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A The proof of Lemma 1
Proof In mSGNHT, Xt = (θt,pt, ξt). The update equa-
tions with a Euler integrator are: θt+1 = θt + pth

pt+1 = pt −∇θŨt(θt+1)h− diag(ξt)pth+
√

2Dζt+1

ξt+1 = ξt + (pt+1 � pt+1 − 1)h

Based on the update equations, it is easily seen that the
corresponding Kolmogorov operator P̃ lh for mSGNHT is

P̃ lh = ehL1 ◦ ehL2 ◦ ehL3 , (1)

where L1 , (p� p− 1) · ∇ξ, L2 , −diag(ξ)pt · ∇p −
∇θŨl(θ) · ∇p + 2DI : ∇p∇Tp , and L3 , p · ∇θ. Using the
BCH formula, we have

P̃ lh = eh(L1+L2+L3) +O(h2) . (2)

On the other hand, the local generator of mSGNHT at the
t-th iteration can be seen to be:

L̃t = L1 + L̃2 + L3 , (3)

where L1 and L3 are defined previously, and L̃2 =
−diag(ξ)p ·∇p−∇θŨl(θ) ·∇p+2DI : ∇p∇Tp . According
to the Kolmogorov’s backward equation, we have

E[f(Xt+1)] = ehL̃tf(Xt) . (4)

Substitute (4) into (2) and use the fact that p = pt + O(h)
by Taylor expansion, it is easily seen

P̃ lh = ehL̃t+O(h2) +O(h2) = ehL̃t +O(h2) .

This completes the proof.

B The proof of Lemma 2
Proof In symmetric splitting scheme for mSGNHT, accord-
ing to the splitting in (4) in the main text, the generator L̃t is
split into the following sub-generators which can be solved
analytically: L̃l = LA + LB + LOl

, where

A , LA = p · ∇θ + (p� p− 1) · ∇ξ,
B , LB = −diag(ξ)pt · ∇p,
Ol , LOl

= −∇θŨl(θ) · ∇p + 2D : ∇p∇Tp .
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The corresponding Kolmogorov operator P̃ lh for the split-
ting integrator can be seen to be:

P̃ lh , e
h
2LA ◦ eh

2LB ◦ ehLOl ◦ eh
2LB ◦ eh

2LA ,

In the following we use the Baker–Campbell–Hausdorff
(BCH) formula (Rossmann 2002) to show that P̃ lh is a 2nd-
order integrator. Specifically,
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= e
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where [X,Y ] , XY − Y X is the commutator of X and
Y , (5) follows from the BCH formula, and (6) follows by
moving high order terms O(h3) out of the exponential map
using Taylor expansion. Similarly, for the other composition,
we have
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As a result

P̃ lh , e
h
2Be

h
2AehZe

h
2Ae
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h
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(
ehOl+hA+ h
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=eh(B+A+Ol) +O(h3)

=eh(L+∆Vl) +O(h3) = ehL̃l +O(h3) .

This completes the proof.

C More details on Lemma 3
Our justification of the symmetric splitting integrator is
based on Lemma 3, which is a simplification of the main

mailto:chunyuan.li@duke.edu
mailto:cchangyou@gmail.com
mailto:kai.fan@duke.edu
mailto:lcarin@duke.edu


theorems in (Chen, Ding, and Carin 2015). For complete-
ness, we give details of their main theorems in this section.

To recap notation, for an Itó diffusion with an invariant
measure ρ(X), the posterior average is defined as: φ̄ ,∫
X φ(X)ρ(X)dx for some test function φ(X) of interest.

Given samples (xt)
T
t=1 from a SG-MCMC, we use the sam-

ple average φ̂ , 1
T

∑T
t=1 φ(xt) to approximate φ̄.

In addition, we define an operator for the t-th iteration as:

∆Vt , (∇θŨt −∇θU) · ∇p . (7)

Theorem 1 and Theorem 2 summarize the convergence of
a SG-MCMC algorithm with aK-th order integrator with re-
spect to the Bias and MSE, under certain assumptions. Please
refer to (Chen, Ding, and Carin 2015) for detailed proofs.
Theorem 1 Let ‖·‖ be the operator norm. The bias of an
SG-MCMC with a Kth-order integrator at time T = hT
can be bounded as:∣∣∣Eφ̂− φ̄∣∣∣ = O

(
1

Th
+

∑
t ‖E∆Vt‖
T

+ hK
)
.

Theorem 2 For a smooth test function φ, the MSE of an
SG-MCMC with a Kth-order integrator at time T = hT is
bounded, for some C > 0 independent of (T, h), as

E
(
φ̂− φ̄

)2

≤ C

(
1
T

∑
t E ‖∆Vt‖

2

T
+

1

Th
+ h2K

)
.

We simplify Theorem 1 and Theorem 2 to Lemma 3,
where the functions Bbias , O

(
1
Th +

∑
t‖E∆Vt‖
T

)
and

Bmse , C
(

1
T

∑
t E‖∆Vt‖2

T + 1
Th

)
, independent of the order

of an integrator.
In addition, from Theorem 1 and Theorem 2, we can

get the optimal convergence rate of a SG-MCMC algo-
rithm with respect to the Bias and MSE by optimizing the
bounds. Specifically, the optimal convergence rates of the
Bias for the Euler integrator is T−1/2 with optimal step-
size ∝ T−1/2, while this is T−2/3 for the symmetric split-
ting operator with optimal stepsize ∝ T−1/3. For the MSE,
the rate for the Euler integrator is T−2/3 with optimal step-
size ∝ T−1/3, compared to T−4/5 with optimal stepsize
∝ T−1/5 for the symmetric splitting integrator.

D Latent Dirichlet Allocation
Following (Ding et al. 2014), this section describes the semi-
collapsed posterior of the LDA model, and the Expanded-
Natural representation of the prabability simplexes used in
(Patterson and Teh 2013).

Let W = {wjv} be the observed words, Z = {zjv} be the
topic indicator variables, where j indexes the documents and
v indexes the words. Let (π)kw be the topic-word distribu-
tion, njkw be the number of word w in document j allocated
to topic k, · means marginal sum, i.e., njk· =

∑
w ndkw.

The semi-collapsed posterior of the LDA model is

p(W,Z, π|α, τ) = p(π|τ)

J∏
j=1

p(wj , zj |α, π), (8)

where J is the number of documents, α is the parameter in
the Dirichlet prior of the topic distribution for each docu-
ment, τ is the parameter in the prior of π, and

p(wj , zj |α, π) =

K∏
k=1

Γ (α+ njk·)

Γ (α)

W∏
w=1

π
njkw

kw . (9)

The Expanded-Natural representation of the simplexes
πk’s in (Patterson and Teh 2013) is used, where

πkw =
eθkw∑
w′ eθkw′

. (10)

Following (Ding et al. 2014), a Gaussian prior on θkw is
adopted,

p(θkw|τ = {β, σ}) = N (θkw, σ
2) .

The stochastic gradient of the log-posterior of parameter θkw
with a mini-batch St becomes,

∂Ũ(θ)

∂θkw
=
∂ log p̃(θ|W, τ, α)

∂θkw
(11)

=
β − θkw
σ2

+
J

|St|
∑
i∈St

Ezj |wj ,θ,α (njkw − πkwnjk·) .

for the t-th iteration, where St ⊂ {1, 2, · · · , J}, and | · | is
the cardinality of a set.

When σ = 1, we obtain the same stochastic gradient as
in (Patterson and Teh 2013) using Riemannian manifold. To
calculate the expectation term, we use the same Gibbs sam-
pling method as in (Patterson and Teh 2013),

p(zjv = k|wd,θ, α) =

(
α+ n

\v
jk·

)
eθkwjv∑

k′

(
α+ n

\v
jk′·

)
e
θk′wjv

, (12)

where \v denotes the count excluding the v-th topic assign-
ment variable. The expectation is estimated by the samples.

Running time For the results reported in the main text,
to achieve reported results of LDA on ICML dataset,
mSGNHT-E, mSGNHT-S and Gibbs take 1000 iterations,
the running times are 161.99, 180.55 and 516.12 second, re-
spectively.

E Logistic Regression
For each data {x, y}, x ∈ RP is the input data, y ∈ {0, 1}
is the label. Logistic Regression gives the prabability

P (y|x) ∝ gθ(x) =
1

1 + exp (−(W>x+ c))
. (13)

A Gaussian prior is placed on model parameters θ =
{W, c} ∝ N (0, σ2I). We set σ2 = 10 in our experiment.

We study the effectiveness of mSGNHT-S for different
h and D. Learning curves of test errors and training log-
likelihoods are shown in Fig. 1. Generally, the performances
of the proposed mSGNHT-S are consistently more stable
than the mSGNHT-E and SGHMC, across varying h and D.
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Figure 1: Learning curves for logistic regression on a9a dataset for varying h and D. Column 1-2 share the same h; column
2-4 share the same D. Top row is testing error; bottom row is training log-likelihood.
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Figure 2: Learning curves for FNN (ReLU link) on MNIST
dataset for varying stepsize h. Step size decreases top-down.

Furthermore, mSGNHT-S converges faster than mSGNHT-
E, especially at the beginning of learning. Comparing col-
umn 1-2 (fixing h, varying D), mSGNHT-S is more robust
to the choice of diffusion factor D. Comparing column 2-
4 (fixing D, varying h), larger h potentially brings larger
gradient-estimation errors and numerical errors. mSGNHT
is shown to significantly outperform others when h is large.
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Figure 3: Learning curves for FNN (Sigmoid link) on
MNIST dataset for varying network depth. Depth increases
top-down.

F Deep Neural Networks
F.1 Sensitivity to Step-size
For feedforward neural nets (FNN) with a 2-layer model of
100-100 ReLU, we study the performance of mSGNHT-S
for different h. D = 5. We test a wide range of h, and show
in Fig. 2 the learning curves of the test accuracy and training
negative log-likelihood for h = 2×10−4, 1×10−4, 5×10−5.
mSGNHT-S is less sensitive to step size; it maintains fast
convergence when h is large, while mSGNHT-S signifi-
cantly slows down.
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Figure 4: Learning curves of CNN for different step sizes.

F.2 Sigmoid Activation Function
We compare different methods in the case of sigmoid link.
Similar to the main paper, we test the FNNs with varying
depths, e.g., {1, 2, 3}, respectively. We set D = 10 and
h = 10−3. Fig. 3 displays learning curves on testing accu-
racy and training negative log-likelihood. The gaps between
mSGNHT-S and mSGNHT-E becomes larger in deeper
models. When a 3-layer network is emplyed, mSGNHT-
E fails at the first 5 epochs, whilst mSGNHT-S converges
pretty well. Moreover, mSGNHT-S converges more accu-
rately, yielding an accuracy 97.36%, while mSGNHT-E
gives 96.86%. This manifests the importance of numeri-
cal accuracy in SG-MCMC for practical applications, and
mSGNHT-S is desirable in this regard.

F.3 Comparison with Other Methods
Based on network size 400-400 with ReLU, we also com-
pared with a recent state-of-the-art inference method for
neural nets, Bayes by Backprop (BBB) (Blundell et al.
2015). h = 2 × 10−4 and D = 60. The comparison is in
Table 1. BBB and SGD are results taken from (Blundell et
al. 2015).

Table 1: Classification accuracy on MNIST.

Method Accuracy (%) ↑
mSGNHT-S 98.25
mSGNHT-E 98.20

BBB 98.18
SGD 98.17

F.4 Convolutional Neural Networks
We also performed the comparison with a standard network
convolutional neural networks, LeNet (Jarrett et al. 2009),
on MNIST dataset. It is 2-layer convolution networks fol-
lowed by a 2-layer fully-connected FNN, each containing
200 hidden nodes that uses ReLU. Both convolutional lay-
ers use 5×5 filter size with 32 and 64 channels, respectively,
2 × 2 max pooling are used after each convolutional layer.
40 epochs are used, and L is set to 20. In Fig. 4, we tested
the stepsizes h = 10−4 and h = 5 × 10−4 for mSGNHT-S
and mSGNHT-S, and D = 50.

Again, under the same network architecture, CNN trained
with mSGNHT-S converges fater than mSGNHT-E. In par-

ticular, when a large stepsize used, mSGNHT-S has a signif-
icant improvement over mSGNHT-E.

G Deep Poisson Factor Analysis
G.1 Model Specification
We first provide model details of Deep Poisson Factor Anal-
ysis (DPFA) (Gan et al. 2015). Given a discrete matrix
W ∈ ZV×J+ containing counts from J documents and V
words, Poisson factor analysis (PFA) (Zhou et al. 2012) as-
sumes the entries of W are summations of K < ∞ latent
counts, each produced by a latent factor (in the case of topic
modeling, a hidden topic). For W, the generative process of
DPFA with L-layer Sigmoid Belief Networks (SBN), is as
follows

p(h
(L)
kL

) = g(b
(L)
kL

) (14)

p(h
(`)
k`n

= 1|h(`+1)
n ) = g

(
(w

(`)
k`

)>h(`+1)
n + c

(`)
k`

)
(15)

W ∼ Pois(Φ(Ψ� h(1))) (16)
where g(·) is the Sigmoid link. Equation (14) and (15) de-
fine Deep Sigmoid Belief Networks (DSBN). Φ is the factor
loading matrix. Each column of Φ, φk ∈ ∆V , encodes the
relative importance of each word in topic k, with ∆V repre-
senting the V -dimensional simplex. Θ ∈ RK×J+ is the factor
score matrix. Each column ψj , contains relative topic inten-
sities specific to document j. h(`) ∈ {0, 1}K×1 is a latent
binary feature vector, which defines whether certain topics
are associated with documents. The factor scores for docu-
ment j at bottom layer are the element-wise multiplication
ψj � h(1). DPFA is constructed by placing Dirichlet priors
on Φk and gamma priors on ψj . This is summarized as,

xvj =

K∑
k=1

xvjk, xvjk ∼ Pois(φvkψkjhk) (17)

with priors specified as φk ∼ Dir(aφ, . . . , aφ), ψkn ∼
Gamma(rk, pk/(1 − pk)), rk ∼ Gamma(γ0, 1/c0), and
γ0 ∼ Gamma(e0, 1/f0).

G.2 Model Inference
Following (Gan et al. 2015), we use stochastic gradient Rie-
mannian Langevin dynamics (SGRLD) (Patterson and Teh
2013) to sample the topic-word distributions {φk}. mS-
GNHT is used to sample the parameters in DSBN, i.e.,
θ =

(
W(`), c(`), b(L)

)
, where ` = 1, · · · , L − 1. Specif-

ically, the stochastic gradients of W(`) and c(`) evaluated
on a mini-batch of data (denote S as the index set of a mini-
batch) are calculated,

∂Ũ

∂w
(`)
k`

=
J

|S|
∑
i∈D

E
h
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i ,h

(`+1)
i

[(
σ̃
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k`i
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k`i

)
h
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i

]
,

(18)

∂Ũ

∂c
(`)
k`

=
J

|S|
∑
i∈D

E
h

(`)
i ,h
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i

[
σ̃

(`)
k`i
− h(`)

k`i

]
, (19)

where σ̃(`)
k`i

= σ((w
(`)
k`

)>h
(`+1)
i + c

(`)
k`

), and the expectation
is taken over posteriors. Monte Carlo integration is used to
approximate this quantity.
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