

dX(t) = �µX(t) dt + � dWt (11)

where µ and � are positive constants. In this case, it is not possible to ana-
lytically derive the solution to this equation in terms of simple processes. The
solution of the Langevin equation is a stochastic process called the Ornstein-
Uhlenbeck process. Fig. 2 shows one realization of the approximate solution.
It was generated from an Euler-Maruyama approximation, using the steps

w0 = X0 (12)

wi+1 = wi � µwi�ti + ��Wi

for i = 1, . . . , n. This stochastic di↵erential equation is used to model systems
that tend to revert to a particular state, in this case the state X = 0, in
the presence of a noisy background. Interest-rate models, in particular, often
contain mean-reversion assumptions.

3 Strong convergence of SDE solvers.

The definition of convergence is similar to the concept for ordinary di↵erential
equation solvers, aside from the di↵erences caused by the fact that a solution

Changyou Chen (Duke University) SG-MCMC 89 / 119

Example: SGHMC

d
(

θt
pt

)
=

(
pt

−A pt −∇θU(θ)

)
dt +

√
2A
(

0 0
0 I

)
d wt

1 Use a 1st-order Euler integrator to solve the SDE:
I divide the time into L small intervals, each with a duration h
I in each interval, solve (θl ,pl) sequentially, while fixing the others

θl = θl−1 +pl−1hl

pl = (1− Ahl)pl−1 −∇θU(θl)hl +
√

2Ahl N (0, I)

2 Induce an error of O(hl) compared to exactly solving the SDE.
3 Also induce a global bias of O(h) if hl = h, ∀l (introduced next).

Changyou Chen (Duke University) SG-MCMC 90 / 119

Example: SGHMC

d
(

θt
pt

)
=

(
pt

−A pt −∇θU(θ)

)
dt +

√
2A
(

0 0
0 I

)
d wt

1 Use a 1st-order Euler integrator to solve the SDE:
I divide the time into L small intervals, each with a duration h
I in each interval, solve (θl ,pl) sequentially, while fixing the others

θl = θl−1 +pl−1hl

pl = (1− Ahl)pl−1 −∇θU(θl)hl +
√

2Ahl N (0, I)

2 Induce an error of O(hl) compared to exactly solving the SDE.
3 Also induce a global bias of O(h) if hl = h, ∀l (introduced next).

Changyou Chen (Duke University) SG-MCMC 90 / 119

Example: SGHMC

d
(

θt
pt

)
=

(
pt

−A pt −∇θU(θ)

)
dt +

√
2A
(

0 0
0 I

)
d wt

1 Use a 1st-order Euler integrator to solve the SDE:
I divide the time into L small intervals, each with a duration h
I in each interval, solve (θl ,pl) sequentially, while fixing the others

θl = θl−1 +pl−1hl

pl = (1− Ahl)pl−1 −∇θU(θl)hl +
√

2Ahl N (0, I)

2 Induce an error of O(hl) compared to exactly solving the SDE.
3 Also induce a global bias of O(h) if hl = h, ∀l (introduced next).

Changyou Chen (Duke University) SG-MCMC 90 / 119

High-order numerical integrators

1 Start an Itô diffusion from x0, let xh be the random variable after
evolving the diffusion for time h, x̃h be the value obtained from a
numerical method.

2 If E |f (xh)− f (x̃h)| = O(hK), then the numerical integrator is said
to be order K .

3 The Euler method is a 1st-order numerical integrator.
4 The symmetric splitting integrator20 is a 2nd-order numerical

integrator:
I the idea is to split the infeasible SDE into several sub-SDEs, such

that each of the sub-SDE can be solved exactly

20C. Chen, N. Ding, and L. Carin. “On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators”.
In: NIPS. 2015.

Changyou Chen (Duke University) SG-MCMC 91 / 119

High-order numerical integrators

1 Start an Itô diffusion from x0, let xh be the random variable after
evolving the diffusion for time h, x̃h be the value obtained from a
numerical method.

2 If E |f (xh)− f (x̃h)| = O(hK), then the numerical integrator is said
to be order K .

3 The Euler method is a 1st-order numerical integrator.
4 The symmetric splitting integrator20 is a 2nd-order numerical

integrator:
I the idea is to split the infeasible SDE into several sub-SDEs, such

that each of the sub-SDE can be solved exactly

20C. Chen, N. Ding, and L. Carin. “On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators”.
In: NIPS. 2015.

Changyou Chen (Duke University) SG-MCMC 91 / 119

High-order numerical integrators

1 Start an Itô diffusion from x0, let xh be the random variable after
evolving the diffusion for time h, x̃h be the value obtained from a
numerical method.

2 If E |f (xh)− f (x̃h)| = O(hK), then the numerical integrator is said
to be order K .

3 The Euler method is a 1st-order numerical integrator.
4 The symmetric splitting integrator20 is a 2nd-order numerical

integrator:
I the idea is to split the infeasible SDE into several sub-SDEs, such

that each of the sub-SDE can be solved exactly

20C. Chen, N. Ding, and L. Carin. “On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators”.
In: NIPS. 2015.

Changyou Chen (Duke University) SG-MCMC 91 / 119

SGHMC using symmetric splitting integrators

d
(

θ
p

)
=

(
p

−A p−∇θU(θ)

)
dt +

√
2A
(

0 0
0 I

)
d w

1 Split the above SDE into the following sub-SDEs:

A :

{
dθ = p dt
d p = 0

,B :

{
dθ = 0
d p = −D p dt

O :

{
dθ = 0
d p = −∇θŨ(θ)dt +

√
2Dd w

2 Solve the sub-SDEs in a symmetric way, e.g., ABOBA, resulting in
the following updates:

θ
(1)
l

A
= θl−1 + pl−1 h/2⇒ p(1)

l
B
= e−Dh/2 pl−1 ⇒ p(2)

l
O
= p(1)

l −∇θŨ(θ
(1)
l)h

+
√

2DhN (0, I)⇒ pl
B
= e−Dh/2 p(2)

l ⇒ θl
A
= θ

(1)
l + pl h/2

3 Induce O(h2) error, more accurate than the Euler integrator.
Changyou Chen (Duke University) SG-MCMC 92 / 119

SGHMC using symmetric splitting integrators

d
(

θ
p

)
=

(
p

−A p−∇θU(θ)

)
dt +

√
2A
(

0 0
0 I

)
d w

1 Split the above SDE into the following sub-SDEs:

A :

{
dθ = p dt
d p = 0

,B :

{
dθ = 0
d p = −D p dt

O :

{
dθ = 0
d p = −∇θŨ(θ)dt +

√
2Dd w

2 Solve the sub-SDEs in a symmetric way, e.g., ABOBA, resulting in
the following updates:

θ
(1)
l

A
= θl−1 + pl−1 h/2⇒ p(1)

l
B
= e−Dh/2 pl−1 ⇒ p(2)

l
O
= p(1)

l −∇θŨ(θ
(1)
l)h

+
√

2DhN (0, I)⇒ pl
B
= e−Dh/2 p(2)

l ⇒ θl
A
= θ

(1)
l + pl h/2

3 Induce O(h2) error, more accurate than the Euler integrator.
Changyou Chen (Duke University) SG-MCMC 92 / 119

SGHMC using symmetric splitting integrators

d
(

θ
p

)
=

(
p

−A p−∇θU(θ)

)
dt +

√
2A
(

0 0
0 I

)
d w

1 Split the above SDE into the following sub-SDEs:

A :

{
dθ = p dt
d p = 0

,B :

{
dθ = 0
d p = −D p dt

O :

{
dθ = 0
d p = −∇θŨ(θ)dt +

√
2Dd w

2 Solve the sub-SDEs in a symmetric way, e.g., ABOBA, resulting in
the following updates:

θ
(1)
l

A
= θl−1 + pl−1 h/2⇒ p(1)

l
B
= e−Dh/2 pl−1 ⇒ p(2)

l
O
= p(1)

l −∇θŨ(θ
(1)
l)h

+
√

2DhN (0, I)⇒ pl
B
= e−Dh/2 p(2)

l ⇒ θl
A
= θ

(1)
l + pl h/2

3 Induce O(h2) error, more accurate than the Euler integrator.
Changyou Chen (Duke University) SG-MCMC 92 / 119

Outline: Stochastic Gradient Markov Chain Monte Carlo

1 SG-MCMC algorithms
2 Theory

I Itô diffusion
I Convergence theory

Changyou Chen (Duke University) SG-MCMC 93 / 119

Setup

1 ρ(x): stationary distribution of an Itô diffusion.
2 {x1, · · · ,xL}: samples from the corresponding SG-MCMC

algorithm.
3 φ(x): a test function.
4 φ̄ ,

∫
φ(x)ρ(x)d x: posterior average.

5 φ̂L , 1
L
∑L

l=1 φ(xl): sample average (fixed step size).
6 φ̃L , 1∑L

l=1 hl

∑L
l=1 hlφ(xl): sample average (decreasing step sizes).

7 In weak convergence analysis, we study how φ̂L approximates φ̄,
in terms of:

I bias:
∣∣∣Eφ̂L − φ̄

∣∣∣, or
∣∣∣Eφ̃L − φ̄

∣∣∣

I mean square error (MSE): E
(
φ̂L − φ̄

)2
, or E

(
φ̃L − φ̄

)2

Changyou Chen (Duke University) SG-MCMC 94 / 119

Setup

1 ρ(x): stationary distribution of an Itô diffusion.
2 {x1, · · · ,xL}: samples from the corresponding SG-MCMC

algorithm.
3 φ(x): a test function.
4 φ̄ ,

∫
φ(x)ρ(x)d x: posterior average.

5 φ̂L , 1
L
∑L

l=1 φ(xl): sample average (fixed step size).
6 φ̃L , 1∑L

l=1 hl

∑L
l=1 hlφ(xl): sample average (decreasing step sizes).

7 In weak convergence analysis, we study how φ̂L approximates φ̄,
in terms of:

I bias:
∣∣∣Eφ̂L − φ̄

∣∣∣, or
∣∣∣Eφ̃L − φ̄

∣∣∣

I mean square error (MSE): E
(
φ̂L − φ̄

)2
, or E

(
φ̃L − φ̄

)2

Changyou Chen (Duke University) SG-MCMC 94 / 119

Typical assumptions

The convergence theory relies on some assumptions on the
continuous-time Itô diffusions and the numerical methods.

Informally:

1 Ellipticity/hypoellipticity: the noise from Brownian motion could
spread out over the whole space (diffusion coefficient).

2 Smoothness and boundedness: the drift coefficient F (x) is
smooth and bounded by some function.

3 Ergodicity: numerical methods are able to explore the whole
parameter space.

4 Nice properties (smooth, bounded) of ψ: ψ is the solution
functional of 1

L
∑L

l=1 Lψ(xl) = φ̂L − φ̄, with L the infinite generator
of the corresponding Itô diffusion.

Changyou Chen (Duke University) SG-MCMC 95 / 119

Typical assumptions

The convergence theory relies on some assumptions on the
continuous-time Itô diffusions and the numerical methods.

Informally:
1 Ellipticity/hypoellipticity: the noise from Brownian motion could

spread out over the whole space (diffusion coefficient).
2 Smoothness and boundedness: the drift coefficient F (x) is

smooth and bounded by some function.
3 Ergodicity: numerical methods are able to explore the whole

parameter space.
4 Nice properties (smooth, bounded) of ψ: ψ is the solution

functional of 1
L
∑L

l=1 Lψ(xl) = φ̂L − φ̄, with L the infinite generator
of the corresponding Itô diffusion.

Changyou Chen (Duke University) SG-MCMC 95 / 119

Typical assumptions

The convergence theory relies on some assumptions on the
continuous-time Itô diffusions and the numerical methods.

Informally:
1 Ellipticity/hypoellipticity: the noise from Brownian motion could

spread out over the whole space (diffusion coefficient).
2 Smoothness and boundedness: the drift coefficient F (x) is

smooth and bounded by some function.
3 Ergodicity: numerical methods are able to explore the whole

parameter space.
4 Nice properties (smooth, bounded) of ψ: ψ is the solution

functional of 1
L
∑L

l=1 Lψ(xl) = φ̂L − φ̄, with L the infinite generator
of the corresponding Itô diffusion.

Changyou Chen (Duke University) SG-MCMC 95 / 119

Typical assumptions

The convergence theory relies on some assumptions on the
continuous-time Itô diffusions and the numerical methods.

Informally:
1 Ellipticity/hypoellipticity: the noise from Brownian motion could

spread out over the whole space (diffusion coefficient).
2 Smoothness and boundedness: the drift coefficient F (x) is

smooth and bounded by some function.
3 Ergodicity: numerical methods are able to explore the whole

parameter space.
4 Nice properties (smooth, bounded) of ψ: ψ is the solution

functional of 1
L
∑L

l=1 Lψ(xl) = φ̂L − φ̄, with L the infinite generator
of the corresponding Itô diffusion.

Changyou Chen (Duke University) SG-MCMC 95 / 119

Typical assumptions

The convergence theory relies on some assumptions on the
continuous-time Itô diffusions and the numerical methods.

Informally:
1 Ellipticity/hypoellipticity: the noise from Brownian motion could

spread out over the whole space (diffusion coefficient).
2 Smoothness and boundedness: the drift coefficient F (x) is

smooth and bounded by some function.
3 Ergodicity: numerical methods are able to explore the whole

parameter space.
4 Nice properties (smooth, bounded) of ψ: ψ is the solution

functional of 1
L
∑L

l=1 Lψ(xl) = φ̂L − φ̄, with L the infinite generator
of the corresponding Itô diffusion.

Changyou Chen (Duke University) SG-MCMC 95 / 119

Revisit orders of numerical integrators

1 SG-MCMC algorithms are discretized approximation of
continuous-time Itô diffusions.

2 The accuracy of the samples generated from SG-MCMC
algorithms is described by their orders of numerical methods.

For example:
1. Use an SG-MCMC algorithm to generate xl from xl−1 with

stepsize h.
2. Evolve the corresponding Itô diffusion exactly for time period h,

starting from xl−1, and ending up with x̃l .
3. Calculate the difference: Df (xl , x̃l) , E |f (xl)− f (x̃l)|, where f is a

test function.
4. If Df (xl , x̃l) = O(hK), then the numerical integrator is called an

K th-order integrator.

Changyou Chen (Duke University) SG-MCMC 96 / 119

Revisit orders of numerical integrators

1 SG-MCMC algorithms are discretized approximation of
continuous-time Itô diffusions.

2 The accuracy of the samples generated from SG-MCMC
algorithms is described by their orders of numerical methods.

3 The popular Euler method is a 1st-order integrator.
4 The symmetric splitting integratora is a 2nd-order integrator.
5 We will present results with general K th-order integrators.

aC. Chen, N. Ding, and L. Carin. “On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order
Integrators”. In: NIPS. 2015.

Changyou Chen (Duke University) SG-MCMC 96 / 119

Convergence bounds of bias and MSE21

Theorem (Fixed step size)
Under standard assumptions, the bias and MSE of a fixed-step-size
SG-MCMC with a K th-order integrator at time T = hL are bounded as:

Bias:
∣∣∣Eφ̂L − φ̄

∣∣∣ ≤ C1

(
1

Lh
+ hK

)

MSE: E
(
φ̂L − φ̄

)2
≤ C2

(
1

Lh
+ h2K

)

21C. Chen, N. Ding, and L. Carin. “On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators”.
In: NIPS. 2015.
Changyou Chen (Duke University) SG-MCMC 97 / 119

Convergence bounds of bias and MSE21

Theorem (Decreasing step sizes)
Under standard assumptions, the bias and MSE of a
decreasing-step-size SG-MCMC with a K th-order integrator at time
SL ,

∑L
l=1 hl are bounded as:

Bias:
∣∣∣Eφ̃L − φ̄

∣∣∣ ≤ C1

(
1

SL
+

∑L
l=1 hK +1

l
SL

)

MSE: E
(
φ̃L − φ̄

)2
≤ C2

(
1

SL
+

(
∑L

l=1 hK +1
l)2

S2
L

+

∑L
l=1 h2

l

S2
L

)

To ensure the bias and MSE asymptotically approach zero, we
need:

SL →∞,
∑L

l=1 hK +1
l

SL
→ 0,

∑L
l=1 h2

l

S2
L

→ 0

21C. Chen, N. Ding, and L. Carin. “On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators”.
In: NIPS. 2015.
Changyou Chen (Duke University) SG-MCMC 97 / 119

Optimal convergence rates

1 When optimizing the bounds over step size, we get the optimal
convergence rates.

Changyou Chen (Duke University) SG-MCMC 98 / 119

Optimal convergence rates

1 When optimizing the bounds over step size, we get the optimal
convergence rates.

Fixed step size:

Bias:
∣∣∣Eφ̂L − φ̄

∣∣∣ ≤ C1

(
1

Lh
+ hK

)
⇒ C1L−K/(K +1)

MSE: E
(
φ̂L − φ̄

)2
≤ C2

(
1

Lh
+ h2K

)
⇒ C2L−2K/(2K +1)

2 Slower than stochastic optimization:
I bias typically decreases as L−1

3 Also slower than standard MCMC:
I square root of MSE typically decreases as L−1/2

I however, standard MCMC is typically computationally infeasible for
even a single iteration

Changyou Chen (Duke University) SG-MCMC 98 / 119

Optimal convergence rates

1 When optimizing the bounds over step size, we get the optimal
convergence rates.

Fixed step size:

Bias:
∣∣∣Eφ̂L − φ̄

∣∣∣ ≤ C1

(
1

Lh
+ hK

)
⇒ C1L−K/(K +1)

MSE: E
(
φ̂L − φ̄

)2
≤ C2

(
1

Lh
+ h2K

)
⇒ C2L−2K/(2K +1)

2 Slower than stochastic optimization:
I bias typically decreases as L−1

3 Also slower than standard MCMC:
I square root of MSE typically decreases as L−1/2

I however, standard MCMC is typically computationally infeasible for
even a single iteration

Changyou Chen (Duke University) SG-MCMC 98 / 119

Optimal convergence rates

1 When optimizing the bounds over step size, we get the optimal
convergence rates.

Fixed step size:

Bias:
∣∣∣Eφ̂L − φ̄

∣∣∣ ≤ C1

(
1

Lh
+ hK

)
⇒ C1L−K/(K +1)

MSE: E
(
φ̂L − φ̄

)2
≤ C2

(
1

Lh
+ h2K

)
⇒ C2L−2K/(2K +1)

2 Slower than stochastic optimization:
I bias typically decreases as L−1

3 Also slower than standard MCMC:
I square root of MSE typically decreases as L−1/2

I however, standard MCMC is typically computationally infeasible for
even a single iteration

Changyou Chen (Duke University) SG-MCMC 98 / 119

Optimal convergence rates

1 When optimizing the bounds over step size, we get the optimal
convergence rates.

Decreasing step sizes: consider hl ∝ l−α

Bias:
∣∣∣Eφ̃L − φ̄

∣∣∣ ≤ C1

(
1

SL
+

∑L
l=1 hK +1

l
SL

)

=⇒ C1L−K/(K +1), with α = 1/(K + 1)

MSE: E
(
φ̃L − φ̄

)2
≤ C2

(
1

SL
+

(
∑L

l=1 hK +1
l)2

S2
L

+

∑L
l=1 h2

l

S2
L

)

=⇒ C2L−2K/(2K +1), with α = 1/(2K + 1)

2 Behave similarly to the fixed-step-size case

Changyou Chen (Duke University) SG-MCMC 98 / 119

Optimal convergence rates

1 When optimizing the bounds over step size, we get the optimal
convergence rates.

Decreasing step sizes: consider hl ∝ l−α

Bias:
∣∣∣Eφ̃L − φ̄

∣∣∣ ≤ C1

(
1

SL
+

∑L
l=1 hK +1

l
SL

)

=⇒ C1L−K/(K +1), with α = 1/(K + 1)

MSE: E
(
φ̃L − φ̄

)2
≤ C2

(
1

SL
+

(
∑L

l=1 hK +1
l)2

S2
L

+

∑L
l=1 h2

l

S2
L

)

=⇒ C2L−2K/(2K +1), with α = 1/(2K + 1)

2 Behave similarly to the fixed-step-size case

Changyou Chen (Duke University) SG-MCMC 98 / 119

Synthetic experiments22

1 A standard Gaussian model:

xi ∼ N (θ,1), θ ∼ N (0,1), i = 1, · · · ,1000

2 Test function: φ(θ) = θ2.

22C. Chen, N. Ding, and L. Carin. “On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators”.
In: NIPS. 2015.
Changyou Chen (Duke University) SG-MCMC 99 / 119

Synthetic experiments22

1 A standard Gaussian model:

xi ∼ N (θ,1), θ ∼ N (0,1), i = 1, · · · ,1000

2 Test function: φ(θ) = θ2.

Fixed step size:

Use a 2nd-order symmetric
splitting integrator.
Optimal step size: h ∝ L−α

with α = 0.2 for the MSE.

#iterations
10 1 10 2 10 3 10 4

M
S

E

10 -4

10 -2

10 0

10 2

, = 0:1
, = 0:2
, = 0:3
, = 0:4

22C. Chen, N. Ding, and L. Carin. “On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators”.
In: NIPS. 2015.
Changyou Chen (Duke University) SG-MCMC 99 / 119

Synthetic experiments22

1 A standard Gaussian model:

xi ∼ N (θ,1), θ ∼ N (0,1), i = 1, · · · ,1000

2 Test function: φ(θ) = θ2.

Decreasing step sizes:

Use step size sequence
hl ∝ l−α.
Optimal α = 1/3 for the bias.

#iterations
10 1 10 2 10 3 10 4

B
IA

S

10 -2

10 -1

10 0

10 1

, = 0:1
, = 0:2
, = 0:33
, = 0:7

22C. Chen, N. Ding, and L. Carin. “On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators”.
In: NIPS. 2015.
Changyou Chen (Duke University) SG-MCMC 99 / 119

Large-Scale Bayesian Learning with Stochastic Gradient
Markov Chain Monte Carlo Methods

Part Three: SG-MCMC for Stochastic Optimization

Changyou Chen (Duke University) SG-MCMC 100 / 119

Outline

4 SG-MCMC for Stochastic Optimization
Bridging the Gap between SG-MCMC and Stochastic Optimization

Changyou Chen (Duke University) SG-MCMC 101 / 119

Motivation

1 A key problem in big-data era, especially in deep learning, is to
design algorithms that better solve a complex and
high-dimensional problem.

2 Stochastic optimization:
I computationally efficient, fast convergence, prone to local optimal

3 Stochastic gradient MCMC:
I computationally efficient, slower convergence, able to explore the

parameter space
4 Can we combine advantages from both?
5 What is in between them?

Changyou Chen (Duke University) SG-MCMC 102 / 119

Motivation

1 A key problem in big-data era, especially in deep learning, is to
design algorithms that better solve a complex and
high-dimensional problem.

2 Stochastic optimization:
I computationally efficient, fast convergence, prone to local optimal

3 Stochastic gradient MCMC:
I computationally efficient, slower convergence, able to explore the

parameter space
4 Can we combine advantages from both?
5 What is in between them?

Changyou Chen (Duke University) SG-MCMC 102 / 119

Motivation

1 A key problem in big-data era, especially in deep learning, is to
design algorithms that better solve a complex and
high-dimensional problem.

2 Stochastic optimization:
I computationally efficient, fast convergence, prone to local optimal

3 Stochastic gradient MCMC:
I computationally efficient, slower convergence, able to explore the

parameter space
4 Can we combine advantages from both?
5 What is in between them?

Changyou Chen (Duke University) SG-MCMC 102 / 119

Motivation

1 A key problem in big-data era, especially in deep learning, is to
design algorithms that better solve a complex and
high-dimensional problem.

2 Stochastic optimization:
I computationally efficient, fast convergence, prone to local optimal

3 Stochastic gradient MCMC:
I computationally efficient, slower convergence, able to explore the

parameter space
4 Can we combine advantages from both?
5 What is in between them?

Changyou Chen (Duke University) SG-MCMC 102 / 119

Stochastic optimization

1 Stochastic gradient descent (SGD):
I basic stochastic optimization algorithm, without considering neither

momentum and preconditioning
2 SGD with momentum (SGD-M):

I extending SGD with momentum
3 RMSProp, Adadelta · · · :

I extending SGD with preconditioner
4 Adam:

I extending SGD with both momentum and preconditioner

Changyou Chen (Duke University) SG-MCMC 103 / 119

Stochastic optimization

1 Stochastic gradient descent (SGD):
I basic stochastic optimization algorithm, without considering neither

momentum and preconditioning
2 SGD with momentum (SGD-M):

I extending SGD with momentum
3 RMSProp, Adadelta · · · :

I extending SGD with preconditioner
4 Adam:

I extending SGD with both momentum and preconditioner

Changyou Chen (Duke University) SG-MCMC 103 / 119

Stochastic optimization

1 Stochastic gradient descent (SGD):
I basic stochastic optimization algorithm, without considering neither

momentum and preconditioning
2 SGD with momentum (SGD-M):

I extending SGD with momentum
3 RMSProp, Adadelta · · · :

I extending SGD with preconditioner
4 Adam:

I extending SGD with both momentum and preconditioner

Changyou Chen (Duke University) SG-MCMC 103 / 119

Stochastic optimization

1 Stochastic gradient descent (SGD):
I basic stochastic optimization algorithm, without considering neither

momentum and preconditioning
2 SGD with momentum (SGD-M):

I extending SGD with momentum
3 RMSProp, Adadelta · · · :

I extending SGD with preconditioner
4 Adam:

I extending SGD with both momentum and preconditioner

Changyou Chen (Duke University) SG-MCMC 103 / 119

Stochastic gradient MCMC

1 Stochastic gradient Langevin dynamics (SGLD):
I Bayesian analog of SGD, without considering neither momentum

and preconditioning
2 Stochastic gradient Hamiltonian Monte Carlo (SGHMC):

I Bayesian analog of SGD-M, with momentum
3 Preconditioned stochastic gradient Langevin dynamics (PSGLD):

I Bayesian analog of RMSProp, with preconditioner
4 Stochastic gradient thermostats (SGNHT):

I Bayesian sampling with adaptive momentum, does not have a
stochastic optimization analog

Changyou Chen (Duke University) SG-MCMC 104 / 119

Stochastic gradient MCMC

1 Stochastic gradient Langevin dynamics (SGLD):
I Bayesian analog of SGD, without considering neither momentum

and preconditioning
2 Stochastic gradient Hamiltonian Monte Carlo (SGHMC):

I Bayesian analog of SGD-M, with momentum
3 Preconditioned stochastic gradient Langevin dynamics (PSGLD):

I Bayesian analog of RMSProp, with preconditioner
4 Stochastic gradient thermostats (SGNHT):

I Bayesian sampling with adaptive momentum, does not have a
stochastic optimization analog

Changyou Chen (Duke University) SG-MCMC 104 / 119

Stochastic gradient MCMC

1 Stochastic gradient Langevin dynamics (SGLD):
I Bayesian analog of SGD, without considering neither momentum

and preconditioning
2 Stochastic gradient Hamiltonian Monte Carlo (SGHMC):

I Bayesian analog of SGD-M, with momentum
3 Preconditioned stochastic gradient Langevin dynamics (PSGLD):

I Bayesian analog of RMSProp, with preconditioner
4 Stochastic gradient thermostats (SGNHT):

I Bayesian sampling with adaptive momentum, does not have a
stochastic optimization analog

Changyou Chen (Duke University) SG-MCMC 104 / 119

Stochastic gradient MCMC

1 Stochastic gradient Langevin dynamics (SGLD):
I Bayesian analog of SGD, without considering neither momentum

and preconditioning
2 Stochastic gradient Hamiltonian Monte Carlo (SGHMC):

I Bayesian analog of SGD-M, with momentum
3 Preconditioned stochastic gradient Langevin dynamics (PSGLD):

I Bayesian analog of RMSProp, with preconditioner
4 Stochastic gradient thermostats (SGNHT):

I Bayesian sampling with adaptive momentum, does not have a
stochastic optimization analog

Changyou Chen (Duke University) SG-MCMC 104 / 119

Bridging the gap

1 Santa: the Stochastic AnNealing Thermostats with Adaptive
momentum algorithm.

Table: SG-MCMC algorithms and their
optimization counterparts.

Algorithms SG-MCMC Optimization
Basic SGLD ⇐⇒ SGD
Precondition pSGLD ⇐⇒ RMSprop
Momentum SGHMC ⇐⇒ SGD-M
Thermostat SGNHT ≈ Santa

1 What is in between them?
I it is about the noise

Changyou Chen (Duke University) SG-MCMC 105 / 119

Example: noise in SGLD

1 Update equation for SGLD:

θl+1 = θl −∇θŨl(θ)hl +
√

2hlN (0, I)

2 How about adding
√

2hl/βN (0, I) noise instead of
√

2hlN (0, I)?
I it would end up sampling from an annealed distribution:
ρβ(θ) ∝ e−βU(θ)

I when β = 0, ρβ(θ) is a uniform distribution
I when β =∞, ρβ(θ) is a spike located at θ∗ = arg minθ U(θ)

-5 0 5
0

10

20 β = 0

-5 0 5
0

10

20 β = 1

-5 0 5
0

10

20 β = ∞

Changyou Chen (Duke University) SG-MCMC 106 / 119

Example: noise in SGLD

1 Update equation for SGLD:

θl+1 = θl −∇θŨl(θ)hl +
√

2hlN (0, I)

2 How about adding
√

2hl/βN (0, I) noise instead of
√

2hlN (0, I)?
I it would end up sampling from an annealed distribution:
ρβ(θ) ∝ e−βU(θ)

I when β = 0, ρβ(θ) is a uniform distribution
I when β =∞, ρβ(θ) is a spike located at θ∗ = arg minθ U(θ)

-5 0 5
0

10

20 β = 0

-5 0 5
0

10

20 β = 1

-5 0 5
0

10

20 β = ∞

Changyou Chen (Duke University) SG-MCMC 106 / 119

A more expressive framework

1 What is lacking in recent stochastic optimization algorithms?
I lacking of simultaneously element-wise adaptive preconditioner and

adaptive momentum
2 SGNHT comes to rescue:

I the thermostat variable adaptively learns the momentum
I the annealing idea turns the SG-MCMC algorithm into stochastic

optimization

d

θt
pt
ξt

 =

pt
−ξt pt −∇θU(θt)

pT
t pt /D − 1

 dt +

√
2A

0 0 0
0 I 0
0 0 0

 d wt

Changyou Chen (Duke University) SG-MCMC 107 / 119

A more expressive framework

1 What is lacking in recent stochastic optimization algorithms?
I lacking of simultaneously element-wise adaptive preconditioner and

adaptive momentum
2 SGNHT comes to rescue:

I the thermostat variable adaptively learns the momentum
I the annealing idea turns the SG-MCMC algorithm into stochastic

optimization

d

θt
pt
ξt

 =

pt
−ξt pt −∇θU(θt)

pT
t pt /D − 1

 dt +

√
2A

0 0 0
0 I 0
0 0 0

 d wt

Changyou Chen (Duke University) SG-MCMC 107 / 119

The Santa algorithm

1 The Stochastic AnNealing Thermostats with Adaptive momentum
(Santa) algorithm extends SGNHT with preconditioners and
annealing temperature.

2 Itô diffusion form:

dθ = G1(θ)pdt
dp =

(
−G1(θ)∇θU(θ)−Ξp + 1

β∇θG1(θ)

+G1(θ)(Ξ−G2(θ))∇θG2(θ)) dt + (2
βG2(θ))

1
2 dw

dΞ =
(

diag(p � p)− 1
β I
)

dt ,

(1)

where G1(θ) and G2(θ) are some preconditioners, typically constructed
using RMSProp.

3 Santa algorithm is derived by solving (1) numerically with an
increasing sequence of inverse temperatures β.

Changyou Chen (Duke University) SG-MCMC 108 / 119

The Santa algorithm

1 The Stochastic AnNealing Thermostats with Adaptive momentum
(Santa) algorithm extends SGNHT with preconditioners and
annealing temperature.

2 Itô diffusion form:

dθ = G1(θ)pdt
dp =

(
−G1(θ)∇θU(θ)−Ξp + 1

β∇θG1(θ)

+G1(θ)(Ξ−G2(θ))∇θG2(θ)) dt + (2
βG2(θ))

1
2 dw

dΞ =
(

diag(p � p)− 1
β I
)

dt ,

(1)

where G1(θ) and G2(θ) are some preconditioners, typically constructed
using RMSProp.

3 Santa algorithm is derived by solving (1) numerically with an
increasing sequence of inverse temperatures β.

Changyou Chen (Duke University) SG-MCMC 108 / 119

The Santa algorithm

1 The Stochastic AnNealing Thermostats with Adaptive momentum
(Santa) algorithm extends SGNHT with preconditioners and
annealing temperature.

2 Itô diffusion form:

dθ = G1(θ)pdt
dp =

(
−G1(θ)∇θU(θ)−Ξp + 1

β∇θG1(θ)

+G1(θ)(Ξ−G2(θ))∇θG2(θ)) dt + (2
βG2(θ))

1
2 dw

dΞ =
(

diag(p � p)− 1
β I
)

dt ,

(1)

where G1(θ) and G2(θ) are some preconditioners, typically constructed
using RMSProp.

3 Santa algorithm is derived by solving (1) numerically with an
increasing sequence of inverse temperatures β.

Changyou Chen (Duke University) SG-MCMC 108 / 119

The Santa algorithm

Input: ηt (learning rate), σ, λ, burnin, β = {β1, β2, · · · } → ∞,
{ζt ∈ Rp} ∼ N(0, Ip).

Initialize θ0, u0 =
√
η × N(0, Ip), α0 =

√
ηC, v0 = 0 ;

for t = 1,2, . . . do
Evaluate f̃ t , ∇θŨ(θt−1) on the t th mini-batch;
v t = σv t−1 + 1−σ

N2 f̃ t � f̃ t ;
gt = 1�

√
λ+
√

v t ;
if t < burnin then

/* exploration */
αt = αt−1 + (ut−1 � ut−1 − η/βt);

ut = η
βt

(
1− gt−1 � gt

)
� ut−1 +

√
2η
βt

gt−1 � ζt

else
/* refinement */
αt = αt−1; ut = 0;

end
ut = ut + (1−αt)� ut−1 − ηgt � f̃ t ; θt = θt−1 + gt � ut ;

end

Changyou Chen (Duke University) SG-MCMC 109 / 119

The Santa algorithm

1 It is an stochastic optimization algorithm that starts from Bayesian
sampling.

2 It is able to jump out of local modes easier than traditional
stochastic optimization algorithms.

3 Under certain conditions, it is proved to converge in expectation to
the global mode.

4 It converges fast in empirical studies.

Changyou Chen (Duke University) SG-MCMC 110 / 119

Illustration
1 Optimizing the double-well potential:

U(θ) = (θ + 4)(θ + 1)(θ − 1)(θ − 3)/14 + 0.5 .

2 Start close to a local mode.
3 RMSProp gets stuck, while Santa is able to jump out of the local

mode.

6 4 2 0 2 4 6

θ

0

5

10

15

20

ex
p
(−
U

(θ
))

0 1000 2000 3000 4000 5000

iterations

6

4

2

0

2

4

θ

Santa

RMSprop

Figure: (Left) Double-well potential. (Right) The evolution of θ using Santa
and RMSprop algorithms.

Changyou Chen (Duke University) SG-MCMC 111 / 119

Illustration
1 Optimizing the double-well potential:

U(θ) = (θ + 4)(θ + 1)(θ − 1)(θ − 3)/14 + 0.5 .

2 Start close to a local mode.
3 RMSProp gets stuck, while Santa is able to jump out of the local

mode.

6 4 2 0 2 4 6

θ

0

5

10

15

20

ex
p
(−
U

(θ
))

0 1000 2000 3000 4000 5000

iterations

6

4

2

0

2

4

θ

Santa

RMSprop

Figure: (Left) Double-well potential. (Right) The evolution of θ using Santa
and RMSprop algorithms.

Changyou Chen (Duke University) SG-MCMC 111 / 119

Feedforward neural networks and convolutional neural networks

Detailed parameter setting is given in the paper23.
Santa outperforms other algorithms in most cases.

Table: Test error on MNIST classification using FNN and CNN.

Algorithms FNN-400 FNN-800 CNN
Santa 1.21% 1.16% 0.47%
Adam 1.53% 1.47% 0.59%

RMSprop 1.59% 1.43% 0.64%
SGD-M 1.66% 1.72% 0.77%

SGD 1.72% 1.47% 0.81%
SGLD 1.64% 1.41% 0.71%
BPB� 1.32% 1.34% −

SGD, Dropout� 1.51% 1.33% −
Stoc. Pooling. − − 0.47%
NIN, Dropout◦ − − 0.47%

Maxout, Dropout? − − 0.45%

23C. Chen et al. “Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization”. In: AISTATS. 2016.

Changyou Chen (Duke University) SG-MCMC 112 / 119

Recurrent neural networks (RNN)

1 Language modeling with vanilla RNN.
2 Test on four publicly available datasets.

Table: Test negative log-likelihood on 4 datasets.

Algorithms Piano. Nott. Muse. JSB.
Santa 7.60 3.39 7.20 8.46
Adam 8.00 3.70 7.56 8.51

RMSprop 7.70 3.48 7.22 8.52
SGD-M 8.32 3.60 7.69 8.59

SGD 11.13 5.26 10.08 10.81
HF� 7.66 3.89 7.19 8.58

SGD-M� 8.37 4.46 8.13 8.71

Changyou Chen (Duke University) SG-MCMC 113 / 119

ImageNet visual recognition challenge24

1 More than 10 million annotated natural images, with 1000 classed.
2 Use to compete different machine learning algorithms, dominated

by deep learning recent years.

24J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In: CVPR. 2009.

Changyou Chen (Duke University) SG-MCMC 114 / 119

GoogleNet for ImageNet classification

1 Use ILSVRC 2012 for training and testing.
2 Compared with SGD with momentum, other algorithms did not

seem to work.
3 Did not tune the parameters, use the default setting for GoogleNet

provided in the Caffe package.

Changyou Chen (Duke University) SG-MCMC 115 / 119

GoogleNet for ImageNet classification
1 Santa converges much faster than SGD-M.
2 Use the default step size: ht = a

√
1− t/T , can not run more than

T iterations.

0.5 1 1.5 2
#iterations #10 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
op

-1
 A

cc
ur

ac
y

Top-1 Accuracy on ImageNet

Santa
SGD-M

0.5 1 1.5 2
#iterations #10 6

0

0.2

0.4

0.6

0.8

1

T
op

-5
 A

cc
ur

ac
y

Top-5 Accuracy on ImageNet

Santa
SGD-M

Figure: Santa vs. SGD with momentum on ImageNet.

Changyou Chen (Duke University) SG-MCMC 116 / 119

Why adding gradient noise improves DNN training ?

1 A recent paper25 finds that adding gradient noise helps train very
deep network:

I the reason was not very clear
2 It essentially adds small random Gaussian noise in parameter

updates.
3 Equivalent to sampling from an annealed distribution:
ρβ(θ) ∝ e−βU(θ), with some large β.

4 The good performance can be explained by the Santa algorithm:
I noise makes the algorithm jump out of local modes easier
I large β smooths the objective function heavier, thus ends up better

local modes
5 Conclusion holds when the gradient noise is not Gaussian:

I as long as it has zero mean and finite variance
I theoretical analysis follows similarly, with a little modification

25A. Neelakantan et al. “Adding Gradient Noise Improves Learning for Very Deep Networks”. In: ICLR workshop. 2016.

Changyou Chen (Duke University) SG-MCMC 117 / 119

Conclusion

I have covered:
1 Basic concepts in MCMC.
2 Basic ideas in SG-MCMC, a review of basic SG-MCMC

algorithms.
3 Theory related to stochastic differential equations and Itó

diffusions.
4 Convergence theory.
5 How to extend SG-MCMC for stochastic optimization.

Changyou Chen (Duke University) SG-MCMC 118 / 119

Thank You

Changyou Chen (Duke University) SG-MCMC 119 / 119

	Basics
	Theory
	Itô Diffusion
	Weak Convergence

	SG-MCMC for Stochastic Optimization

